Belle 衝突点領域に於ける 放射光ワット量分布の計算法の開発

阿部 哲郎 Belle-東北大グループ

KCG Seminar

Feb. 7, 2002

Introduction

Motivation

- SVD1.0 was killed by the synchrotron radiation (SR) from HER.
 - \longrightarrow Limitation for the HER steering magnets
 - \longrightarrow Some current values are close to the limits. ${}_{(\rightarrow \text{ figure})}$
- → Smaller-radius IR beampipe $(r = 2.0 \text{ cm} \rightarrow 1.5 \text{ cm} \rightarrow 1.0 \text{ cm}?)$
- \twoheadrightarrow Larger beam currents for higher luminosities \rightarrow more SR

A new idea has been proposed by Hitoshi Yamamoto:

Fitting **BPM**-measured values \rightarrow **Real** beam orbit \rightarrow **Wattage distribution** in the IR \rightarrow Online alarm for SR

LOOSER LIMITATION for the HER steering magnets
 PRIOER NOTICE for detector damages

阿部 哲郎 (Belle-東北大グループ)

Calculation Method

[I] Orbit Calculation

- In the HER straight section (see ↓)
- ightarrow Using a linear approximation ightarrow transfer matrices
- Implemented in my own program

\ll Transfer Matrices \gg

Skew QUAD : $\mathbf{R}_{skewQ} = \mathbf{R}_{rot}(-45^{\circ}) \times \mathbf{R}_{quad} \times \mathbf{R}_{rot}(+45^{\circ})$

Check of the Transfer-Matrix Implementation [1]

Check of the Transfer-Matrix Implementation [2]

Numerical comparison with SAD on QC3LE

```
In[61]:= TransferMatrix["QC3LE","LX086E.1"]
Out[61]:=
    {1.0415110062367,1.094542869142296,0,4.440892098501E-16}
    {.077425177671287,1.0415110062367,3.469446951954E-18,0}
    {3.382710778155E-17,-3.53883589099E-16,.959055549847622,1.065412001995326}
    {-2.60208521397E-18,2.775557561563E-17,-.075287731090181,.959055549847622}
```

$$\frac{R_{ij} - R_{ij}^{(SAD)}}{|R_{ij}^{(SAD)}|} = \begin{pmatrix} 0 & +4 \times 10^{-15} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -2 \times 10^{-15} & -3 \times 10^{-14} \\ 0 & 0 & 0 & -2 \times 10^{-15} \end{pmatrix}$$

Check of the Transfer-Matrix Implementation [3]

Numerical comparison with SAD on QKELE

In[62]:= TransferMatrix["QKELE","LC51LAE"]
Out[62]:=

{1.000001092692837,.372300042338456,-.00256049953636,-2.68166492929E-4}
{1.3572130039052E-5,1.000001092692837,-.013755037460226,-.00256049953636}
{-.00256049953636,-2.68166492929E-4,1.000001092692837,.37230004233846}
{-.013755037460226,-.00256049953636,1.3572130039019E-5,1.000001092692837}

$$\frac{R_{ij} - R_{ij}^{(SAD)}}{|R_{ij}^{(SAD)}|} = \begin{pmatrix} -4 \times 10^{-14} & -2 \times 10^{-14} & -8 \times 10^{-14} & +6 \times 10^{-13} \\ -3 \times 10^{-11} & -4 \times 10^{-14} & 0 & -8 \times 10^{-14} \\ -8 \times 10^{-14} & +6 \times 10^{-13} & -4 \times 10^{-14} & -3 \times 10^{-14} \\ 0 & -8 \times 10^{-14} & +3 \times 10^{-11} & -4 \times 10^{-14} \end{pmatrix}$$

[II] Orbit Fitting

Input parameters:
k₀
MRPalues from M002QC1 ~ M013QA7
k₁ (→ optic^S)
Floating parameters:
$$\begin{pmatrix} x_{\text{ini}} \\ y_{\text{ini}} \end{pmatrix}$$
, $\begin{pmatrix} x_{\text{IP}} \\ y_{\text{IP}} \end{pmatrix}$
 $\chi^2 \equiv \sum_{j:\text{BPM}} \left\{ \left(X_j^{(\text{BPM})} - X_j^{(orbit)} \right)^2 + \left(Y_j^{(\text{BPM})} - Y_j^{(orbit)} \right)^2 \right\} / \sigma^2$

Minimization using MINUIT

$$\implies \frac{\chi^2}{ndf} = \frac{\chi^2_X + \chi^2_Y}{ndf(X) + ndf(Y)} = \frac{\frac{\chi^2_X}{ndf(X)} \frac{1}{ndf(Y)} + \frac{\chi^2_Y}{ndf(Y)} \frac{1}{ndf(X)}}{\frac{1}{ndf(X)} + \frac{1}{ndf(Y)}}$$

Fitting Example

- BPM resolution: $100 \,\mu \text{m}$ (including offset uncertainties)
- Data on Nov. 7 (2001)

Offset Definition

Offset Determination

- \rightarrow Six different orbits are obtained.

