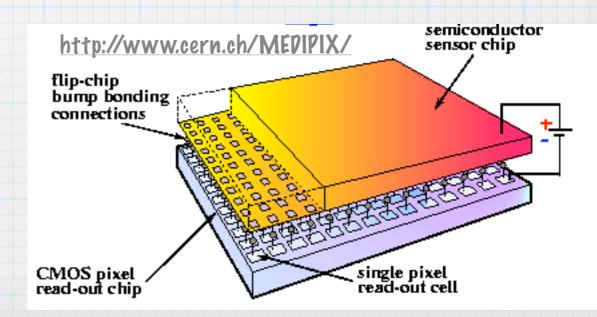
Introduction to Sol pixel sensor

27 Jan. 2006 T. Tsuboyama (KEK) for KEK Detector R&D group Pixel Subgroup


Collaboration

- *KEK: Y. Unno, S. Terada, Y. Ikegami, T. Tsuboyama, M. Hazumi, O. Tajima, Y. Ushiroda, Y. Arai(*Contact person)
- *Niigata Univ. 🗄 T. Kawasaki
- *Tsukuba Univ. 🗄 K. Hara
- *Tokyo Institute of Technology : H. Ishino
- *Hiroshima Univ. : T. Ohsugi
- *JAXA : H. Ikeda
- *Univ. of Hawaii : Gary Varner, Marlon Barbero, James Kennedy, Larry Ruckman, Kirika Uchida, Catherine Yang
- *Stanford Linear Accelerator Center : Hiro Tajima
- *Reviwer
- *Y. Sugimoto (KEK) and K. Hirose(JAXA)

Pixel sensors

* Hybrid Pixel Sensors

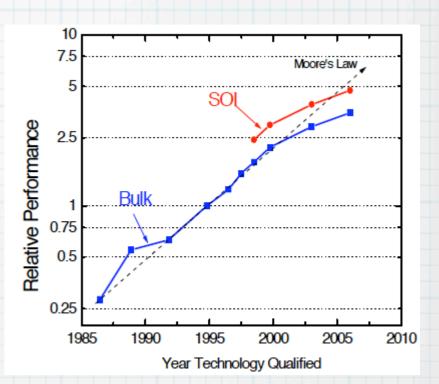
- Sensor part --> High resistivity silicon, signal comes from depleted region.
- Amplifier part --> Production of standard CMOS circuits requires low resistivity silicon wafers.
- Bump bonding techniques
 - Low production yield
 Large material thickness
 - * Large material thickness.
- * Monolithic pixels are preferable.
 - # Higher production yield
 - Lower material thickness

CMOS technology

* Normal (bulk) CMOS IC

- * Components are made inside silicon wafer at 1-2 um from the surface.
- * Sol (silicon on insulator) CMOS
 - * Active parts are made top of thin transistors SiO2 layer.
 - * Transistors are isolated from each other and from the bulk silicon.
 - * Smaller stray capacitance.

