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Introduction
• Microscopic defects

→E.g. burrs from machining, undulations due to crystal structuresg g, y
→Can be created in accelerating structures 
→Local surface-field enhancements
→Breakdown trigger of accelerating structures→Breakdown trigger of accelerating structures
→Deterioration of accelerator performance

• Accurate calculations of such surface fields desiredccu ate ca cu at o s o suc su ace e ds des ed
• Concave structure studied

– We know: projection tips  Large field enhancementsp j p g
– On the other hand, how large enhancements about concave structures?

• Field enhancement factors calculated• Field enhancement factors calculated
using three different methods:

– Method_1: RF-field simulation based on the Finite Integration Technique (FIT)
– Method_2: Static-field simulation based on the FIT
– Method_3: Floating Random Walk

1(The FIT is a generalized finite-difference scheme for solving Maxwell’s equations, implemented in CST STUDIO SUITE.)



Parameterization of Concave Geometry y
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PEC: Perfect Electric Conductor ( = infinite)

Simulating the round chamfer of the edges of the bonded planes

PEC:  Perfect Electric Conductor  (  infinite)
Vac:    Vacuum
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Simulating the round chamfer of the edges of the bonded planes
of the Quadrant-type X-band accelerating structure: 

From the KEK Calendar 2010



Method_1 : FIT-based RF-Field Simulation
using CST Microwave Studio (CST MWS)using  CST Microwave Studio (CST-MWS)

Rectangular Waveguide with fcutoff(TE10) = 10 GHz
A small groove at the center of the E-plane (PBA:  Perfect Boundary Approximation)

e.g. G=20m, =30m

g p
Port mode computation of TE10
Hexahedral meshing with the PBA
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E.g. E-field of the TE10 port mode (G=20m, =30m):
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Meshing Parameters
and

FDSolver.Method "Hexahedral Mesh" 
Mesh.MeshType "PBA"  ‘(Perfect Boundary Approx.)
Mesh.LinesPerWavelength “300"  (10(default))
Mesh.AutomeshRefineAtPecLines "True", “RAPLRAPL"and

Mesh-Size Dependence
Mesh.AutomeshRefineAtPecLines True , RAPLRAPL
FDSolver.AccuracyHex "1e-6“
Using a function: “GetFieldVectorSurface()” 
 Better field interpolation scheme on PEC surfaces

CST-MWS (RF)E.g.

(PEC)

(adopted)(adopted)

(Vac)

(adopted)
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Results by Method 1y _

(PEC)(Vac)

(PEC)

5



Method_2: FIT-based StaticStatic--FieldField Simulation
using CST EM Studio (CST EMS)using  CST EM Studio (CST-EMS)

Static-field approximation
Two parallel PEC plates with a small groove (PEC:  Perfect Electric Conductor  ( = infinite))p p g
Potential difference: 1V
Hexahedral meshing with the PBA
Same meshing parameters as used in the previous simulation

(PBA:  Perfect Boundary Approximation)

1V

e.g. G=20m, =30m

0V

maxEnhancement Factor = E
E1000[V/ ]

0V
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Comparison of the Results

Good Agreements(PEC)

Static-field Approximation Holds.
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Summary of Method 1&2Summary of Method_1&2
• Surface-field enhancements due to small grooves with roundSurface field enhancements due to small grooves with round 

chamfer have been computed by using CST-MWS/EMS.
– At least 20% enhancement for R=50m round chamfer.
– Increases to 40% enhancement as the  size increases to 25m.
– Good agreements between the two methods (RF and E-static)

• However,
h i h b i l d h hi d/– There might be some systematic errors related to the meshing and/or 

interpolation method.
– In general,g ,

• Methods with meshing are week in local-field calculations.
• It is hard to estimate computation accuracies for finite-element, finite-difference, and 

finite-integration techniques.g q

– Some other methods suitable to local-field calculations?
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B h k TBenchmark Test

Infinitely sharp edge

FieldE

b=1.0m
m
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PEC:  Perfect Electric Conductor  ( = infinite)
Vac:    Vacuum



Exact Solution

From the Schwarz Christoffel mapping :From the Schwarz-Christoffel mapping :

b=1 0mmb=1.0mm
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PEC:  Perfect Electric Conductor  ( = infinite)
Vac:    Vacuum



FIT-based Simulation (1)FIT based Simulation (1)

b=1 0mmb=1.0mm
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PEC:  Perfect Electric Conductor  ( = infinite)
Vac:    Vacuum



