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Shear-induced onion formation

water / C12E5

Gentile et al. Langmuir 27, 2088 (2011).



Shear-thickening is observed

oriented lamellar in flow direction

onion (MLV)



an onion formation mechanism: buckling

planar lamellar subject to shear undulation fluctuation perturbed under shear

flow generates an effective force to reduce an excess area

undulation instability deformation of buckling onion formation

Zilman and Granek Eur. Phys. J. B 11, 593 (1999).



Strey et al. J. Chem. Soc. Faraday Trans. 
86, 2253 (1990).

charge effects in a surfactant membrane
water / C12E5 / SDS

[SDS]/[C12E5] = 0.005

Lα+: birefringence only in streaming


Lα: static birefringence
Douglas and Kaler J. Chem. Soc. Faraday Trans. 90, 471 (1994).

Increasing charge density decreases 
d-spacing: lamellar peak appear in 
higher q with increasing charge

Schomacker and Strey J. Phys. Chem. 98, 3908 (1994).

static birefringence

multi lamellar structure (onion)

shear-induced onion formation

water / C12E5
2% C12E5



Motivations

normal SANS and NSE with changing charge density in C12E5 
bilayer by adding charged agent

1. A mass fraction of 10% of C12E5 in water was selected as a model system for weak 
inter-lamellar interactions

3. MLV formation process at weak inter-lamellar interactions are compared with that 
at strong inter-lamellar interactions

rheology measurement together with rheo-SANS

In order to clarify the mechanism of the onion formation, the buckling mechanism is 
verified by using neutron scattering techniques;

2. The bending rigidity of surfactant bilayers, κ, and the compressibility modulus, B, 

which are key parameters to express the critical shear rate or buckling wavelength, 
are estimated.

the interaction is controlled by adding either anionic surfactant 
SDS, or antagonistic salt, RbBPh4.



1. structure change by adding charged agent
sample: lamellar phase of 

              nonionic surfactant C12E5 / D2O

charged agent:  anionic surfactant SDS

    antagonistic salt RbBPh4

@ total surfactant concentration of 10 wt%
c.f. Gentile result for 40 wt%

experiment: on CG2 general purpose SANS at ORNL & NG7 30m SANS at NIST

Gentile et al. Langmuir 27, 2088 (2011). Strey et al. J. Chem. Soc. Faraday Trans. 
86, 2253 (1990).



1. structure change by adding charged agent

SANS patterns observed when 
increasing the amount of (a) 
SDS and (b) RbBPh4 in C12E5 
bilayers in D2O at T=58OC.
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Abstract. The larrellar phase of two binary systems, AOT/water and DDAB/water, is studied

by X-ray or neutron scattering techniques, along dilution lines. We observe on both systems a large
wave vector diffuse scattering with the following features : I) its shape is independent of dilution

it) its intensity scales linearly with the bilayer volume fraction iii) it is sensitive to the scattering
length density profile of the arrphiphilic bilayer. With the help of a model combining geometry of

the bilayers and layer displacement fluctuations, we quantitatively describe our data. This allows

us to ascribe the diffuse scattering to the strongly enhanced thermal diffuse scattering which

originates in the Landau-Peierls instability characteristic of the smecticA symmetry of our

systems. The model has two important consequences : I) the form factor of the arrphiphilic bilayer
may be extracted from the large wave vector diffuse scattering ; it) the Bragg peak intensities,
modulated by the bilayer form factor, also depend on the amplitude of the thermally-excited elastic

waves, I.e. on the magnitude of the elastic constants.

Introduction.

An interesting variety of structures and behaviours are encountered in the study of the

surfactant/solvent systems also known as lyotropic phases. In many cases the building unit has

locally the shape of a membrane, I.e. a planar bilayer of surfactant molecules. Examples of

such structures, with different long-range or intemal symmetries are, for instance lamellar

(L~ or cubic phases and
« sponge » (L~ ) or vesicle phases [1-5]. The membranar nature of the

building units is often established through a determination of the form factor, using radiation
(X-ray, neutron) scattering. The form factor may be directly seen in the high wave vector part
of the scattered spectrum, for disordered structures [e. g. 2, 3] or indirectly reconstructed from
the height modulation of the Bragg peaks arising in long-range-ordered lamellar [4] or cubic

[5] structures. Another method yet is routinely used for the measurement of the form factor of

the building unit in one-dimensionally-ordered structures : it takes advantage of the (usually
strong) diffuse scattering present in such systems [6], arising from displacement fluctuations

about the ideal lattice positions. These fluctuations are often described in purely geometric
terms, as a so-called

«
stacking disorder » [6, 7], but their thermal origin, especially in the

vicinity of phase transitions between differently ordered structures is mentioned [8]. In this

paper, we reconsider the interpretation regarding the diffuse scattering in one-dimensionally-
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Fig. 2. Geometrical model of a lyotropic larrellar L~ phase the planar surfactant bilayer has a

thickness the bilayers are stacked along the direction z with a period d.