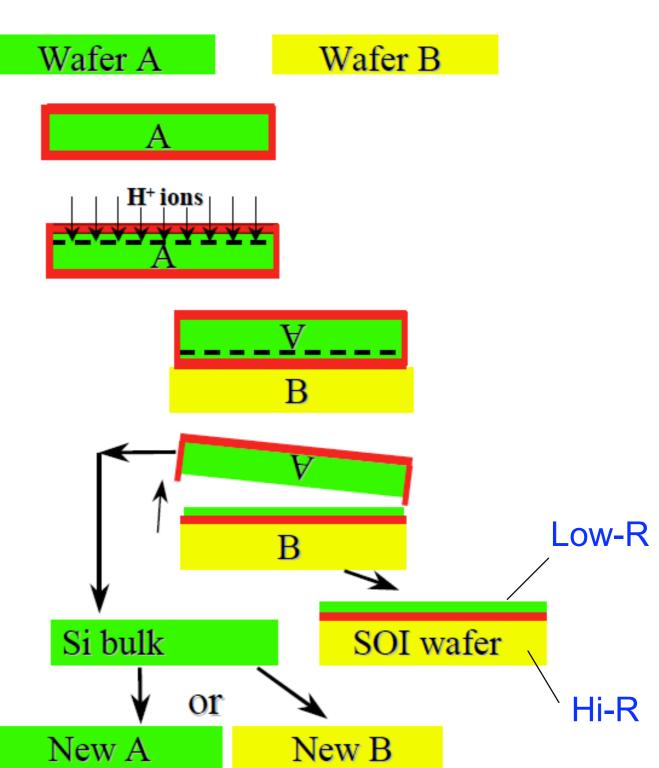
Insulator


Silicon wa

Silicon wafer

Advantage of Sol CMOS

* Sol (silicon on insulator) CMOS

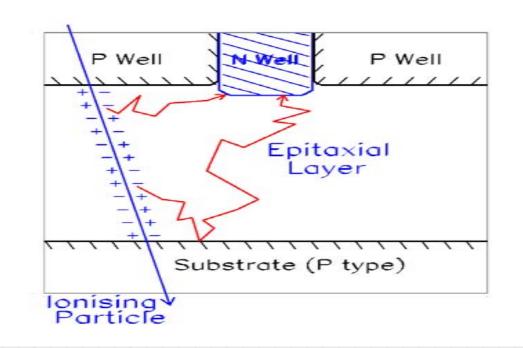

- Faster clock at the same power dissipation (IBM Power PC, Cell, AMD Opteron etc.)
- Insensitive to charge induced in the support silicon
 - * Latch-up free
 - * Operated in intense radiation condition
- * Operable at high temperature.
 - * Even at 200-300 degreeC.
- * Full depleted MOS transistors using thin Si layer

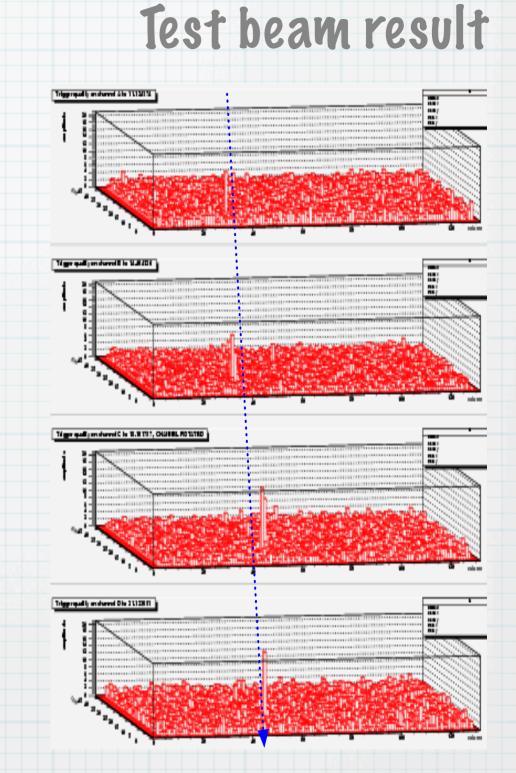
<u>SOIウエハーの作り方: Smart Cut (UNIBOND) by SOITEC</u>

- Initial silicon wafers A & B
- Oxidation of wafer A to create insulating layer
- Smart Cut ion implantation induces formation of an in-depth weakened layer
- Cleaning & bonding wafer A to the handle substrate, wafer B
 - Smart Cut cleavage at the mean ion penetration depth splits off wafer A
- Over B undergoes annealing, CMP and touch polish => SOI wafer complete
- Split-off wafer A is recycled, becoming the new wafer A or B

Monolithic pixel sensors

- * Monolithic Pixel sensor can be designed using Sol technology assuming
 - * High resistivity support silicon can be used.
 - * Good contacts are made between the surface MOS circuit and bulk sensor part.

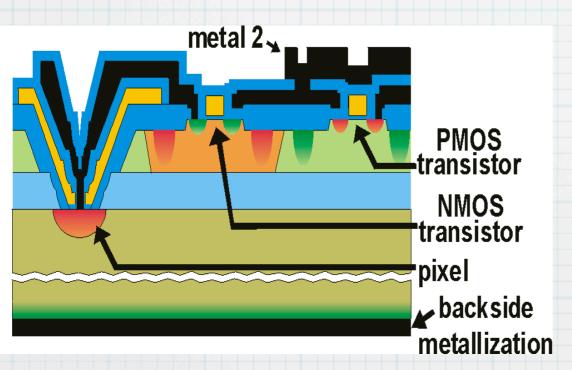

Numbers from catalog

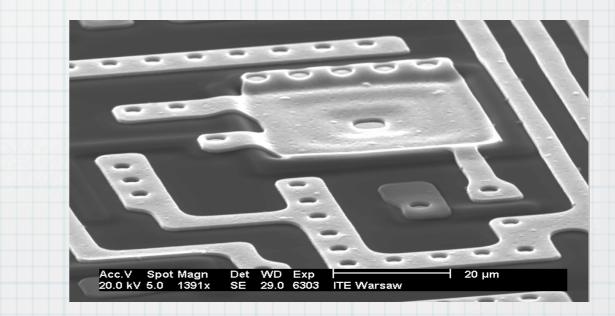

* Top silicon

- * Thickness: 70<t<500nm
- * Resistivity: 8-22 Ohm-cm, p-type
- * Buried oxide (BOX)
 - * Thickness: 145<t<400nm
 - * Breakdown voltage: 9 MV/cm
- * Handle (sensor) wafer
 - >1000 Ohm-cm (type not specified)
 - * Thickness 500 um

