Short Report on the Progress of the Dilepton Generator based on GRACE System

Tetsuo Abe

Department of Physics, University of Tokyo

T. Abe (Univ. of Tokyo) HERA MC workshop

Introduction

Calculated process : $ep \rightarrow eXl^+l^-$ in tree level EW

Dominant diagrams (Bethe-Heitler)

Z^o contribution is also included.

What's done

- Parton level calculation
- Comparison with LPAIR in Bethe-Heitler process \longrightarrow Good agreement

Progress this time

- Initial State Radiation for incoming positron in the cross section calculation (integration) using Structure Function method (Suppl. Prog. Theor. Phys. 100 1990, p285–)
- Interfaced to PYTHIA

ISR using Structure Function Method

Incoming positron collides with proton/quark after ISR- γ radiation (with zero P_t)

 \longrightarrow Cross section and distribution will change.

Example : $ep \rightarrow ep \, \mu^+ \mu^-$ in Bethe-Heitler process

Detector cuts

• Cut(1) — 15°	$< heta_{\mu}<164^{\circ}, \ E_{\mu}>2GeV$
	(for both muons)
• Cut(2) — 15°	$< heta_\mu < 164^\circ, \;\; E_\mu > 2GeV$
	(for both muons)
	& $15^\circ < heta_e < 164^\circ, \;\; E_e > 4GeV$
	(for scattered positron)

Elastic Di-muon

	NO ISR	ISR
No cut	$9.742(\pm 0.003) imes 10^4$	$9.617(\pm 0.003) imes 10^4$
Cut(1)	$8.493(\pm 0.005) imes 10$	$8.373(\pm 0.009) imes 10$
Cut(2)	$6.094(\pm 0.008) imes 10^{-1}$	$6.661(\pm 0.007) imes 10^{-1}$

(in unit of pb)

 $\begin{array}{l} \mathsf{Cut}(0) \longrightarrow \sim \ 1 \ \% \downarrow \\ \mathsf{Cut}(1) \longrightarrow \sim \ 1 \ \% \uparrow \\ \mathsf{Cut}(2) \longrightarrow \sim 10 \ \% \uparrow \end{array}$

ISR Effect on Q_e^2

Interfaced to PYTHIA

- Defining GRACE output as a user-defined external process in PYTHIA
 - \longrightarrow PYTHIA functions can be used.
 - Initial state QED/QCD radiation with $P_t \neq 0$ (backward evolution parton shower)
 - Final state QED/QCD radiation (forward evolution parton shower)
 - Making proton remnant
 - Hadronization

Complete Final State

Summary

• ISR for incoming positron installed

- Total cross section does not change.
- Small effect for produced muons.
- In case of applying cuts, energy distribution of scattered positrons shows a clear difference between ISR-on/off.

• Interfaced to PYTHIA

- Complete final state can be obtained.
- Almost no effect on final state leptons.

Next Step

- Installing a so called 'resolved process' as in EPVEC
- Comparison with EPVEC in Z^o production process