\ll Floating Parameters \gg • Starting and ending points of orbits: $\left\{ \left(\begin{array}{c} X_{ini}^{i} \\ Y_{.}^{i} \end{array}\right), \left(\begin{array}{c} X_{IP}^{i} \\ Y_{.}^{i} \end{array}\right) \right\}$ If we float all, (i = 1, 2, 3, 4, 5, 6 : orbits) \rightarrow > 100 floating parameters \rightarrow Large offsets (> 1 cm) Offsets of BPMs and QUADs Multi-solution Scales of bendings: Not positive-definite $\theta_{kick}^{(NEW)} = (\mathbf{1} + \mathbf{a}) \times \theta_{kick}^{(ORG)}$ Hessian matrix <u>Common</u> among all the orbits

→ Global Fit

Criteria

→ MINUIT convergence with a positive-definite Hessian matrix

$$\Rightarrow$$
 |BPM offsets| < 1 cm

- \implies **|QUAD offsets**| < 1 cm (alignment)
- \Rightarrow |BEND rescaling factor| < 20% (kick angle)

$$\Rightarrow |X_{IP}| < 1 \,\mathrm{mm} \& |Y_{IP}| < 1 \,\mathrm{mm}$$

We find a solution

- With the smallest modification
- Within the scope of the numerical approach

BETARAW sample on Jun. 4, 2001

\ll Horizontal \gg

	X1	X2	X3	X4		
floating BPM	M006QC4LE	M006QC4LE	M006QC4LE	M006QC4LE		
floating QUAD	QC2LE	QC2LE	QC2LE	QC2LE		
floating BEND		BH12LE	BH45LE	ZHQC5LE		
$\chi^2_X/ndf(X)$	3.5	3.4	3.4	3.5		
BPM offset [mm]	$+0.56 \pm 0.04$	$+0.60\pm0.05$	$+0.62\pm0.05$	$+0.50 \pm 0.07$		
QUAD offset [mm]	$+0.62 \pm 0.04$	$+0.61\pm0.04$	$+0.61 \pm 0.04$	$+0.62 \pm 0.04$		
BEND scale [%]		$+3.5\pm3.2\%$	$+4.2 \pm 2.1\%$	$-6.3 \pm 4.9\%$		
IP offset [mm]	$\sim -0.7 \pm 0.1$	$\sim -0.6 \pm 0.1$	$\sim -0.7 \pm 0.1$	$\sim -0.6 \pm 0.1$		
M005QC3 offset [mm]	-0.85 ± 0.04	-0.88 ± 0.05	-0.83 ± 0.04	-0.88 ± 0.05		
M008QA2 offset [mm]	-0.85 ± 0.05	-0.82 ± 0.06	-0.94 ± 0.07	-0.80 ± 0.06		

BETARAW sample on Jun. 4, 2001

≪Vertical≫					
	Y1	Y2	Y3		
floating BPM	M002QC1LE	M002QC1LE	M003QC2LE		
floating QUAD	QA2LE	QA2LE	QA2LE		
floating BEND	ZVQC3LE	ZVQC5LE	ZVQC5LE		
$\chi_Y^2/ndf(Y)$	0.7	0.7	1.1		
BPM offset [mm]	$+0.64\pm0.06$	$+0.74\pm0.06$	-0.52 ± 0.05		
QUAD offset [mm]	$+0.85\pm0.03$	$+0.79\pm0.03$	$+0.77\pm0.03$		
BEND scale [%]	$+17\pm1\%$	$-12\pm1\%$	$-16\pm1\%$		
IP offset [mm]	$\sim -0.57 \pm 0.003$	$\sim -0.54 \pm 0.001$	-0.54 ± 0.001		
M005QC3LE offset [mm]	-0.49 ± 0.09	-1.12 ± 0.05	-1.38 ± 0.05		
M008QA2LE offset [mm]	-0.56 ± 0.05	-0.50 ± 0.05	-0.48 ± 0.05		

BETARAW sample on Oct. 24, 2001

\ll Horizontal \gg

	X1	X2	X3	<i>X</i> 4
floating BPM	M006QC4LE	M006QC4LE	M006QC4LE	
floating QUAD	QC2LE	QC2LE	QC2LE	
floating BEND		BH12LE	BH45LE	
$\chi^2_X/ndf(X)$	3.4	2.8	3.4	
BPM offset [mm]	$+0.63 \pm 0.04$	$+0.78\pm0.05$	$+0.59\pm0.05$	
QUAD offset [mm]	$+0.58 \pm 0.04$	$+0.52\pm0.04$	$+0.58 \pm 0.04$	
BEND scale [%]		$+16\pm3\%$	$-3.5\pm2.1\%$	
IP offset [mm]	$\sim -0.8 \pm 0.1$	$\sim -0.7 \pm 0.1$	$\sim -0.8 \pm 0.1$	
M005QC3LE offset [mm]	-0.74 ± 0.04	-0.86 ± 0.05	-0.76 ± 0.04	
M008QA2LE offset [mm]	-1.01 ± 0.05	-0.84 ± 0.06	-0.93 ± 0.07	