Predecessors I

- * MAPS sensors (Europe, Hawaii)
 - * Technology for the CMOS camera
 - * Thin (<5um) epitaxial layer below the silicon surface is used as the sensor.</p>
 - N-well is used for electrode and PMOS tansistors can not be used.





http://www.phys.hawaii.edu/~idlab/

Predecessors II

- Sol Pixel in Europe (Sucima)
 Have succeeded to produce a
 - prototype and observe signal from source particle.
 - * Up to 2004, non-standard, 3-um technology is used.

ref: http://sucima.dipscfm.uninsubria.it/wp2.php

Purpose of R&D in KEK

- * To establish a Japan-made monolithic pixel sensor in 2-3 years.
- * Accumulate technology applicable to Linear collider, Belle upgrade, LHC upgrade ...
- Investigate applications outside particle physics experiment (in future)

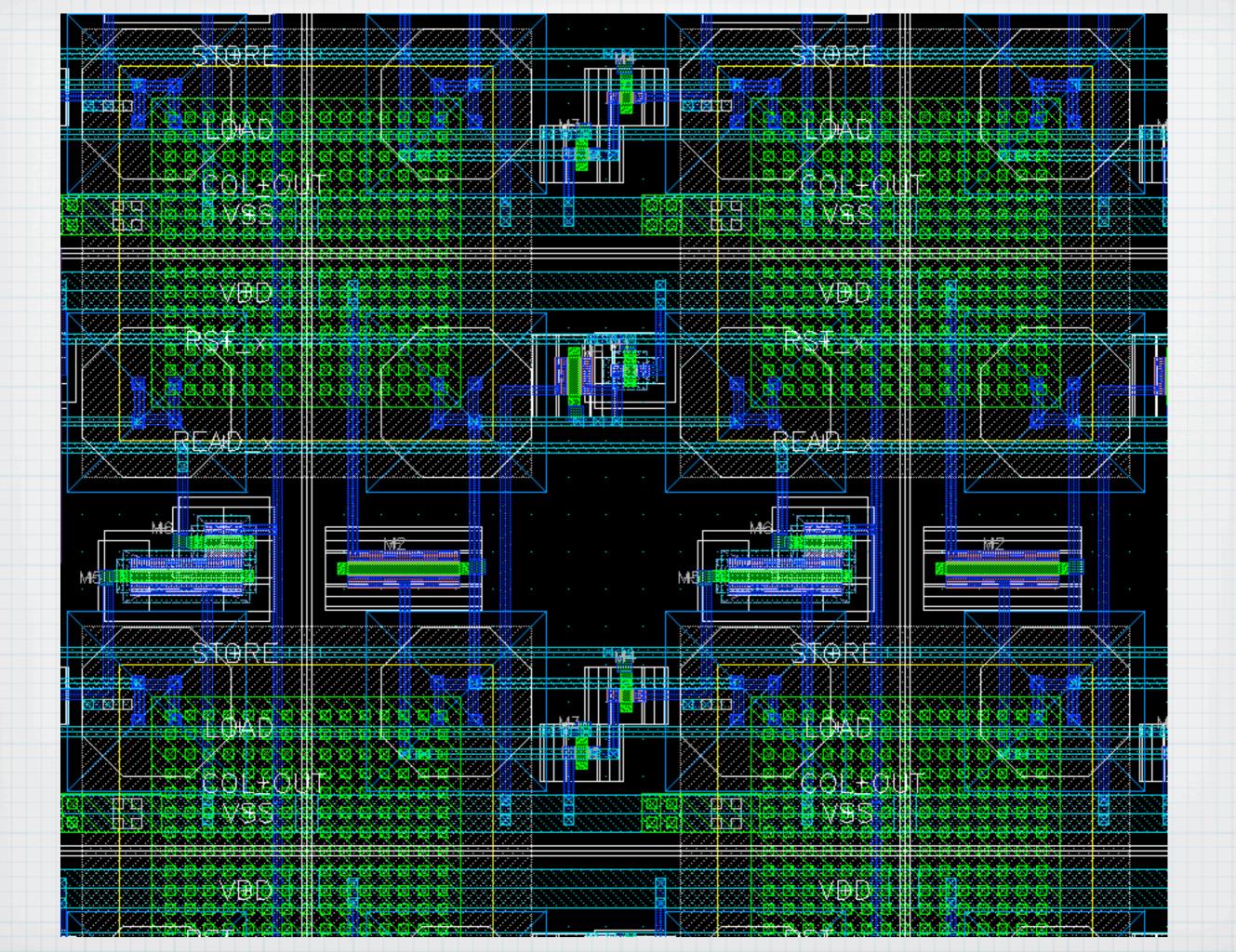
Key issues

- * Adopt standard Sol-CMOS technology
 - * State-of-art semiconductor technology is accessible.
- * Build up our knowledge and skills.

Collaboration with Oki

* Oki first produced commercial Sol CMOS

* Similar production is possible in VPEC.


VDEC (VLSI design & Education)

R&D 2005

- * April: Starting discussion with Oki
 * October: 9 designs (2.5mmx2.5mm) are submitted
 - Pixel sensor/circuit prototypes
 - Analog circuit prototypes:Preamp, Time-over-threshold, Comparator, Active Feedback etc.
 - Prototype for "hard Xray compton polarimeter"
 - Small strip sensor prototype p-type/n-type substrate
 - * which could be used for evaluation of TCAD outputs (next next page).
- The products will be delivered in March 2006
 Then evaluation will start immediately

Name	Contents
VDECTEG1	Preamp, TOT, Comparator, Active Feedback
RADTEG1p/n	Pixel, Transistors, Ring oscillators
PixTEG1p/n	32x32 Pixel array
StripTEG1p/n	Short strip (TCAP verification)
HawaiiTEG1p/n	Imaging Hard X-ray Polarimeter

Restrictions

- * Substrate: p-type 1k0hm-meter.
 - The highest one for the standard wafer.
