No．
§3．4 内部エネギーとエンタルビー
…（い㑑間哣方長の案験。 \qquad

肉部工社れ゙ー18不変。（ $\left.\cup_{1}=\right)_{2}$ ）

热部）

\qquad
\qquad

教えられるのこのてき気体が外部かうされた化事は，

$$
\bar{W}=p_{A} \overline{V_{A}}-p_{B} \overline{V_{B}} \quad(3.27)
$$

 \qquad
\qquad
\qquad
\qquad

$$
\begin{array}{ll}
U_{A}-U_{A}=p_{A} \nabla_{A}-p_{B} V_{B} & (3.28) \\
U_{A}+p_{A} V_{A}=U_{B}+p_{B} V_{B} & (3.29)
\end{array}
$$

すなわら
\qquad

$$
\begin{equation*}
H=U+p v \tag{3,30}
\end{equation*}
$$

 あるいお「工多以゙ー」と呼じれる状能量である。

※害験の線果（シュルートムン効果）

㴆度が低をした（ $\Delta T>0)$ が，Hっでは上畀した。（ $0 T<0$ ）
更にどんな気体でも密度が小ーさくなると

$$
U_{A}=U_{B}-(3.31)
$$

压力一定で㪦量Qが加わる場合を考える。
$p, U_{A}, V_{A} \rightarrow p, U_{B}, V_{B}$
（3．1）おりd $d^{2}=d U+p d \bar{V}$ 子ので

$$
\begin{aligned}
Q=\int_{U_{A}}^{V_{B}} d U+p \int_{V_{1}}^{T_{C}} d \nabla & =\left(U_{B}-U_{A}\right)+p\left(V_{B}-V_{A}\right) \\
& =\left(U_{B}+p \overline{V_{B}}\right)-\left(U_{A}+p V_{A}\right)(3,32) \\
& =H_{B}-H A
\end{aligned}
$$

無限小変比を考えると，

$$
d^{\prime} Q=d 1-(3.34)
$$

$$
C_{p}=\left(\frac{\partial Q}{\partial T}\right)_{p}=\left(\frac{\partial H}{\partial T}\right)_{p} \quad(3.35)
$$

く殔いる。
 \qquad van der Waals a状態方程式は，

$$
p=\frac{N R T}{V-b N}-\frac{a N^{2}}{V^{2}}
$$

变形？

$$
\begin{aligned}
& \frac{N R T}{P}=\nabla\left\{\left(1-\frac{2 N}{\sigma}\right)^{-1}-\frac{a N}{R T V}\right\}^{-1} \\
& D=\frac{N R i}{P}-\frac{a N}{D^{\prime}}+Q N \\
& \text { テーフー展样により, } \\
& \frac{N R T}{P} \simeq V\left\{1-\frac{2 N}{V}+\frac{a N}{R T \nabla}\right\}=V-\operatorname{lr} N+\frac{a N}{R T}
\end{aligned}
$$

ジュール・トムリン係数 μ_{JT} を $\Delta T / \Delta 中$ で定義すると，$C_{p}=\left(\frac{\partial T}{\partial T}\right)_{p} と$

$$
\begin{aligned}
& \left(\frac{\partial H}{\partial T}\right)_{p} \Delta T+\left(\frac{\partial H}{\partial p}\right)_{T} \Delta p=0 \quad(H(T-\Delta T, p-\Delta p)=H(T, p) r) \\
& \left(\frac{\partial H}{\partial p}\right)_{T}=V-T\left(\frac{\partial V}{\partial T}\right)_{p} \quad \leftarrow \text { Maxwella関溏d? }
\end{aligned}
$$

S＇j，$\mu_{J T}=\frac{1}{C_{p}}\left\{T \frac{\partial V}{\partial T}-V\right\}$
5,2 vander $\omega_{\text {aals気体の埧合1よ }}$

$$
\mu_{J T}=\frac{N}{c_{T}}\left\{\frac{2 a}{R T}-b^{\prime}\right\}
$$

§3．5第1法則の理想気体への応用
（1）理挸気体の比致

$$
d^{\prime} Q=d U+p d \underline{V}-(336)
$$

－（1．26）よりモいも熱は

$$
\begin{equation*}
C=\frac{d^{\prime} Q}{d T}=\frac{d U}{d T}+p \frac{d V}{d T} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
C_{\sigma}=\left(\frac{\partial U}{\partial T}\right)_{\sigma} \tag{3.38}
\end{equation*}
$$

定在代比鶖は 3.37 ）Ω ）

$$
\begin{equation*}
C_{p}=\left(\frac{\partial U}{\partial T}\right)_{V}+p\left(\frac{\partial V}{\partial T}\right)_{p} \tag{3.39}
\end{equation*}
$$

$--C_{P}=\left(\frac{\partial U}{\partial T}\right)_{V}+p\left(\frac{\partial V}{\partial T}\right)_{P}$

$$
\begin{equation*}
\left(\frac{\partial V}{\partial T}\right)_{p}=\frac{R}{P} \tag{3,40}
\end{equation*}
$$

だから，ニれをしろふろ）に代入して

$$
C_{p}=\left(\frac{\partial V}{\partial T}\right)_{T}+R=C_{T}+R-(3.4 t)
$$

これはマイヤーの関保式（2，24）と風いものである。

$$
\begin{aligned}
& U=C_{0} T+U_{0} \\
& \text { 苂テ=0のときの内部エ社ま゙ー }
\end{aligned}
$$

