Accelerating Cavities for the Damping Ring (DR)

Tetsuo ABE

For KEKB-RF/ARES Cavity Group

(T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi, and K. Yoshino)

The 16th KEKB Accelerator Review Meeting February 8, 2011

Old RF Model

Taper(ϕ 150<-> ϕ 40) with L=400mm

(Changes after Feb. 2010)

[Basic Conditions]

- A) Frequency: 508.887MHz (= the freq. of the MR)
- B) Based on KEKB-MR/ARES, but without S-cav and C-cav
- C) Connection to ϕ 40 beam ducts (\rightarrow taper near the cavity)

D) Max. Total Vc: $0.5 \rightarrow 2MV$

- Against microwave instabilities from CSR effects
- Should be larger enough than the current design value: 1.4MV

[Main Topics]

Space conserving)

- 1. 3 Cavities (max) with 0.7MV/cav in the RF section (~5m-long)
- **2.** SiC tiles for all the Higher-Order-Mode (HOM) dampers
- [3. Grooved Beam Pipe (GBP) made common between the neighboring cavities
- 4. Connection between the cavity and GBP
- 5. HOM Impedances for Coupled Bunch Instabilities (CBIs)
- 6. RF-absorption power in each HOM damper
- 7. Coupled oscillations of the accelerating (ACC) mode

Specification of the Vc and Wall Loss of the DR Cavity

Based on the results of the HPT of the ARES Prototype performed in the KEK/AR Tunnel (1997)

	Vc [MV/cav]	Wall Loss Power [kW]	Wall Temperature (calc.) [degC]
KEKB Design	0.50	60	50
Max. Continuous	0.70	133	74
Max. Instantaneous	0.82	193	94

(Appendix A)

Note: The DR cavity has been designed with the same basic structure as the ARES/A-Cav on the basis of its successful experiences. (Appendix B)

Two Types of Components

Cavity
GBP with SiC tiles

Connection between the Cavity and GBP

Courtesy of T. Honda.

HOM Absorbers

The basic HOM damped structure is the same as that of the KEKB-MR/ARES cavity, but the HOM absorbers are all SiC tiles: t20mm x 48 mm x 48mm.

Longitudinal Impedance of the RF section: and CBI

[Ohm]

Estimated from Finite-Difference Time-Domain parallel computations of GdfidL CBI threshold for Total Vc: 1.4MV with the PC cluster (256 cores & 512GB memory)

9

Transverse Impedances of the RF section: and CBI

CBI threshold for Total Vc: 1.4MV

Power of RF Absorption in Each Set of SiC Tiles

HOM Power from the Long-Range Wakefield

Estimated from the time-domain computation of GdfidL (smax=1000m)

Heating Value by the ACC Mode for SiC Tiles

Eigenmode Analysis •Using CST-MWS •With 40 MeshLines/WaveLength

Electric Field of the ACC mode

Heating Value by the ACC Mode

Heating value < 100W/set << Power Capability: 1kW/set

Coupled Oscillations of the ACC Mode

Step 1: Two-Cavity System

<u>"Electric Short" or "Magnetic Short"</u>

Two-Cavity System

Step 2: Periodic Structure

One Unit

Periodic Structure

The Coupled Oscillations of the ACC Mode are negligible.

Schedule

JFY	Cavity No. to be made	Remarks
2011	0 (prototype)	HPT to be done by May 2012; Could be a spare.
2012	1	Feedback from the HPT of the Cavity No.0
2013	2	Get ready for the commissioning with the two cavities.
201X	3	If needed

Summary

The design of the accelerating structure for the DR has been modified for the total Vc: 2MV(max).

Based on the KEKB-MR/ARES

Three cavities with 0.7MV/cav

GBP made common between the neighboring cavities

SiC tiles are used for all the HOM dampers.

Based on the established technology used for KEKB-MR/ARES

(RF absorption power)/set < 180W << PowerCapability: 1kW/set</p>

CBIs driven by the HOM impedances

 \geq Longitudinal Growth Time > 20 ms > 5 ms (rad. damping time)

 \succ Transverse Growth Time > 30 ms > 10 ms (rad. damping time)

Coupled Oscillations of the ACC-mode: negligible

≻ОК

Appendix A

Assumptions for estimating wall temperatures of the DR cavity

- Cooling-water flow: 200 L/min
- Cooling-water temperature: 30 degC
- Cooling-water velocity: 2.0 m/s
- Hydraulic equivalent diameter of the cooling-water channel: 9.1e-3 m
- Reynolds number: 2.2e4 (turbulence)
- Heat-transfer coefficient from the channel to the water: 8.9e3 $W/m^2/K$
- Thermal conductivity of copper: 4.0e2 W/m/K

Appendix B

Accelerator Resonantly-coupled with Energy Storage

3-cavity system stabilized with the $\pi/2$ -mode operation