Similar observations on both peak intensities and diffuse scattering have been reported
recently for an X-ray study of the lamellar phase of the (quasi) temary AOT/decane/water +

Nacl system [9]. Moreover, the large wave vector, diffuse component of the scattering was

shown to be identical in absolute units for both lamellar and « sponge »
samples built with the

same oil-swollen surfactant bilayer, irrespective of dilution. This feature was ascribed to the

form factor contribution to the scattered intensity [9]. It has been used in determining the

scattering parameters of the bilayer in a cetyl pyridinium chloride/hexanol/water + Nacl
lamellar phase [13].
In the following part, we extensively study a simplified, but still realistic model of the

scattering by a lamellar phase and show how, through the interplay between Bragg and

thermal-diffuse scattering that is introduced, it gives a complete, quantitative description of the
previous observations.

Interpretation.

The intensity Ij~ of a radiation scattered at a wave vector q by an irradiated volume
V of a sample characterized by a scattering length density p (x) is classically given by :12

Iid (q
~ P (X e'~'~ d~X (1)

V

where (.. ) denotes a thermal averaging of the enclosed expression (the effects of a finite
resolution are momentarily ignored).

GEOMETRICAL MODELS. Various models for the scattering length density p (x) have been

proposed, for the purpose of describing specific parts of the scattering spectrum of a lyotropic
lamellar phase. For instance, the basic occurrence of peaks at regularly spaced Bragg positions
p. qo ~p is an integer and qo the first order peak position in reciprocal space) stems from any
scattering length density that is (perhaps only in some reference state) a one-dimensionally
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Fig. 3. Intensity profiles (normalized by the thickness, transmission and membrane volume fraction of
the samples) in the X-ray scattering experiment on AOT ; surfactant volume fractions from a) to e) : 0.59,
0.48, 0.43, 0.38, 0.24 note the disappearance of the rust order Bragg peak at the surfactant volume
fraction 0.38.

periodic function of period d
=
2 gr/qo, along a direction which we call z in the following.

Furthermore, the commonly observed height modulation of successive Bragg peaks is usually
ascribed to the form factor of the bilayer in the following, purely geometric way : a finite-size

crystal of a lyotropic lamellar phase is described as the regular stacking period d along
an axis z of N identical plaquettes-thickness 3 ; lateral extension L~ all oriented normally to

z (Fig. 2). The scattering length density is defined by :

N i

p (x) =

z po(z nd)
,

(x~
~
L~

p (x) =

0~ otherwise
~~~

where po(z), the scattering length density profile of one plaquette, has non-zero values only
when 0 « z « 3. One then easily shows from equation (I) that the height of the Bragg peak of
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Fig. 4. Norrralized heights of the first and second order Bragg peaks as a function of their position in
the X-ray experiment on AOT triangles : first order Bragg peak ; squares : second order Bragg peak ; the
line is a fit to the model, see text below.
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Fig. 5. Diffuse part of the normalized intensity profiles in the X-ray scattering experiment on AOT
the membrane volume fractions are, respectively: triangles 0.59, crosses 0.41, stars 0.14; the
normalized diffuse scattering does not vary upon dilution of the lamellar phase.

order p is modulated by a factor P ~p. qo), where P (q) is the form factor of the bilayer :

8 2
l'(~)

=

j
Po(Z) £~~~

Zj
(3)
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order p is modulated by a factor P ~p. qo), where P (q) is the form factor of the bilayer :

8 2
l'(~)

=

j
Po(Z) £~~~

Zj
(3)

Geometrical model

Thermodynamical model
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This property is at the very basis of a method widely used for inferring structural information
about amphiphilic bilayers, which relies on the analysis of as many as possible Bragg peak
intensities [4, 5].
However, the purely geometric model obviously fails for describing those features of the

scattering spectrum that are related to thermal fluctuations. These features are the shape of the

Bragg peaks and the occurrence of an anisotropic small angle scattering, as is now classically
known, and also, as we show below, the occurrence of a diflkse scattering at large angles.

THERMODYNAMICAL MODELS.-Therrnally-induced lattice vibrations have well-known

consequences in the scattering spectra of solids the peak heights are reduced by a Debye-
Waller factor and some thermal-diffuse scattering arises at the base of Bragg peaks, which

nevertheless keep their delta-function shapes [14]. For systems with smectic A order, with

only one solid-like direction in 3D space, thermal motions have much more drastic

consequences : first, the singularities at the Bragg positions become weaker than delta-

functions [15, 16] and second, an anisotropic small angle scattering, much more intense along
the z-axis than along the perpendicular directions arises [17, 18]. The Cailld model [15], taking
into account properly the thermodynamics of a smectic A phase, describes rigorously these

two features. Cailld chooses a scattering length density of the following form

P (x) oz £ 3 (z nd + u~(x~ )) (4)

where u~(x~ ), displacement along z of the n-th layer at the transverse position x~, has

Gaussian fluctuations according to the harmonic elastic theory of smectic A phases [19]. The

model gives a very satisfactory account for the scattering profiles close to the Bragg
positions [20-22], and of the small angle scattering [18, 23]. Owing to its description of a

lamellar phase in terms of featureless, zero-thickness bilayers it nevertheless fails in explaining
the form factor peak height modulation and the contrast-specific large angle diffuse scattering.

COMBINING GEOMETRY WITH THERMODYNAMICS. It is unfortunately not easy to devise a

model combining the relevant features of the previous two models, I.e. taking into account

consistently both the geometry- the finite thickness of the membrane- and the ther-

modynamics- the layer displacement fluctuations. As a first step towards a complete
rigorous theory, we introduce some kind of layer displacement fluctuations into the

geometrical model in the following way : we assume that the n-th layer may fluctuate about its

equilibrium position n.d by an amount u~ independent of the transverse coordinates. This

amounts to assuming that there is only compression and no curvature strains in the smectic

phase. On the other hand, we assume that the u~ are Gaussian variables with the correlation

function ((u~ uo)~) identical to the true smectic correlation function

([u(x~
=
0, z = n. d ) u(0, 0)]~), i.e. [15] :

(Un U0)~)
~ ~~~

~
,

~ S'll3l'
~ ~

(5)
(u~ uo)~)

=

'~
~
~ln (grn ) + y d~

,
n »

2 gr

with y Euler's constant and 1~ defined in terms of the elastic constants of the smectic phase
B and K by [15] :

q( k~ T
'~ = /~ (6)

8 gr KB
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Combining geometry with thermodynamics

Assuming that the n-th layer may fluctuate about its equilibrium position n.
d by an amount un independent of the transverse coordinates.
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With this amendment to the geometrical model, the scattering length density p (x) becomes :

N i

p (x) =

z po(z nd + u~), [x~
~
L~

p (x) =

0~ otherwise.
~~~

