C Parity

Quantum Field Theory

Quantum Field Theory

Computing

Git
Maxima quick reference
Mathematica
LVM によるディスク管理
yum によるパッケージ管理
Excel ソルバー

E16 related information

Properties of related particles

$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \gamma^j = \begin{pmatrix} 0 & \sigma_j \\ -\sigma_j & 0 \end{pmatrix} , \gamma_5 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$ $$\psi_L = \begin{pmatrix} \xi \\ 0 \end{pmatrix}, \psi_R = \begin{pmatrix} 0 \\ \bar{\eta} \end{pmatrix}$$

Dirac Representation

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} , \gamma^j = \begin{pmatrix} 0 & \sigma_j \\ -\sigma_j & 0 \end{pmatrix} , \gamma_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$ $$\gamma^0 = \beta$$ $$\gamma^k = \beta \alpha^k$$ $$\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$$

Dirac matrices and $\alpha \beta$

Definitions $$\sigma^{\mu\nu} = \frac{i}{2} [\gamma^\mu,\gamma^\nu]$$ $$\phi \rightarrow \pi^0 e^+ e^-$$ $$\eta (958) \rightarrow$$ $$\eta (958) \rightarrow \gamma e^+ e^-$$ The following line is a sample:
When $a \ne 0$, there are two solutions to $ax^2 + bx + c = 0$ and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$