 - * Vb=800 V is necessary to deplete 250 um thickness.
 - * High potential in the sensor part would affect the circuit part.
- * Type flip from p-type to n-type could occur in the semiconductor process.
 - * Need two designs for pixel and strip prototypes.
- * Pope in the backside is not possible.
 - * Afraid of pollution of the production line.
 - * Metalization will be done instead.
- * Depending on the result of first prototype, we

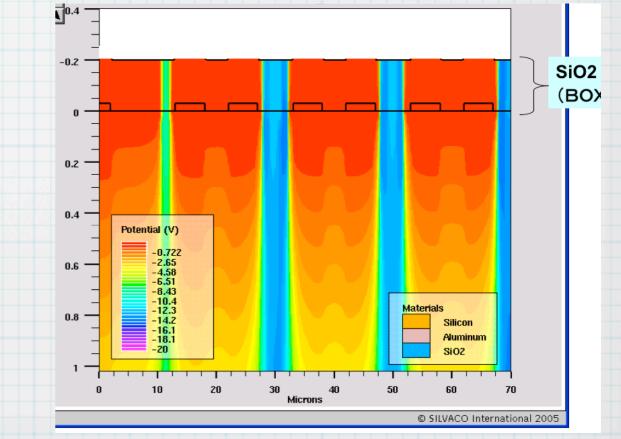
* A generic name for

- * Process simulation + Semiconductor Simulation
- * Once a design is submitted, it takes 4 moths Silicon process simulation
- * Even a simple failure could ruin all the chip.
 - * Estimate the properties of a design helps.
- * In our case, we are interested in
 - * Effects of "sensor part" to CMOS transistors
 - * Potential distribution in the sensor part.

* Tools

* Silvaco --- ATHENA (Process). ATLAS(Device)

* 2-dimensional simulation


* Widely used

* ENEXSS ---- Japan made

* 3-dimensional simulation is possible

Back bias problem

- A study item in 2005
 Effect of potential in the support (sensor) part to the CMOS transistor above the BOX.
- * Configuration of p/n implants was studied to minimize the effect.

Next steps

- * What we did not try in 2005
 - * Large area 2.5mmx2.5mm for example,
 - Thinning down to <100um</p>
 - Poping in the back surface
 - # Higher resistivity in the support wafer (sensor)
 - * Resistivity control in the semiconductor process
 - # High resistivity wafers (>4k0hm-cm)
- * TCAP study
 - * Simulate pixel sensor in 3-D and compare characteristics with the 2005 prototype.
 - * Simulate sensor part and CMOS transistor at once.

Summary

- * We started up Sol pixel sensor project in 2005.
 - * Oki Semiconductor is working with us.

*

*

- * First samples will be delivered in March.
- If successful, design with less restrictions will be done.