Substituting equation (7) into equation (I) leads to the following form for the intensity
scattered by one isolated, finite-size crystal :

Ii~(q>
=
N P

i
(q

i
P (qz> s (qz> (8>

where P is the form factor of the bilayer, equation (3), S is the normalized structure factor of

the stack :

~2
N

~
j j ~u~ u~~2 j

S(qz)
=

+ 2 Z ' p C°S (nqz d) e (9)

and P
~
(q~ ) accounts for the finite transverse size of the bilayers. Its exact expression depends

on the shape of the plaquettes, with the following general properties : P
~
is sharply peaked at

q~ =
0, with P~ (0)

=

L( its width is of the order 2 gr/L~. It should be noted that our

expression for the structure factor, equation (9), differs from those that result from
«
stacking

disorder »
of the first or second kind [6] (or, equivalently, for

« perturbed regular lattices
» or

«
paracrystalline lattices

»
[7]).

ACCOUNTING FOR FINITE RESOLUTION AND POWDER AVERAGING. The above-described

model gives a satisfactory, quantitative account for both our neutron and X-ray scattering data

once powder averaging and finite instrumental resolution are considered. Finite resolution

amounts to replacing the
«

ideal »
intensity I~~(q), equation (8), by the real one

I (q
= (lid (q' R (q q' ) d~q' I o)

where the resolution function R(q) is chosen for convenience as a Gaussian profile of width

Aq :

R (q )
=
(2 gr Aq~ )~ ~'~ exp

~~
~

( l 1)
2 Aq

For a crystal large enough, I.e. L~ Aq » I and Nd Aq » I, the convolution, equation (10), is

easily performed. Since P~ is more sharply peaked than the resolution function, it may be

represented by a delta-function :

P~ (q~ )
m
4 gr

~L( (q~ ) (12)

therefore leading, through convolution on q~ variables, to :

~2 q(
(13)Pi (qi )

"
~ "
#

~~~
2 Aq~

Along the q~ direction, using the fact that the membrane form factor P (q~) is a slowly varying
function whereas the structure factor S (q~), sharply peaked, has much stronger variations, we

approximate the effect of a finite resolution by convoluting the structure factor alone. This
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the stack :

~2
N

~
j j ~u~ u~~2 j

S(qz)
=

+ 2 Z ' p C°S (nqz d) e (9)

and P
~
(q~ ) accounts for the finite transverse size of the bilayers. Its exact expression depends

on the shape of the plaquettes, with the following general properties : P
~
is sharply peaked at

q~ =
0, with P~ (0)

=

L( its width is of the order 2 gr/L~. It should be noted that our

expression for the structure factor, equation (9), differs from those that result from
«
stacking

disorder »
of the first or second kind [6] (or, equivalently, for

« perturbed regular lattices
» or

«
paracrystalline lattices

»
[7]).

ACCOUNTING FOR FINITE RESOLUTION AND POWDER AVERAGING. The above-described

model gives a satisfactory, quantitative account for both our neutron and X-ray scattering data

once powder averaging and finite instrumental resolution are considered. Finite resolution

amounts to replacing the
«

ideal »
intensity I~~(q), equation (8), by the real one

I (q
= (lid (q' R (q q' ) d~q' I o)

where the resolution function R(q) is chosen for convenience as a Gaussian profile of width

Aq :

R (q )
=
(2 gr Aq~ )~ ~'~ exp

~~
~

( l 1)
2 Aq

For a crystal large enough, I.e. L~ Aq » I and Nd Aq » I, the convolution, equation (10), is

easily performed. Since P~ is more sharply peaked than the resolution function, it may be

represented by a delta-function :

P~ (q~ )
m
4 gr

~L( (q~ ) (12)

therefore leading, through convolution on q~ variables, to :

~2 q(
(13)Pi (qi )

"
~ "
#

~~~
2 Aq~

Along the q~ direction, using the fact that the membrane form factor P (q~) is a slowly varying
function whereas the structure factor S (q~), sharply peaked, has much stronger variations, we

approximate the effect of a finite resolution by convoluting the structure factor alone. This

