Final Report on GRAPE-Dilepton Generator

J. Fujimoto, T. Ishikawa, Y. Kurihara High Energy Accelerator Research Organization

K. Kato, T. Watanabe Department of Physics, Kogakuin University

and

T. Abe Department of Physics, University of Tokyo

[1] Summary and Comparison with LPAIR[2] Comparison with Bethe-Heitler

[1] Summary <u>and</u> Comparison with LPAIR

GRAPE

GRAce-based generator for **P**roton-**E**lectron collisions

$e p \rightarrow e X l^+ l^-$

	GRAPE-Dilepton	LPAIR
Included	All in	Only
diagrams	Electroweak (EW)	Bethe-Heitler (BH)
Lepton	e,μ, au	μ, au
type		
Fermion masses	All are kept.	
Proton	 Elastic (Dipole-formfactor) 	
vertex	 Quasi-elastic (Structure function) 	
	 DIS (eq scattering with PDF) 	
Hadronization	Performed by PYTHIA/JETSET	
Radiative	ISR with SF*	Non
corrections	FSR by PYTHIA	
	Helicity amplitudes	Special formula
Calculation	+	for $ \mathcal{M} ^2 d\Gamma$
method	kinematics	of multi-peripheral
	$(\rightarrow \text{Polarized beam})$	diagrams
Numerical	OK in all phase space	
stability		
Weight		
of events	One	
	* Suppl. Prog. Theor. Phys. 100 1990, p285–	

T. Abe (Univ. of Tokyo) et al.

HERA MC workshop

[2] Comparison with Bethe-Heitler

The main goal of this work is to estimate differences between the calculation with only BH (=LPAIR) and one including all diagrams.

 $2-\gamma$ Bethe-Heitler diagrams

Internal-conversion diagrams

Diffrences come from

- Internal conversion diagrams,
- Z^o propagators,
- $-e^+e^+$ interference in di-*e* channel.

GRAPE agrees with LPAIR in BH process.

All calculations were done using GRAPE only.

Sample event-types

- < Signature >
- 2 EM clusters in calorimeter with Pt>5GeV.
- The 2 EM clusters should be in the acceptance of central tracker.

- One μ in central region with Pt>5GeV.
- Scattered e^+ in central region with Pt>5GeV.

DIS
$$\mu$$
 + jet

 \triangleright BG for CC, W, LFV,

< Signature >

- One μ in central region with Pt>5GeV.
- Hadronic jet in calorimeter with high-Pt.

$$\left[e^+ p \to e^+ p \ e^+ e^-\right]$$

- At least 2 of $e^+ e^+$, e^- satisfy Pt_e > 5 GeV in $15^\circ < \theta_e < 164^\circ$.
- ISR is included.
- Sets of included diagrams:
 - BH excluding interference (BH_{dir})
 (= LPAIR)
 - BH including interference (BH_{int})
 - All in Electroweak (EW)

 $\begin{cases} \mathsf{BH}_{dir} : {\bf 5.23} \pm 0.02 \ \mathsf{pb} \\ \mathsf{BH}_{int} : {\bf 5.60} \pm 0.02 \ \mathsf{pb} \\ \mathsf{EW} : {\bf 5.89} \pm 0.03 \ \mathsf{pb} \end{cases}$

To look at interference

$$e^+ p \rightarrow e^+ p e^+ e^-$$

μ + e events

• Process:
$$e^+ p \rightarrow e^+ p \mu^+ \mu^-$$

($E_p = 820 \,\text{GeV}, E_e = 27.5 \,\text{GeV}$)

- $pp\gamma$ vertex : dipole-formfactor
- ISR is included.
- Sets of included diagrams:
 - Only Bethe-Heitler (**BH**) $(\Longrightarrow LPAIR)$
 - All in Electroweak (EW)
- Selecting μ + e events
 - For one or both of μ^+ , μ^- :
 - $\mathsf{Pt}_{\mu} > 5 \; \mathsf{GeV} \; \; \; \mathsf{in} \; \; 18^\circ < heta_{\mu} < 160^\circ$
 - For scattered positron:

 $\mathsf{Pt}_e > 5 \; \mathsf{GeV} \; \; \text{ in } \; 15^\circ < heta_e < 164^\circ$

 $\sigma = \begin{cases} \mathsf{BH} : 1.674 \pm 0.005 \text{ pb} \\ \mathsf{EW} : 1.803 \pm 0.005 \text{ pb} \end{cases}$

T. Abe (Univ. of Tokyo) et al. HERA MC workshop

μ + jet events

• Process:
$$e^+ q \rightarrow e^+ q \ \mu^+ \mu^-$$

($E_p = 820 \,\text{GeV}, \ E_e = 27.5 \,\text{GeV}$)

- $q = u + \overline{u} + d + \overline{d} + s + \overline{s}$ (Light quarks)
- PDF : CTEQ4L
- (QCD scale)² $\equiv \left| \left\{ p_{q^{(in)}} p_{q^{(out)}} \right\}^2 \right| > 3 \,\mathrm{GeV^2}$

•
$$u \equiv \left| \left\{ p_{q^{(in)}} - (p_{l^+} + p_{l^-}) \right\}^2 \right| > 25 \,\mathrm{GeV^2}$$

•
$$M_{q\,\mu^+\mu^-} > 5\,{\rm GeV}$$

• ISR is included.

•
$$M_{had}$$
: (Mass of hadronic system)

$$\equiv \sqrt{\{(p_{e_{beam}} + p_{P_{beam}}) - (p_{e^+} + p_{l^+} + p_{l^-} + p_{ISR})\}^2}$$

$$> 5 \text{ GeV}$$

- Sets of included diagrams:
 - Only Bethe-Heitler (BH) (= LPAIR)
 - All in Electroweak (EW)

T. Abe (Univ. of Tokyo) et al.

HERA MC workshop

13 / 16

Summary

Using GRAPE-Dilepton generator which includes all diagrams in EW, differences between BH and EW can be estimated.

- Internal conversion diagrams,
- Z^o propagators,
- $-e^+e^+$ interference in di-*e* channel.

Dilepton production is $2 \rightarrow 4$ process. \implies Complicated!

It's the best way for YOU to use this program.

GRAPE-Dilepton_v0.0 (Preliminary version)

/afs/desy.de/user/a/abe/public/grape/grape-dilepton_v0.0_BEAM_positron.tgz will be prepared within a few days.

— Future Plans ——

- Preparing Web page. (Up-to-date information) http://www-zeus.desy.de/~abe/grape
- Writing a complete manual for proceedings.
- Publication to CPC.