Neutron and Softmatter

Hideki Seto IMSS/J-PARC Center, KEK SOKENDAI

Soft Matter

Common properties

- large number of internal degree of freedom
- weak interaction between structure unit
- delicate balance of entropy and enthalpy

phase transition

Hierarchical structure

Nano-scale Structures in Soft Matter

Hierarchical dynamics

Inelastic/Quasi-elastic scattering

Surfactants

Amphiphilic property

water

oil

hydrophilic

hydrophobic

Semi-microscopic structures

Packing parameter

head-water head-head

tail-tail

tail-oil

Pressure dependence

M. Nagao, HS, et al. 1999-2007

AOT + D_2O + *n*-decane

Pressure dependence of SAXS

Structure change with P

The same as increasing T

Why T-effect and P-effect seems to be the same?

counter-ion dissociation

tail-tail interaction

Bending energy of surfactant layers

W. Helfrich, Z. Naturforsch. C28 (1973) 693

mean curvature
$$H = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

Gaussian curvature $K = \frac{1}{R_1} \frac{1}{R_2}$

spontaneous curvature

Neutrons see...

Phase separation of a water-in droplet

Kawabata et al., Phys. Rev. Lett. 92 (2004) 056103.

Results of NSE experiments

T=43°C/P=0.1MPa

Scattering from a shell

Expansion of the shape fluctuation into spherical harmonics

 $R(\theta \phi, t) = R_0 \{1 + \sum a_{nm}(t)Y_{nm}(\theta \phi)\}$

Huang et al. PRL 59 (1987) 2600. Farago et al. PRL **65** (1990) 3348.

T- and P- dependence of the bending modulus

T- and P-effects on an ionic surfactant monolayer

Possible application

-pressure antagonism of anesthesia -deep sea organisms -food processing

Cells and Vesicles

Lamellar structure of lipid bilayers

Phase transitions of lipid bilayers

Neutron vs X-ray

neutron

x-ray

static structure

NSE measurements on lipid bilayers

N. L. Yamada, HS, et al. 2005-2008

Considered as a single membrane fluctuation.

Hideki SETO (KEK, Japan)

Single membrane fluctuation

A lateral length *L* along the membrane flat surface is perturbed in some way, because they are 2D connected object.

$$h \simeq (k_B T/\kappa)^{1/2} L^{\zeta}$$
 roughness exponent: $\zeta = 1$ (2D objection = 3/2 (1D objection))

 $L \simeq (\kappa/k_B T)^{1/2\varsigma} Q^{-1/\varsigma}$

The Stokes-Einstein diffusion coefficient is,

$$D(Q) \simeq (k_B T/\eta L) \simeq (k_B T/\eta) (k_B T/\kappa)^{1/2\zeta} Q^{1/\zeta}$$

The relaxation rate is,

 $\Gamma(Q) \simeq D(Q) Q^2 \simeq (k_B T/\eta) (k_B T/\kappa)^{1/2\zeta} Q^{2+(1/\zeta)}$

Thus they obtained the stretched exponential form of the relaxation function as,

$$I(Q, t) = \exp[-(\Gamma(Q)t)^{\beta}]$$

where

$$\Gamma(Q) = \gamma_{\alpha} \gamma_{\kappa} (k_{B}T)^{1/\beta} \kappa^{1-(1/\beta)} \eta^{-1} Q^{2/\beta}$$

with

 $\beta = 2 / (2+1/\zeta) = 2/3 (2D \text{ object}) \qquad \gamma_{\alpha} = 0.024 (2D \text{ object}) \\ = 3/4 (1D \text{ object}) \qquad = 0.0056 (1D \text{ object})$

 $\gamma_{\kappa} = 1 - 3 \ln(\xi / I(t)) k_B T / (4\pi\kappa)$

Hideki SETO (KEK, Japan)

Zilman and Granek

NSE results

 η : viscosity of D₂O $\gamma_{\kappa}=1$: $K_{c} \gg k_{B}T$

Hideki SETO (KEK, Japan)

3wt.%

4wt.%

6wt.%

12wt.%

*K*_c:bending modulus

 γ_{α} =0.025 : 2D membrane

T-dependence of bending modulus

Anomalous swelling above $T_{\mbox{\scriptsize M}}$

NSE results

DMPC+KBr T=50°C

DMPC+KBr T=25°C

 $I(q,t)/I(q,0)=C\exp[-(\Gamma t)^{2/3}]$

Bending modulus

Softening
Thermal fluctuation increases

Repeat distance increases

Our interpretation

irregular stacking of bumpy layers

thickening & hardening

Possible application

Inhibitory Effects of Hybrid Liposomes on the Growth of Tumor Cells

Lipid membrane & water

Lipid membrane & water

QENS with Incoherent Scattering

van Hove function

$$\begin{split} G(r,t) &= \frac{1}{N} \sum_{j} \sum_{j'} \int \left\langle \delta[r - r' + r_j(0)] \right. \\ &\left. \delta[r' - r_{j'}(t)] \right\rangle dr' \quad \text{(mutual correlation)} \end{split}$$

$$\begin{split} G_{s}(r,t) &= \frac{1}{N} \sum_{j} \int \langle \delta[r-r'+r_{j}(0)] \\ &\delta[r'-r_{j'}(t)] \rangle dr' \ \text{(self correlation)} \end{split}$$