496 JOURNAL DE PHYSIQUE II N° 4

intensity I(q) according to :

i~~~~(q>
=
N i~ >~

(/m q> p (qx> i(qx> dx. (15>
o

For large enough scattering wave vectors (q » Aq ), #
~ as a function of x may be described as

a properly normalized delta-function (x) [24], with therefore the resulting expression :

~q~2
1

~~
(q )

=
2 ~r

j p (q) S (q) (16)
~°

q

Thus, the experimentally-recorded intensity scattered by an irradiated volume V containing
V/NdL( finite-size crystals randomly oriented is finally given by :

Iexp(q)
~
2 7r

j ~
~~~/~~~ (17)
q

We have checked by a numerical evaluation of ((q), equation (9), that our model, which

clearly recovers a form factor peak height modulation, also yields power-law singularities in

the vicinity of Bragg peaks. We got S (q cc q qo ~, with an exponent X numerically close

to 1-1~. This is different from the Cailld result along the z-direction, namely
Sc~~jjt(q~, q~ =

0) cc [q~ qo
~ ~ ~ [15] our result is nevertheless correct for powder

spectra, since the isotropically-averaged Caill£ structure factor (Sc~jjt) yields:
(Sc~~jjt) (q)cc [q-qo[~~~~ [21, 22]. The value for 1~

entering our model is therefore

expected to be the true one, defined in terns of the elastic constants of the smectic liquid
crystal, equation (6).

Our result incorporates a new feature, I,e. the appearance of a diflkse scattering at large

wave vectors, controlled by the bilayer form factor, when the structure factor ( (q reaches its

asymptotic value I. As exemplified in figure 6, this occurs in practice very soon. As already
noticed [9], the diffuse scattering is experimentally identical, in absolute units, for lamellar

(smectic A) and
« sponge » (isotropic liquid) phases built with the same bilayer. Indeed, for

« sponge » phases the intensity scattered by an irradiated volume V is given by [2, 3, 24] :

Isponge(q) ~
2 "
~/

P (q) ~ (18)
q

Since the reticular distance d of a lamellar phase is related to bilayer thickness and volume

fraction 4 by the dilution law d
=
&/4, equation (17) and equation (18) are identical, apart

from the lamellar phase structure factor.

NEUTRON AND X-RAY FORM FACTORS. In Order to compare Our prediction, equation (17),
with the X-ray and neutron scattering data we have taken simplified models for the scattering
length density profile po(z) of bilayers. For neutron scattering experiments on AOT/D20 or

DDAB/D~O lamellar phases, a reasonable model is the square profile: po(z)= Ap,
0 « z « &, where Ap is the contrast between the hydrophobic part of the bilayer (of thickness

&) and the solvent (including the hydrated part of the bilayer ; see Fig. 7a). From equation (3),
one then gets :

P~~~~(q)
=

Ap~sin~ (q ~ (19)
q ~
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yields the following expression for the resolution-limited structure factor :

N ' q dn((q~)
=

+ 2 z I I
cos

~
x

i
N

+ 2 Aq~ d~ a(n)

~ ~j ~2~ ~~ ~ ~ ~2 ~2 ~2

~ ~
2(i + 2 6q2 d2«(n)) ~~~/l

+ 2 Aq~ d~a (n)

where a (n) denotes the correlation function ((u~ uo)~)/2 d~.
The effects of thermal fluctuations on

(
are illustrated in figure 6, which display the

resolution-limited structure factor for
1~ =

0 (no thermal fluctuations) and for
1~
having non-

zero values. The OK structure factor has identical peaks at each Bragg position, all with the

same height of order qo/ /~ Aq, and negligible values (of order I/N) in-between peaks. In

the presence of thermal fluctuations, higher order Bragg peaks are smoothed out (the third
order peak almost disappears when

1~
is increased from 0. I to 0.2, for the example illustrated

in Fig. 6) and a significant intensity, which reaches quickly its asymptotic value I appears
benveen the peaks. Such a behaviour would be common for disordered systems as liquids. It
illustrates here the dramatic effect of the Landau-Peierls instability in (ordered) systems with
the smectic A symmetry. Note that the values we have chosen for

1~ are realistic for lamellar

systems stabilized by an electrostatic repulsion between bilayers, but that much larger values,
close to 1~ =

1.3 for large smectic spacings, are to be expected in many cases [21, 22].
For a random orientation of the crystal, it remains to powder-average the resolution-limited

8

S (Q)

6

4

2

0
O.I O-Z O,3 q

.~
[l~I] 0.5

Fig. 6. Structure factor of a d
=
60 A lamellar phase with some layer displacement fluctuations ;

dotted curve 1~ =
0 ; continuous curve 1~ =

0. I heavy line : 1~ =
0.2 the latter values of

11 are typical for larrellar phases stabilized with either weakly screened electrostatic interactions or

undulation interactions [22] the number of correlated layers in the stack is N
=
60 and a finite resolution

fig
=
5.2 x IO ~ A- has been taken into account ; note how quickly the function reaches its asymptotic

value when11 * 0.
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(a)Mean repeat distance d slightly decreases at low charge conditions while 
overall values may be almost constant around 30 nm. The bilayer 
thickness δ is al- most constant at 3.0 nm for both charge cases. 

(b)Extracted Caill é parameter shows different behavior at low charge 