以上より理想気体の条陆は，

（2）$=y_{z}$－－の法例

$$
-\left(\frac{\partial \|}{\partial \sigma}\right)_{T}=0
$$

を倳たすこと。
（3）ルニッーか法間りを漉たすこと，
（2）理想気休の等湿变化と断烈変化
行う楽静的変化のこと。
际 $=-$ 定
（3．43）こボイルの枟焀
第1法细は（3．7）8）

$$
d^{\prime} Q=d V+p d V \quad(3: 44)
$$

外部から极れはた熹量

$$
Q=\int_{1}^{2} d^{\prime} Q=\int_{\pi_{1}}^{\nabla_{2}} p d \nabla=R T \int_{\pi_{1}}^{\pi_{2}} \frac{d V}{V}=R T \log \frac{\nabla_{2}}{\nabla_{1}}(3.46)
$$

$\nabla_{2} \geq V_{1}$ ：等温的曨張，吸熱
$\nabla_{2}<V_{1}:$ 等温圧缩，発熟

第二法朴收 5η

$$
d^{\prime} Q=d U+p d \bar{V}
$$

$$
\begin{equation*}
d U=-p d V \tag{3.47}
\end{equation*}
$$

$(3.38) 85$
$d U=\operatorname{Cod} T$ （3，48）

よってこれらすり，

$$
\epsilon_{0} d T+p d V=\theta-\quad-(3.49)
$$

$\bar{\phi}=R \bar{\varepsilon} C_{P}-C_{\sigma}=R \delta \omega$,

$$
\begin{aligned}
& \phi=\frac{R I}{V}=\left(c_{p}-c_{\sigma}\right) \frac{T}{V} \quad(3.50) \\
& \text { これを(3.49)12代入すると, } \\
& C_{\sigma} d T+\left(C_{p}-C_{0}\right) \frac{T}{V} d V=0 \quad(3.51)
\end{aligned}
$$

$$
\begin{equation*}
\frac{d T}{T}+(\gamma-1) \frac{d V}{V}=0 \tag{3.52}
\end{equation*}
$$

$$
\begin{aligned}
& \int \frac{d T}{T}+(\gamma-1) \int \frac{d \bar{T}}{V}=\text { const } \\
& \operatorname{Dog} T+(\gamma-1) \log \theta=\text { const } \\
& \text { loy } T \nabla^{\gamma-1}=\text { onst } \\
& \bar{T}^{\gamma-T}=C_{1} \text { (wanst) }-(\overline{3} .54)
\end{aligned}
$$

以必に

$$
\begin{aligned}
& T\left(\frac{R I}{P}\right)^{\gamma-1}=G_{1}, \quad \frac{T^{\gamma}}{P^{(x-1}}=C_{3} \text { (const) }(3.56)
\end{aligned}
$$

远断熱圧編

\qquad
\qquad

\qquad
\qquad
\qquad

$$
\frac{d t}{d t}=-\frac{p}{v} \quad(3.57)
$$

一方断熱变化の会は，（3．55）octarを紋かって。

$$
\begin{aligned}
& \nabla^{\gamma} d p+\gamma p V^{\gamma-1} d \nabla=0 . \\
& \therefore \frac{d p}{d \theta}=-\gamma \frac{p}{V} \quad(3,58)
\end{aligned}
$$

絶対道より大きい
［例题2］

淐度化は？

$$
d W=-p d V
$$

より金化事る

$$
\pi=-\int p d \nabla
$$

或所玄つ。

$$
p \bar{v}^{r}=c
$$

$$
\begin{aligned}
\bar{\omega} & =-\int_{V_{1}}^{V_{2}} p d \nabla=-\int_{V_{1}}^{V_{2}} \frac{c}{V_{r}} d \nabla \\
& =\frac{c}{\gamma-1}\left(\frac{1}{\bar{V}_{2}^{r-1}}-\frac{1}{\bar{V}_{1}^{r-1}}\right) \\
& =\frac{p_{1} V_{1}}{\gamma-1}\left[\left(\frac{\nabla_{1}}{\nabla_{2}}\right)^{r-1}-1\right]
\end{aligned}
$$

$$
T_{1} \nabla_{1}^{\gamma-1}=T_{2} \nabla_{2}^{\gamma-1} \quad \therefore \frac{I_{1}}{T_{2}}=\frac{V_{2}^{r-1}}{\nabla_{1}^{r-1}}
$$

この式心通数

$$
\frac{T_{2}}{T_{1}}=\frac{V_{1}^{r-1}}{\sigma_{2}^{r-1}}
$$

の四四からいをろしと，

$$
\begin{aligned}
& \frac{T_{2}-T_{1}}{T_{1}}=\frac{\nabla_{1}^{\gamma-1}-T_{2}^{\gamma-1}}{\nabla_{2}^{\gamma-1}} \\
& T_{1}-T_{2}=T_{1}\left(1-\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}\right)
\end{aligned}
$$

$$
t-t=\left(2^{2} T 3+t\right)\left[1-\left(\frac{\nabla_{1}}{\sigma_{2}}\right)^{r-1}\right]
$$