BETARAW sample on Oct. 24, 2001

	Y1	Y2	Y3		
floating BPM	M002QC1LE	M002QC1LE	M002QC1LE		
floating QUAD	QA2LE	QA2LE	QA3LE		
floating BEND	ZVQC3LE	ZVQC5LE	ZVQC5LE		
χ_Y^2/ndf_Y	0.4	0.5	0.7		
BPM offset [mm]	$+0.74 \pm 0.06$	$+0.85\pm0.06$	$+0.85\pm0.06$		
QUAD offset [mm]	$+0.66\pm0.03$	$+0.60\pm0.03$	-0.21 ± 0.01		
BEND scale [%]	$+15\pm1\%$	$-12\pm1\%$	$-19\pm1\%$		
IP offset [mm]	$\sim -0.63 \pm 0.003$	$\sim -0.60 \pm 0.001$	-0.60 ± 0.001		
M005QC3LE offset [mm]	-0.32 ± 0.09	-1.02 ± 0.05	-1.01 ± 0.05		
M008QA2LE offset [mm]	-0.51 ± 0.05	-0.45 ± 0.05	-0.10 ± 0.04		

///ortical>>

Results of the Offset Correction

(Horizontal case)

Results of the Offset Correction

(Vertical case)

[III] Wattage Calculation

Using the following analytical formula (Phys. Rev. 75 (1949) 1912):

$$W = \frac{3\alpha}{4\pi^2} \frac{I}{e} \gamma^2 \iiint d\omega ds d\psi \frac{1}{\omega} \left(\frac{\omega}{\omega_c}\right)^2 \left(1 + X^2\right)^2 \left\{K_{\frac{2}{3}}^2(\eta) + \frac{X^2}{1 + X^2} K_{\frac{1}{3}}^2(\eta)\right\} \frac{\hbar\omega}{\rho(s)}$$

$$\uparrow$$
3D-integration is performed using BASES. (MC integration)

Projection to a Plane

Check of the Wattage Calculation

by comparing with the SAD calculation

Exact Calculation using SAD

Example of My Calculation on QC3LE

at $Z = -8 \,\mathrm{cm}$

阿部 哲郎 (Belle-東北大グループ)

KCG Seminar

Conclusions on the Wattage Calculation

- → My geometry calculation is successful.
- \blacksquare Good agreements on ψ distributions

阿部 哲郎 (Belle-東北大グループ)

Error Estimation

Errors on the BPM resolutions \oplus offset uncertainties are estimated.

Using the data on Nov. 7 (2001) at 1:00PM

If
$$\chi^2/ndf > 1 \Rightarrow \sigma^{(new)}_{BPM} \equiv \sigma^{(org)}_{BPM} \times \sqrt{\chi^2/ndf}$$

so that $\chi^2(n^{ew}) ndf \equiv 1$.

The values at the asterisks are used.

Position Errors

 $|\Delta X| \cong 0.2 \,\mathrm{mm}$

阿部 哲郎 (Belle-東北大グループ)

Horizontal Position Systematics (1)

Horizontal Position Systematics (2)

Vertical Position Systematics (1)

Vertical Position Systematics (2)

41/48

45/48

Feb. 7, 2002

KCG Seminar

]部 哲郎 Belle-東北大グループ)

46/48

|部 哲郎 Belle-東北大グループ)

KCG Seminar

Summary

Methods of the real orbit and wattage calculations have been established.

Wattage distributions in the IR

- My program has been checked comparing with the SAD results both on the orbit and wattage calculations.
- \implies Error estimations have been also done:

$$\implies |\Delta < X > |, |\Delta < Y > | ~\sim 1 \, \mathrm{mm}$$

$$ightarrow \Delta W/W$$
: $10\sim 30\%$ for $E_\gamma>1$ keV,

 $2\sim 5$ for $E_\gamma>10\,{\rm keV}$

 $\rightarrow \mathsf{OK}$

 \rightarrow not yet

Future Works

For online monitoring

 \blacksquare Calculation speed: $3 \sim 4 \sec/$ (fit & MC-integrations)

Input parameters (BPM, k) are already available from the Belle NSM.

⇒ Beam size

 \rightarrow to be implemented

- Transformation to the corresponding radiation dose
 - Interface to EGS4

Improvement of the offset determination algorithm

- Based on the current method
- To reduce the wattage errors
- More understanding on the real orbit calculation is needed.