concentration cases between anionic surfactant and antagonistic salt. 



2. charge density dependence of membrane elasticity
experiment: on NGA-NSE at NIST



2. charge density dependence of membrane elasticity

Undulational fluctuations

   ->   single membrane dynamics

decay rate Γ follows q3 relation

κ: bending modulus, η: solvent viscosity



Q // z

undulation amplitude: h = 1/Q

lateral length: L

A lateral length L along the membrane flat surface is perturbed in some way,
because they are 2D connected object.

h (kBT/κ)1/2 Lζ~ roughness exponent: ζ= 1 (2D object)
= 3/2 (1D object)

L (κ/kBT)1/2ζ Q-1/ζ~
The Stokes-Einstein diffusion coefficient is,

D(Q) (kBT/ηL) (kBT/η)(kBT/κ)1/2ζ Q1/ζ~ ~

~Γ(Q) D(Q)Q2 (kBT/η)(kBT/κ)1/2ζ Q2+(1/ζ)~
The relaxation rate is,

Thus they obtained the stretched exponential form of the relaxation function as,

I(Q, t )= exp[-(Γ(Q)t)β]
where

Γ(Q)= γαγκ (kBT)1/βκ1-(1/β)η-1Q2/β

with
β = 2 / (2+1/ζ) = 2/3 (2D object)

= 3/4 (1D object)
γα = 0.024 (2D object)
= 0.0056 (1D object)

γκ = 1 - 3 ln(ξ / l(t)) kBT / (4πκ)

Single membrane fluctuation
Zilman and Granek



2. charge density dependence of membrane elasticity

• Increasing charge density of a bilayer 
slightly increases bending modulus, and 
they follow the theoretical prediction 
proposed by Schomächer and Strey.
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BT
)

0.040.030.020.010.00
C

 no charge
 SDS
 RbBPh4
 Schomacker model

: Debye length

: Bjerrum length

:Gouy-Chapman length



charge effects on the steady state structure and dynamics

The dilution law (d=δ/φ) can be modified due to the membrane undulation

A: area of the undulating bilayer projected on the plane normal

ΔA+A: average of the true area of the bilayer

de Vries proposed to compare relative change in the dilution relation and area change 
as

the reduction of undulation fluctuations due to the increase in the bending 
rigidity of membranes cannot explain the change of the value of d 



charge effects on the layer compressibility modulus

The layer compressibility modulus B was calculated from κ and ηcp in

103

104

B 
(N

/m
2 )

0.001 0.01
C

 SDS
 RbBPh4

Weakly screened electrostatic repulsion

Steric repulsion due to thermal undulations



3. shear-induced MLV formation
experiment: rheology measurement & NGB 10m SANS at NIST

direct deposit 
from L3
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3. shear-induced MLV formation
C12E5 /D2O / RbBPh4, C=0.001

Tangential configuration

Radial configuration

Annular average of the 2D SANS pattern at q=0.2 nm-1 for (c) 
radial and (d) tangential configuration



3. shear-induced MLV formation
C12E5 /D2O / SDS, C=0.001 and 0.02
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Flow direction
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Gradient direction

.
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C=0.001

C=0.02

C=0.02

C=0.02

Vertical in tangential direction 

(shear gradient direction)

Vertical in radial direction 

(shear neutral direction)

Horizontal in radial direction 

(shear flow direction)

• The larger interlayer interaction case (C=0.02), d stays 
almost constant below the critical shear rate and decreases 
with increasing shear


• In the weaker interaction case (C=0.001), d increases both 
in the gradient and neutral directions at low shear, while 
almost constant in the flow direction.



Summary

undulation instability deformation of buckling onion formation

Stronger interaction case

Weaker interaction case

undulation instability

(not in-phase)

undulation grows as buckling onion formation

The increase of d is induced by the increased undulation due to the flow, which 
corresponds to the increase of the buckling instability.



Difference in structural changes of surfactant 
aggregates near solid surface under shear flow 

versus those in the bulk

F. Nemoto (National Defense Academy) 

F. Takabatake, N. L. Yamada, H. Seto (KEK)


S. Takata (JAEA)

F. Nemoto et al., J. Chem. Phys., 161, 164902 (2024).



Rheology

Non-slip condition at the interface is assumed

Surfactant membranes may slip on the solid substrate



Rheo-NR experiments

• Neutron Reflectometer SOFIA(@J-PARC, BL16)

28

• Cone-plate type rotational viscometer	
(Brookfield RST-CC + custom stage)	
	 cone spindle	
• diameter:50mm	
• cone angle: 1°	

• surfactant solution	
(C12E5/SDS)/D2O (10wt%)	
	
　C = [SDS]/[C12E5] (molar ratio)	
	 	

• Si wafer	
	 hydrophilic treatment by ozone/UV 
irradiation for 20 min.	

• Temperature: 58.1～58.8℃	
→lamellar structure	
　(Y. Kawabata et al., J. Chem. Phys. 147 (2017))

injected neutron beam： 	
(penetration depth was about 30 μm)	
footprint：30mm×40mm

−0.9°



NR results

• The shear rate was increased from 1 to 500 s-1 
exponentially.	

• The stacking structure was changed with increasing shear 
rate.	

• The structural change depended on the increasing rate.

𝑇max = 27 min 𝑇max = 60 min 𝑇max = 135 min
NR profiles（C =[SDS]/[C12E5]= 0.01）



Shear-rate dependence by SANS
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cylinder was loaded onto the coaxial outer cylinder, with the sam-
ple in between. The other profiles were essentially isotropic, except
