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Introduction

Microscopic defects

— E.g. burrs from machining, undulations due to crystal structures
— Can be created in accelerating structures

— Local surface-field enhancements

— Breakdown trigger of accelerating structures

— Deterioration of accelerator performance

Accurate calculations of such surface fields desired
Concave structure studied

— We know: projection tips = Large field enhancements
— On the other hand, how large enhancements about concave structures?

Field enhancement factors calculated
using three different methods:

— Method 1: RF-field simulation based on the Finite Integration Technique (FIT)
— Method 2: Static-field simulation based on the FIT

— Method 3: Floating Random Walk
(The FIT is a generalized finite-difference scheme for solving Maxwell’s equations, implemented in CST STUDIO SUITE.)
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Parameterization of Concave Geometry

R = 50um (fixed)

S o

PEC: Perfect Electric Conductor (o = infinite)
Vac: Vacuum

Simulating the round chamfer of the edges of the bonded planes
of the Quadrant-type X-band accelerating structure:

\” :

F10m the KEK Calendar 2010




Method 1 : FIT-based RF-Field Simulation
using CST Microwave Studio (CST-MWS)

v'Rectangular Waveguide with £, (TE,,) = 10 GHz
v’ A small groove at the center of the E-plane (PBA: Perfect Boundary Approximation)

v'Port mode computation of TE,,
v'Hexahedral meshing with the PBA

cg G=20um, A=30um

b=1.0mm
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. v'FDSolver.Method "Hexahedral Mesh"
M eS h I n g P a ram ete rS v'"Mesh.MeshType "PBA" ‘(Perfect Boundary Approx.)
v'"Mesh.LinesPerWavelength “300" (€10(default))
an d v'Mesh.AutomeshRefineAtPecLines "True", “RAPL"
v'FDSolver.AccuracyHex "le-6%
Using a function: “GetFieldVectorSurface()”

M eS h B S i Z e D e p e n d e n Ce - Better field interpolation scheme on PEC surfaces

RAPL=2 (default) E.g. CST-MWS (RF)
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Results by Method 1

R =50um (fixed)
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Method 2: FIT-based Static-Field Simulation
using CST EM Studio (CST-EMS)

v'Static-field approximation
v'Two parallel PEC plates with a small groove (PEC: Perfect Electric Conductor (o = infinite))
v'Potential difference: 1V

v'Hexahedral meshing with the PBA (PBA: Perfect Boundary Approximation)
1V v'Same meshing parameters as used in the previous simulation
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v'Good Agreements
v’ Static-field Approximation Holds.
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 Surface-field enhancements due to small grooves with round
chamfer have been computed by using CST-MWS/EMS.
— At least 20% enhancement for R=50um round chamfer.
— Increases to 40% enhancement as the A size increases to 25um.
— Good agreements between the two methods (RF and E-static)



« However,

— There might be some systematic errors related to the meshing and/or
interpolation method.

— In general,
* Methods with meshing are week in local-field calculations.

It is hard to estimate computation accuracies for finite-element, finite-difference, and
finite-integration techniques.

— Some other methods suitable to local-field calculations?
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Exact Solution

|

PEC: Perfect Electric Conductor (o = infinite)

Vac:
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Method_3: Floating Random Walk (FRW)
~ A Stochastic Approach ~

For an electro-static potential ¢ (harmonic function)

1 _
OXY) = o s (V) (1)
JCq
1

= %‘d81 ! jgdSQ (D(XQYQ) (2)

277?"1, 4 QWTQ, Cs

1 f 1 [
= % dSl jé dSQ s
271'7'1, Cy 271'7'2, s

1 ' :
?§ dsy ¢(Xn,Yn), (3)
27N J oy

where (') indicates a circle with a fixed radius of 7 :

=y Xa+ Yz, 4)

and the value of 7y is always set to be the minimum dis-
tance to the boundary with a known potential. In the FRW

The multiple integration (3) can be given a probabilistic interpretation,
and estimated by many random walks in a Monte-Carlo method

14




Method_3: Floating Random Walk (FRW)

Letting ¢ be an estimate by the k-th single random
walk, and performing M random walks in total, we obtain
an estimate V" and its error o of the potential by M random
walks according to the following formula:

M
- 1 (Standard Deviation)
‘“’:H;@’ﬂf 7= -
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Advantages of FRW

1. No meshing (i.e. no space discretization)

2. Simple algorithm,

3. No large amount of computer memory needed,

4. High parallelization efficiency (€ Monte Carlo method)
5. Calculation accuracies also estimated,

6. Higher accuracy with larger statistics of random walks.
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Disadvantage of FRW

Larger number of computations or operations are needed
than 1n the deterministic methods, such as finite-element, finite-difference,
and finite-integration techniques.
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Disadvantage of FRW

Larger number of computations or operations are needed
than 1n the deterministic methods, such as finite-element, finite-difference,
and finite-integration techniques.

Can be overcome by adopting

GPGPU (General-Purpose computing on Graphics Processing Units)
- Many cores
- Rapidly-advancing field in computer science

It should be noted that GPGPU is weak in complicated algorithms.
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GPGPU Computing

The FRW algorithm to calculate local fields is implemented
in my own computer program for GPGPU
written in CUDA Fortran / Fortran 2003.

This program was executed in a personal computer (Dell Precision T7400)
with a GPGPU board of NVIDIA Tesla C2070.

e || CPU: Quad-core Xeon X5472 (3.0 GHz) x 2

448 CUDA cores inside
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Two Simulation Parameters in FRW

on I"min
Tiny distance from the conductor surface Very tiny distance
to compute electric fields: to terminate random walks

Virw(ON): potential at a distance of on
from the conductor surface

Ifr,<r

» This random walk terminated
» The potential at the nearest boundary used

How to Determine these Two Parameters ?
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In this study,
(on, r,;,) Is set to be (50nm, 0.1nm)
so as to have a 1um-Resolution Computational Probe
for the benchmark test.

Error bars: MC statistics (~0.2%)
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1.0/ ( Elapsed Time ) [Hz]

Parallelization Efficiency

For a FRW computation on the benchmark test
using one GPGPU board (NVIDIA Tesla C2070)

0.6
0.5
Number of C UDA Cores (= 448)
0.4 |
0.3
0.2} \/

: - 4032 threads are used in this study.
-The computation speed using 4032 threads is ~5 times faster
than using dual CPU of quad-core Xeon (3.0GHz) (8 cores in total).

| | |
1000 2000 3000 4000
Number of Threads
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Comparisons with the FIT-

based Simulations

FRW |

v'MC statistics: ~0.4%
v'Number of random walks / point
v'Elapsed time of computation / point: ~1 minute

: ~1 billion (=M)
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Results
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v'Theoretically the equivalent calculations performed on the FRW and CST-EMS (E-static)
v Systematically a few % smaller by CST-EMS than using the FRW



Conclusions for Method 3 (FRW)

* |t has been found that

— The FIT-based simulations using CST-MWS/EMS systematically give a few %
lower field-enhancement factors than using the FRW.,

e It has been demonstrated that the FRW method

— Can give highly-accurate calculations of local surface fields for microscopic
objects,

— Practical and Promising because of its suitability for GPGPU computing.
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—> Better-resolution computational probe

« This FRW method is applicable to any structures.

— Next step: Surface field calculations for real conductor surfaces (3D) damaged
by breakdowns/discharges, etc.

— What kind of shapes makes large field enhancements?
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