Belle Beam Abort System (II)

24 March 2005 Belle SVD monitor group T. Tsuboyama, O. Tajima(KEK) A. Igarashi, S. Iwaida, T.Kameshima, S. Stanic, Y. Asano (Tsukuba)

Introduction

- KEKB is running at high current in extremely stable condition
 - LER: ~1.7 A, 3.5 GeV, e+ beam
 - HER: ~1.3 A, 8.0 GeV e- beam
- Once beam becomes unstable, however, a horrible radiation BKG can enter to Belle.
 - The beam also destroy accelerator components.
- In order to protect the Belle detector and accelerator components, KEKB has the "beam abort system".

Beam abort system of KEKB

- There are many sensors that detect beam instability
 - Beam loss (radiation level) in tunnel
 - Klystron and Cavities
 - Vacuum components and temperatur
 - Background measured by Belle Detector
 - Huge background sometimes causes LVPS trip and Super conducting magnet quench.

Cost of beam aborts

- KEKB/Belle is running with very high efficiency.
 - Average luminosity ~ Peak luminosity
 - Belle DAQ ε (dead time & DAQ trouble) > 90%
- Once a beam is aborted, beam injection takes
 - HER --- 5 minutes
 - LER --- 10 minutes
- When HER beam is not stable, we like to abort HER beam only, vice versa.

Discrimination of background

- P IP chamber-II was installed in 2003 summer.
 - Central part: ~1 mm thick Beryllium.
 - Support part: made of Tantalum and Tungsten.
- Shower made by HER beam mainly hits forward PIN diodes and the shower made by LER beam hits mainly backward PIN diodes.
 - Discrimination of the BKG source possible.

PIN diode system

- The radiation level in normal operation is 2 mrad/sec.
 - The threshold of the beam abort is 100 rad/sec.
- Si PIN diodes HPK S1223 operated without bias voltage.
 - Sensitive area: 4mmx6mm.
- Each diode is read out by charge amplifier.
 - Gain ~ (10 rad/sec)/V

Beam abort decision

- Output of 6 PIN diodes is lead to a discriminator, multiplicity logic then sent to beam abort system of KEKB.
- Independent circuits for forward and backward PINs.
- Evaluation of performance is necessary. B3 205°

Monitor system

- Monitor system: Evaluation of the performance.
 - PIN diode wave form sampling
 - Digital hit pattern
- Comparison with KEKB beam abort data and estimate the reliability of the system

PIN diode response

• LER induced BKG

Hit pattern		FFFFFFBBBBBBB			
DATE	TIME	123456123456			
05/01/17	01:31:35	000000110100			

Diagnose by KEKB 05/01/17 01:31:33 LER D7 05/01/17 01:31:33 LER Belle

HER induced BKG

Hit pattern Belle FFFFFBBBBBBB DATE TIME 123456123456 05/03/03 02:18:30 101111000000

Diagnose by KEKB

05/03/03 02:18:29 HER Loss Monitor D10-4 05/03/03 02:18:29 HER Belle

Beam abort diagnose

- Diagnose of LER/HER beam instability is important issue for stable accelerator operation.
- Beam orbits, viblation, Klystron & RF cavity voltage, RF phase, beam backgroud, temperature of components... are recorded to identify the reason of beam instability.

0

Another Example

• This kind of detail beam diagnoses is done for every beam abort.

Statistics	KEKB	Requests from Belle					
	Unstable beam	HER	Both	LER	Total		
Reasonable decision $\epsilon = 49/82$ =60 %	Dealli						
	HER	15	2	5	22		
	Both	0	11	0	11		
	LER	1	18	23	42		
	Unknown	0	5	2	7		
	Total	16	36	30	82		

- Total 82 beam-abort requests after installation of this program.
- 49 (15 HER, 23 LER and 11 Both) aborts were correct.
- There were many LER instability with high dose.
 - Both-beam-abort were requested.
 - Reason has not been understood by KEKB people.

Summary-I

- New IP chamber enabled us to distinguish HER instability and LER instability.
- The yield of correct decision is 60 %.
- In previous beam abort system, HER was always aborted first. If BKG is still high, LER is aborted.
- In ~1/2 cases, all PIN diodes saturated at once and LER and HER beam abort requests are sent.

Summary-II

- The so-called X-aborts leaves large radiation dose in a short time.
 - In February all PIN diodes saturated and we requested both beam abort.
 - In March, we adjusted τ to 200 nsec in order to request LER beam abort only.
- It means larger dynamic range and faster response will allow more reliable abort decision.
- Diamond sensors are useful for this purpose.

Diamond R&D

- Diamond sensors: on the Nikko side only.
 - Signal is processed with $\tau=0.75 \mu sec$ amplifier
 - Slow signal is from a PIN diode (τ =200 µsec).
- Upper figure: taken at a so-called LER-X abort. No signal is observed.
- Center figure: taken at a HER beam abort. Diamond sensor show large pulse.
- Lower figure: Magnified view, the signal width is consistent with amplifier time constant. Real signal from diamond may be much narrower.
- We will measure with a faster (~50 nsec) amplifier and a faster oscilloscope.