for the anisotropy that remained in the initial state. The observed
positions of the Bragg peaks were approximately Q = 0.21 and
0.43 nm⌐1, which correspond to the first and second peaks due to
the lamellar structure.

Figure 3(a) indicates the shear-rate-dependence of the viscos-
ity ω, the first Bragg peak position Q0, and the peak height of the
first Bragg peak I0 integrated over a ±15○ range in the horizontal
directions of the 2D patterns at each Tmax for C = 0.01. Shear thick-
ening and subsequent shear thinning were observed with increasing
shear rates. The periodical deviations in ω were attributed to the tem-
perature fluctuations in the sample cells. The change in the peak
height I0 below ϵ̇ = 10 s⌐1 is plausibly attributed to the relaxation
of the alignment of the lamellar structures at the initial setup of the
samples.

As described in Sec. I, the formation of MLVs that fill the
entire space of a solution without excess water by increasing the
shear rate is associated with shear thickening.1,2 By further increas-
ing the shear rate, these MLVs are destroyed, and the alignment
of the surfactant bilayer fragments increases with increasing shear
flow, resulting in the onset of shear thinning. This is consistent with
the isotropic Rheo-SANS profiles with a small jump of Q0 and I0
around ϵ̇ = 10 s⌐1, which is plausibly associated with formation of
the MLV. The gradual increase in Q0 above ϵ̇ = 10 s⌐1 may arise
from fragmentation of the lamellae. These results are also consis-
tent with those observed in prior studies,11,36 where essentially the
same behaviors were observed independent of Tmax, except for the

Tmax-dependence of ω. The dashed vertical lines indicate the shear
rate at the maximum viscosity, ϵ̇⋊SANS. At larger Tmax, the ϵ̇⋊SANS was
lower, which indicates that the imposed strain also triggers a collapse
of the MLVs, as in the formation of the MLVs.15

Figure 3(b) shows the ϵ̇ dependence of ω, Q0, and I0 for
C = 0.04. The overall features of the profiles are similar to those
at C = 0.01, except for the maximum viscosities associated with
the rigidity of the surfactant membranes. The values of ϵ̇⋊SANS for
C = 0.01 and C = 0.04 are also almost equivalent, indicating that the
imposed strain required to reduce the MLV order is independent of
the membrane rigidity.

B. Rheo-NR
Figure 4(a) shows the shear-rate-dependence of the NR pro-

files of the sample with C = 0.01 for Tmax = 0.5 h, as a function of
the momentum transfer perpendicular to the surface of the Si sub-
strate, Qz . All profiles are the product of the reflectivity R and Q4

z .
At shear rates less than ϵ̇ = 25 s⌐1, sharp Bragg peaks owing to the
long-range order of the self-assembled surfactant structures paral-
lel to the surface of the Si substrate were observed at QA1 = 0.26
nm⌐1 and QA2 = 0.45 nm⌐1, indicating a membrane morphology
different from that of the bulk. This is hereinafter called “structure
A.” Because QA1⌜QA2 ≃ 1⌜⌜3, hexagonal structure at a higher
concentration of C12E543 at low temperature is a candidate for this
structure, although it cannot be perfectly assigned because of the lack
of higher-order peaks. Note here that it is only speculation that the
hexagonal phase was stabilized due to the surface or charge effect.
By increasing the shear rate, the position of the first Bragg peak

FIG. 3. Shear-rate-dependence of the viscosity ω, the first Bragg peak position Q0, and the Bragg peak height I0 for Tmax = 0.5, 1, 2, and 4 h when (a) C = 0.01 and
(b) C = 0.04 observed by SANS, respectively. The dashed vertical lines are the shear rate of the maximum viscosities, ϵ̇⌐SANS. The error bar sizes are comparable to those of
the data symbol size for the SANS data.

J. Chem. Phys. 161, 164902 (2024); doi: 10.1063/5.0232638 161, 164902-4

Published under an exclusive license by AIP Publishing

 06 N
ovem

ber 2024 08:53:28

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

cylinder was loaded onto the coaxial outer cylinder, with the sam-
ple in between. The other profiles were essentially isotropic, except
for the anisotropy that remained in the initial state. The observed
positions of the Bragg peaks were approximately Q = 0.21 and
0.43 nm⌐1, which correspond to the first and second peaks due to
the lamellar structure.

Figure 3(a) indicates the shear-rate-dependence of the viscos-
ity ω, the first Bragg peak position Q0, and the peak height of the
first Bragg peak I0 integrated over a ±15○ range in the horizontal
directions of the 2D patterns at each Tmax for C = 0.01. Shear thick-
ening and subsequent shear thinning were observed with increasing
shear rates. The periodical deviations in ω were attributed to the tem-
perature fluctuations in the sample cells. The change in the peak
height I0 below ϵ̇ = 10 s⌐1 is plausibly attributed to the relaxation
of the alignment of the lamellar structures at the initial setup of the
samples.

As described in Sec. I, the formation of MLVs that fill the
entire space of a solution without excess water by increasing the
shear rate is associated with shear thickening.1,2 By further increas-
ing the shear rate, these MLVs are destroyed, and the alignment
