4，孰か学第二法想
SG．1 熱の移㔚を不可逆变化
（1）熱の移勫六白

（2）可逆变化と不可椾变化

ex真空中の据川子

§4．2埶か学第て法创と不可道性の尺度
熟力学第二法刚：エネル机，の流れる方向を据定する経験则
トムソン（1つの熱源から熱をとり，外部に対して正のは古をする

（1）
第2揰の永久掞関は存在しない」

高滥源

但爆源

あとで元すように

$$
\eta=\frac{T_{1}-T_{2}}{T_{1}} \quad(4,2)
$$

なのでこの2つより

$$
\begin{aligned}
& 4=\frac{Q-Q_{2}}{Q_{1}}=\frac{T_{1}-T_{2}}{T_{1}} \\
& \therefore \frac{Q_{2}}{Q_{1}}=\frac{T_{2}}{T_{1}}, \quad \frac{Q_{1}}{T_{1}}=\frac{Q_{2}}{T_{2}}
\end{aligned}
$$

ここでQとTaビをなントがー」とい乎び，

$$
S=\frac{Q}{T}
$$

「不可椾性の尺度」とみてすす。

変化をすんは, そのエントロヒーは境加する一方である。

$$
\begin{aligned}
& \text { No. } \\
& \bar{W}=Q_{1}-Q_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 効率 } \eta=\frac{Q_{1}-Q_{2}}{Q_{1}} \\
& \text { (4.1) }
\end{aligned}
$$

§4．3 熱㵲関の効率
（1）カルーサイタッ
サイタル，粚璘物質を使って熱を沶事に変える周期的変化

熱㳟からQ，だけ熱が移酸

熱源へ 2 たたけ䯰が移取
断熱して，潅度がTいになるまで楽静的に在摍
\pm
このサイタルでABCDに囲まれた面榬分の仕事を外に対してする
（i）A，Bにおける体埥と圧力を $\left(V_{A}, p_{A}\right)\left(\nabla_{\beta}, p_{B}\right)$ とすると，

$$
W_{1}=\int_{\nabla_{A}}^{V_{B}} p d \sigma=\int_{\nabla_{A}}^{T_{B}} \frac{R T_{1}}{V} d V=R T_{1} \log \frac{V_{B}}{V_{A}} \quad \text { (4.5) }
$$

 よって第し法間によればQ，はWに等しいので，

$$
Q_{1}=R T, \log \frac{D_{B}}{V_{A}} \quad(4,6)
$$

 $d^{\prime} Q=0 \quad$ ID；
$-d t=p d \nabla$
$\left.(3,15) \quad C_{T}=\left(\frac{\partial U}{\partial T}\right)_{\sigma} \delta^{\prime}\right)$
$d U=C_{U} d T \quad$（4．7）
なので外部にする仕事馬は

$$
\vec{W}_{7}=\int_{T_{B}}^{T_{C}} p d V=-\int_{T_{1}}^{T_{2}} d U=-\int_{T_{1}}^{T_{2}} C_{V} d T=C_{V}\left(T_{1} T_{2}\right)(C, 8)
$$

$$
W_{3}=\int_{T_{c}}^{T_{D}} d d=R T_{2} d o \frac{V_{C}}{V_{D}} \quad \text { (4.9) }
$$

よって放出する憲量は

$$
\begin{equation*}
Q_{2}=R T_{2} \log \frac{V_{C}}{V_{D}} \tag{4.10}
\end{equation*}
$$

（しい）D \rightarrow Aは断熱圧緛なので

$$
W_{4}=-\int_{J_{0}}^{T_{2}} p d \theta=\int_{T_{2}}^{T_{1}} d U=C_{0}\left(T_{1}-T_{2}\right)(4,11)
$$

ポフリンの関侯式から

$$
T_{2} \sigma_{D}^{\gamma-1}=T_{1} \nabla_{A}^{\gamma-1} \cdots(t+)
$$

（4．5）（4．8）（4．9）（4．11）より1サイクル年に外部に対してする代事すは，

$$
\begin{align*}
W & =W_{1}+W_{2}-\nabla_{3}-\nabla_{4} \\
& =R T_{1} \log \frac{\nabla_{B}}{V_{A}}-R T_{2} \log \frac{\nabla_{C}}{\nabla_{D}} \tag{4,2}
\end{align*}
$$

また（4．6）（4．10）を用いれば，

$$
\begin{equation*}
W=Q_{1}-Q_{2} \tag{4.13}
\end{equation*}
$$

（か）（林）を用いると

$$
\frac{T_{1}}{T_{2}}=\left(\frac{V_{C}}{T_{B}}\right)^{\gamma-1}=\left(\frac{V_{D}}{V_{A}}\right)^{\gamma-1} \quad(4.14)(4.15)
$$

となるので，

$$
\begin{equation*}
\frac{V_{V_{p}}}{V_{n}}=\frac{\frac{V_{C}}{V_{s}}}{V_{s}} \tag{4,16}
\end{equation*}
$$

以远に

$$
W=Q_{1}-Q_{2}=R\left(T_{1}-T_{2}\right) \log \frac{V_{B}}{V_{A}} \quad(4+17)
$$

以上よりカルーサイクルの効率は

$$
\begin{aligned}
\eta & =\frac{W}{Q_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}} \\
& =\frac{R\left(T_{1}-T_{2}\right) \log \frac{V_{s}}{V_{A}}}{R T_{1} \log \frac{V_{B}}{V_{A}}}=\frac{T_{1}-T_{2}}{T_{1}} \quad(4.18)
\end{aligned}
$$

v
カルーサーイルの効峦は高淐䕀源と低淐熱原の温度で決まる。

（2）不可兹機関とその効率

ーかルノの定捚

［証明］
高温䕀原た位

働かさ，Bが外部にした化事と，Aが外部からされる代事かい
 もど，そじるので，使われた熱量力い仕事けに等しい

$$
(4.19)
$$

\qquad
 $W / Q_{1}^{\prime}>W / Q, \delta 1$

$$
Q_{1}-Q_{1}^{\prime}=Q_{2}-Q_{2}^{\prime}>0 \quad(4,20)
$$

 となるからのこ。

$$
\begin{equation*}
Q_{1}-Q_{1}^{\prime}=Q_{2}-Q_{2}^{\prime} \leq 0^{\circ} \tag{4,21}
\end{equation*}
$$

$$
\begin{aligned}
& Q_{1}-Q_{2}=Q_{1}^{\prime}-Q_{3}^{\prime}=\pi \\
& \text { ここで掺関A, Bの効垶はそれぞれ } \\
& \eta_{A}=\frac{\bar{W}}{Q_{1}}, \eta_{B}=\frac{W}{Q_{1}^{\prime}}
\end{aligned}
$$

522.

$$
\begin{gathered}
\eta_{A} \geq \eta_{B} \\
\text { となる。次に得 }=\eta_{B} \text { 伖定すると } \quad \bar{W} / Q_{1}=\bar{W} / Q_{1}^{\prime} よ り \\
Q_{1}-Q_{1}^{\prime}=Q_{2}-Q_{2}^{\prime}=0
\end{gathered}
$$

となり，系全体が可送找関になってしまう。よって

$$
\begin{equation*}
\eta_{A}>\eta_{B} \tag{4.26}
\end{equation*}
$$

より不可屰撩間の効率は可逆掝関の効率より小さい。
 と有言える。 \qquad
\qquad
\qquad
用いるのはななか？
（3．15）式

$$
C_{\sigma}=\left(\frac{\partial U}{\partial T}\right)_{T}
$$

 すなわらここから韋かれる

$$
d U=\operatorname{cod} T
$$