Purpose of this study

- Dynamical behavior of water molecules is investigated with QENS
 - Wide energy range / high energy resolution
 - Available to measure from free water to hydrated water
 - Fully deuterated phospholipid
 - QENS signal from hydrophlic part could be neglected and the dynamical behavior of water molecules can be estimated

Sample: d_{67} DMPC + H_2 O

Samples

d₆₇DMPC-37H₂O

	Coherent scatt.	Incoherent scatt.
d ₆₇ DMPC	631.4 barn (8.5%)	631.4 barn (7.3%)
37H ₂ O	286.6 barn (3.9%)	5939.2 barn (80.3%)

DMPC-35D₂O

	Coherent scatt.	Incoherent scatt.
DMPC	374.5 barn (5.5%)	5779.3 barn (84.5%)
35D ₂ O	535.6 barn (7.9%)	143.5 barn (2.1%)

Sample can : 14mm- ϕ / 40mm-h / 0.5mm-t (double cylinder)

Experimental

- Elastic Scan (50 \sim 320 K, 1 Kmin⁻¹)
- Quasi-Elastic Neutron Scattering
 - d_{67} DMPC-37H₂O: 316, 305, 295, 285, 275 K (12h / Temp) -0.5 $\leq \Delta E \leq 0.5$ (meV), $\delta E_{Reso} = 3.6 \,\mu eV$, at 3 chopper settings
 - DMPC-35D₂O: 306 K

 $-0.04 \le \Delta E \le 0.1$ (meV), at 1 chopper settings

Elastic Scan

main-transition(T_{tr})

QENS data of d₆₇DMPC-37H₂O

dynamics of water molecules

Quasi-Elastic Neutron Scattering was observed and its width increased with increasing temperature.

Model Analysis

3 modes are assumed to analyze the observed QENS data

Liquid Crystalline Phase (*T* = 316, 305, 295)

 $S(Q, E) = \{A_{\text{Tight}} L_{\text{Tight}}(\Gamma_{\text{Tight}}, E) + A_{\text{Loose}} L_{\text{Loose}}(\Gamma_{\text{Loosely}}, E) + A_{\text{Free}} L_{\text{Free}}(\Gamma_{\text{Free}}, Q)\} \otimes R(Q, E) + BG$

Ripple Gel Phase & Gel Phase (*T* = 285, 275 K)

Q² dependence of HWHM

Tightly bound water Simple diffusion model (Fick's law) $\Gamma_{\text{Tight}} = DQ^2$

QENS data of DMPC-35D₂O

Dynamics of lipid molecules

A model assuming lateral diffusion of lipid molecules within bilayer and internal mode of a lipid*

* V. Sharma, et. al, J. Chem. Phys. B, 119 (2015), 4460.

Arrhenius plot of diffusion const.

	Activation energy [kJmol ⁻¹]
Free water	10.5 ± 1.2
Bulk water	18.6 ± 0.3

Activation energy of "Free water" is less than that of bulk water

Free water: diffusion constant is the same order as that of bulk water Loosely bound water: 1 order less diffusion constant than that of free water Tightly bound water: the same diffusion constant as that of DMPC

Arrhenius plot of mean res. time

	Activation Energy [kJmol ⁻¹]
Free water	19.0 ± 2.5
Bulk water	28.9 ± 1.0
Loosely bound water	27.5 ± 3.2

Free water: mean residence time is the same as that of bulk water Loosely bound water: 1 order of magnitude more than that of bulk water

Arrhenius plot of jump distance

Jump distance of the loosely bound water is longer than that of bulk water \rightarrow hydrogen bonding distorts from the normal water structure

 $\overline{6\tau_0}$

Coefficients of 3 components

 A_0 's are proportional to the number of atoms.

Number of water molecules

(Incoherent scatt. fraction of DMPC)

Free water: almost constant Loosely bound water: increase with increasing temperature Tightly bound water: decrease with increasing temperature

Summary

free water

24 molecules: no T dependence nearly bulk water, but confinement effect

loosely bound water

8-12 molecules: increase with T slow dynamics: 1/10 of free water

tightly bound water

7-2 molecules: decrease with T move with lipid molecules

Possible application

bio-compatibility and bound water layer

Neutrons in Soft Matter

Edited by TOYOKO IMAE TOSHIJI KANAYA MICHIHIRO FURUSAKA NAOYA TORIKAI

WILEY

Hardcover: \$182.00 E-Book: \$145.99