of the surfactant bilayer fragments increases with increasing shear
flow, resulting in the onset of shear thinning. This is consistent with
the isotropic Rheo-SANS profiles with a small jump of Q0 and I0
around ϵ̇ = 10 s⌐1, which is plausibly associated with formation of
the MLV. The gradual increase in Q0 above ϵ̇ = 10 s⌐1 may arise
from fragmentation of the lamellae. These results are also consis-
tent with those observed in prior studies,11,36 where essentially the
same behaviors were observed independent of Tmax, except for the

Tmax-dependence of ω. The dashed vertical lines indicate the shear
rate at the maximum viscosity, ϵ̇⋊SANS. At larger Tmax, the ϵ̇⋊SANS was
lower, which indicates that the imposed strain also triggers a collapse
of the MLVs, as in the formation of the MLVs.15

Figure 3(b) shows the ϵ̇ dependence of ω, Q0, and I0 for
C = 0.04. The overall features of the profiles are similar to those
at C = 0.01, except for the maximum viscosities associated with
the rigidity of the surfactant membranes. The values of ϵ̇⋊SANS for
C = 0.01 and C = 0.04 are also almost equivalent, indicating that the
imposed strain required to reduce the MLV order is independent of
the membrane rigidity.

B. Rheo-NR
Figure 4(a) shows the shear-rate-dependence of the NR pro-

files of the sample with C = 0.01 for Tmax = 0.5 h, as a function of
the momentum transfer perpendicular to the surface of the Si sub-
strate, Qz . All profiles are the product of the reflectivity R and Q4

z .
At shear rates less than ϵ̇ = 25 s⌐1, sharp Bragg peaks owing to the
long-range order of the self-assembled surfactant structures paral-
lel to the surface of the Si substrate were observed at QA1 = 0.26
nm⌐1 and QA2 = 0.45 nm⌐1, indicating a membrane morphology
different from that of the bulk. This is hereinafter called “structure
A.” Because QA1⌜QA2 ≃ 1⌜⌜3, hexagonal structure at a higher
concentration of C12E543 at low temperature is a candidate for this
structure, although it cannot be perfectly assigned because of the lack
of higher-order peaks. Note here that it is only speculation that the
hexagonal phase was stabilized due to the surface or charge effect.
By increasing the shear rate, the position of the first Bragg peak

FIG. 3. Shear-rate-dependence of the viscosity ω, the first Bragg peak position Q0, and the Bragg peak height I0 for Tmax = 0.5, 1, 2, and 4 h when (a) C = 0.01 and
(b) C = 0.04 observed by SANS, respectively. The dashed vertical lines are the shear rate of the maximum viscosities, ϵ̇⌐SANS. The error bar sizes are comparable to those of
the data symbol size for the SANS data.
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FIG. 6. Shear-rate-dependence of the viscosity ω, the Bragg peak positions Qi , peak height normalized by Q4
i , RiQ4

i = R(Qz = Qi)Q4
i for Tmax = 0.5, 1, 2, and 4 h when (a)

C = 0.01 and (b) C = 0.04, where i = A1, B. Filled symbols indicate the peaks at QA1 and open symbols indicate the peaks at QB described in the main text. The dashed
vertical lines represent the shear rate of the maximum viscosity observed using Rheo-SANS ϵ̇⌐SANS, and the dotted vertical lines are those observed by Rheo-NR, ϵ̇⌐NR,
respectively. The error bar sizes are comparable to those of the data symbol size for the NR data.

NR smaller than that of SANS might be attributed to the restriction
of MLV formation.

In the case of a rapid increase in the shear rate (small Tmax,
C = 0.01, and C = 0.04), the decreased peak intensity observed in
the NR experiment was associated with the start of shear thicken-
ing in the NR experiment. The shear thickening behavior could be
correlated to the destruction or change in the alignment direction of
structure A near the surface, because all NR measurements showed
a decrease in the Bragg peak intensity with shear thickening. Mean-
while, the MLVs should fill all the spaces in the bulk, as indicated
by the Rheo-SANS results below ϵ̇⌐NR. Further increasing of the shear
rate above ϵ̇ = ϵ̇⌐NR ≃ 60 s−1 resulted in thinning, and the Bragg peak
position QA1 started to move to higher Qz and QA2 completely dis-
appeared. Here, the MLVs in the bulk were broken, as in a previous
study,36 and the alignment of structure A near the surface might
be broken, or the direction may become non-parallel to the solid
substrate. The decrease in the mean distance between the surfactant
membranes was attributed to the release of water.

In the cases of a slow increase in the shear rate (large Tmax),
a new Bragg peak appeared when ω started to increase due to shear
thickening. The QA1 and QB values observed with NR are higher than
those observed with SANS. Thus, structures A and B near the surface
are different from the bulk structure, as shown in Fig. 4. Kawa-
bata et al. showed that the repeat distance of the lamellae depends
on the observed direction (see Fig. 10 in Ref. 36). Thus, the system
has several local minimum states with an orientational difference in

the alignment of structure A and structure B, which traps the align-
ment direction upon increasing the shear rate, especially for a small
Tmax near the surface.