FIB-based Simulation (2)FIB based Simulation (2)

b=1 0mmb=1.0mm
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PEC:  Perfect Electric Conductor  ( = infinite)
Vac:    Vacuum



Method_3: Floating Random Walk Floating Random Walk (FRW)(FRW)gg

F l t t ti t ti l  (h i f ti )

~ A Stochastic Approach ~

For an electro-static potential  (harmonic function)
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The multiple integration (3) can be given a probabilistic interpretation, The multiple integration (3) can be given a probabilistic interpretation, 
and estimated by many random walks in a Monteand estimated by many random walks in a Monte--Carlo method Carlo method 



Method_3: Floating Random Walk (FRW)Floating Random Walk (FRW)g ( )g ( )
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Advantages of FRW

1. No meshing  (i.e. no space discretization)
2. Simple algorithm,
3. No large amount of computer memory needed,
4. High parallelization efficiency  (Monte Carlo method)

5. Calculation accuracies also estimated,
6. Higher accuracy with larger statistics of random walks.
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Disadvantage of FRWg

L b f t ti tiLarger number of computations or operations are needed
than in the deterministic methods, such as finite-element, finite-difference,
and finite-integration techniques.g q
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Disadvantage of FRWg

L b f t ti tiLarger number of computations or operations are needed
than in the deterministic methods, such as finite-element, finite-difference,
and finite-integration techniques.g q

Can be overcome by adopting
GPGPU (General-Purpose computing on Graphics Processing Units)

Many cores- Many cores
- Rapidly-advancing field in computer science

It should be noted that GPGPU is weak in complicated algorithms
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It should be noted that GPGPU is weak in complicated algorithms.



GPGPU Computingp g
The FRW algorithm to calculate local fields is implemented
in my own computer program for GPGPUy p p g
written in CUDA Fortran / Fortran 2003.

This program was executed in a personal computer (Dell Precision T7400)This program was executed in a personal computer (Dell Precision T7400)
with a GPGPU board of NVIDIA Tesla C2070.

448 CUDA cores inside CPU: Quad-core Xeon X5472 (3.0 GHz)  x 2 
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Two Simulation Parameters in FRW

rminn min
Tiny distance from the conductor surface

to compute electric fields:
Very tiny distance
to terminate random walks

E = ( 1.0V – VFRW(n) ) / n e.g

VFRW(n):  potential at a distance of n
from the conductor surface

If  r4 <  rmin,
 This random walk terminated
 The potential at the nearest boundary used

20
How to Determine these Two Parameters ?



In this study, 
(n, rmin) is set to be (50nm, 0.1nm)( , min) ( , )

so as to have a 1m-Resolution Computational Probe
for the benchmark test.f

Error bars: MC statistics (~0.2%)
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Parallelization Efficiencyy
For a FRW computation on the benchmark test
using one GPGPU board (NVIDIA Tesla C2070)

- 4032 threads are used in this study.
Th t ti d i 4032 th d i 5 ti f t-The computation speed using 4032 threads is ~5 times faster

than using dual CPU of quad-core Xeon (3.0GHz) (8 cores in total).
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Comparisons with the FIT-
b d Si l i

(PEC)

based Simulations
MC statistics:  ~0.4%


(PEC)(Vac)
W Number of random walks / point        :  ~1 billion (=M) 

Elapsed time of computation  / point :   ~1 minuteFR
W

(PEC)

(PEC)

(Vac)

(Vac)
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Results

 h i ll h i l l l i f d h d ( i )
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Theoretically the equivalent calculations performed on the FRW and CST-EMS (E-static)
Systematically a few % smaller by CST-EMS than using the FRW



Conclusions for Method_3 (FRW)

• It has been found that
– The FIT-based simulations using CST-MWS/EMS systematically give a few % 

lower field-enhancement factors than using the FRW.

• It has been demonstrated that the FRW method
– Can give highly-accurate calculations of local surface fields for microscopic g g y p

objects,
– Practical and Promising because of its suitability for GPGPU computing.

• Significant speed up to be achieved by further code improvements and using a GPU cluster• Significant speed-up to be achieved by further code improvements and using a GPU cluster
 Better-resolution computational probe

• This FRW method is applicable to any structures.
– Next step: Surface field calculations for real conductor surfaces (3D) damaged 

b b kd /di h tby breakdowns/discharges, etc.
– What kind of shapes makes large field enhancements?
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To be Continued…
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