The observed shift of Q⌐z is attributed to the change in the
fraction of total surfactants near the surface. Therefore, the volume
fraction of surfactants was calculated to discuss the mechanism of
the structural changes under the applied shear flow. It was assumed
that C12E5 and SDS were homogeneously mixed, and the contribu-
tion of SDS to the SLD was neglected due to its low concentration.
Figure 7(a) shows the shear-rate-dependence of the normalized vol-
ume fraction of the aqueous solutions of surfactants, estimated
from the SLD based on the critical angle of the total reflection
(Q⌐z = 4

⌜
ϑωϖ, where Q⌐z is the Qz at the critical angle and ωϖ is the

difference in the SLD between the substrate and solution). The vol-
ume fraction of surfactants near the solid surface, φi, is evaluated
from

ωϖ = (1 ⌐ φi) × ϖD2O + φi × ϖsurfactants ⌐ ϖSi, (1)

where ϖD2O is the SLD of D2O (6.36 × 10−4 nm−2), ϖsurfactants is
the SLD of C12E5 (0.13 × 10−4 nm−2) at room temperature, cal-
culated from the literature values,43 and ϖSi is the SLD of the Si
substrate (2.07 × 10−4 nm−2). The evaluated volume fraction started
to increase only when a discontinuous shift in the Bragg peaks due
to structural changes occurred. This suggests that the shear-induced
structural transition is associated with surfactant condensation.
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FIG. 6. Shear-rate-dependence of the viscosity ω, the Bragg peak positions Qi , peak height normalized by Q4
i , RiQ4

i = R(Qz = Qi)Q4
i for Tmax = 0.5, 1, 2, and 4 h when (a)

C = 0.01 and (b) C = 0.04, where i = A1, B. Filled symbols indicate the peaks at QA1 and open symbols indicate the peaks at QB described in the main text. The dashed
vertical lines represent the shear rate of the maximum viscosity observed using Rheo-SANS ϵ̇⌐SANS, and the dotted vertical lines are those observed by Rheo-NR, ϵ̇⌐NR,
respectively. The error bar sizes are comparable to those of the data symbol size for the NR data.

NR smaller than that of SANS might be attributed to the restriction
of MLV formation.

In the case of a rapid increase in the shear rate (small Tmax,
C = 0.01, and C = 0.04), the decreased peak intensity observed in
the NR experiment was associated with the start of shear thicken-
ing in the NR experiment. The shear thickening behavior could be
correlated to the destruction or change in the alignment direction of
structure A near the surface, because all NR measurements showed
a decrease in the Bragg peak intensity with shear thickening. Mean-
while, the MLVs should fill all the spaces in the bulk, as indicated
by the Rheo-SANS results below ϵ̇⌐NR. Further increasing of the shear
rate above ϵ̇ = ϵ̇⌐NR ≃ 60 s−1 resulted in thinning, and the Bragg peak
position QA1 started to move to higher Qz and QA2 completely dis-
appeared. Here, the MLVs in the bulk were broken, as in a previous
study,36 and the alignment of structure A near the surface might
be broken, or the direction may become non-parallel to the solid
substrate. The decrease in the mean distance between the surfactant
membranes was attributed to the release of water.

In the cases of a slow increase in the shear rate (large Tmax),
a new Bragg peak appeared when ω started to increase due to shear
thickening. The QA1 and QB values observed with NR are higher than
those observed with SANS. Thus, structures A and B near the surface
are different from the bulk structure, as shown in Fig. 4. Kawa-
bata et al. showed that the repeat distance of the lamellae depends
on the observed direction (see Fig. 10 in Ref. 36). Thus, the system
has several local minimum states with an orientational difference in

the alignment of structure A and structure B, which traps the align-
ment direction upon increasing the shear rate, especially for a small
Tmax near the surface.

The observed shift of Q⌐z is attributed to the change in the
fraction of total surfactants near the surface. Therefore, the volume
fraction of surfactants was calculated to discuss the mechanism of
the structural changes under the applied shear flow. It was assumed
that C12E5 and SDS were homogeneously mixed, and the contribu-
tion of SDS to the SLD was neglected due to its low concentration.
Figure 7(a) shows the shear-rate-dependence of the normalized vol-
ume fraction of the aqueous solutions of surfactants, estimated
from the SLD based on the critical angle of the total reflection
(Q⌐z = 4

⌜
ϑωϖ, where Q⌐z is the Qz at the critical angle and ωϖ is the

difference in the SLD between the substrate and solution). The vol-
ume fraction of surfactants near the solid surface, φi, is evaluated
from

ωϖ = (1 ⌐ φi) × ϖD2O + φi × ϖsurfactants ⌐ ϖSi, (1)

where ϖD2O is the SLD of D2O (6.36 × 10−4 nm−2), ϖsurfactants is
the SLD of C12E5 (0.13 × 10−4 nm−2) at room temperature, cal-
culated from the literature values,43 and ϖSi is the SLD of the Si
substrate (2.07 × 10−4 nm−2). The evaluated volume fraction started
to increase only when a discontinuous shift in the Bragg peaks due
to structural changes occurred. This suggests that the shear-induced
structural transition is associated with surfactant condensation.
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