The 2HDM in light of the recent LHC results

KEK

16 February 2012

Rui Santos

ISEL & CFTC

P.M. Ferreira, M. Sher, J.P. Silva

A. Arhrib, C.-W. Chiang, D.K. Ghosh

The 2HDM potential

$$V(\Phi_{1}, \Phi_{2}) = m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} - (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2}$$

$$+ \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.}]$$

$$\phi_1 \to \phi_1 \quad \phi_2 \to -\phi_2$$

"Normal" vacuum (CP conserving and non charge breaking)

$$<\Phi_1>_N=\left(egin{array}{c}0\\v_1\end{array}
ight) \qquad <\Phi_2>_N=\left(egin{array}{c}0\\v_2\end{array}
ight)$$

8 + 2 parameters - 2 are fixed by the minimum conditions and one by the W mass $v^2 = v_1^2 + v_2^2$. The remaining 7 are

$$m_h, m_H, m_A, m_{H^{\pm}}, \tan \beta, \sin \alpha \quad M^2 = \frac{m_{12}^2}{\sin \beta \cos \beta}$$

The 2HDM Lagrangian

• couplings that involve gauge bosons

$$sin(\beta - \alpha)$$

• couplings that involve fermions

$$\phi_1 \to \phi_1$$

$$\phi_2 \to -\phi_2$$

We extend the \mathbb{Z}_2 symmetry to the fermions - 4 independent Yukawa Lagrangians

$$III = I' = Y = Flipped$$
4 models with no FCNC at tree-level
$$IV = II' = X = Leptonic$$

	I	II	III	IV
leptons (h)	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$
down (h)	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$
up (h)	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
leptons (H)	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$rac{\sin lpha}{\sin eta}$	$\frac{\cos \alpha}{\cos \beta}$
down (H)	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$
up (H)	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$rac{\sin lpha}{\sin eta}$	$\frac{\sin \alpha}{\sin \beta}$

 $\sin \alpha \quad \tan \beta$

The data - Higgs results LHC@7TeV

Higgs results LHC@7TeV

What do we "know"?

$$\frac{\sigma^{2HDM}\left(pp\to h\right)BR^{2HDM}(h\to\gamma\gamma)}{\sigma^{SM}\left(pp\to h\right)BR^{SM}(h\to\gamma\gamma)}\approx1\\ \frac{\sigma^{2HDM}\left(pp\to h\right)BR^{2HDM}(h\to VV)}{\sigma^{SM}\left(pp\to h\right)BR^{SM}(h\to VV)}\approx1 \\ \frac{\sigma^{SM}\left(pp\to h\right)BR^{SM}(h\to VV)}{\sigma^{SM}\left(pp\to h\right)BR^{SM}(h\to VV)}\approx1 \\ \end{array}$$

• What will data on new channels tell us?

$$\frac{\sigma^{2HDM}(pp \to h)BR^{2HDM}(h \to \bar{b}b)}{\sigma^{SM}(pp \to h)BR^{SM}(h \to \bar{b}b)}$$

$$\frac{\sigma^{2HDM}\left(pp\to h\right)BR^{2HDM}(h\to\tau^+\tau^-)}{\sigma^{SM}\left(pp\to h\right)BR^{SM}(h\to\tau^+\tau^-)}$$

how important are future searches for 2HDM?

The Constraints

Experimental

• INDIRECT BOUNDS

All models

$$|\delta \rho| \lesssim 10^{-3}$$

Compact spectrum

Experimental

•INDIRECT BOUNDS B factories

Models II and Y

$$m_{H^{\pm}} \gtrsim 300 \; GeV$$

Best available bound on the charged Higgs mass

Models I and X

 $tan\beta > 1$

 $m_{H^{\pm}} = 100 \, GeV$

h or H?

- All results will be presented in the $(\tan \beta; \sin \alpha)$ plane.
 - We started with 7 parameters.
- One of the CP-even Higgs mass is "known" (125 GeV).
- The other CP-even Higgs mass is either irrelevant or benchmarks will be discussed.
 - $m_{H\pm}$ = m_A = 600 GeV (relevant only h to $\gamma\gamma$ due to charged Higgs loop).
 - $M = m_{H+} = m_A \text{ or } M = 0.$

$$\frac{\sigma^{2HDM} (pp \to h) BR^{2HDM} (h \to \gamma \gamma)}{\sigma^{SM} (pp \to h) BR^{SM} (h \to \gamma \gamma)}$$

In the <u>quark sector</u> sector $\underline{I} = \underline{LS}$ and the cross section <u>ratio</u> is <u>just</u> $\underline{\cos^2 \alpha / \sin^2 \beta}.$

In Model I the ratio never reaches 2*5M.

When $\sin \alpha \approx \pm 1$ the Higgs becomes fermiophobic and therefore it is not produced in gluon fusion.

In LS as the total width grows with tanß (due to h to TT)
the allowed region to fit
the Higgs shrinks. Again no 2*5M.

SM

0.5

SM/2

1.0

2 SM

-0.5

0.0

 $\sin \alpha$

5

-1.0

Again, in the quark sector sector II = F But now the ratio is not just a factor.

The contributions of the b-quark become important and even dominant for large tanß for both production and decay. This completely changes the picture: we can be above but also below the SM prediction.

For these models, the region of parameter space where we get a number of events close to SM, is more likely to be in the region of small $\sin \alpha$ especially for large $\tan \beta$.

A few events have also been detected in h > WW + ZZ.

Does this information help improving the constraint in the $(tan\beta; sin\alpha)$ plane?

Model I and LS - the ratio is never much bigger than 1. Information about this decay is unlikely to prove useful in further constraining the parameter space; but a substantial enhancement would imply physics beyond the 2HDM.

Model II and F - irrelevant unless huge enhancement happens...

We have also analysed the decay $h \rightarrow bb$.

For the type I model one sees relatively <u>little variation over much of parameter space</u>. For the type II model, there is a much larger variation. However, <u>if one restricts the parameter space to that allowed by the</u>

signal, then the variation is fairly small. The same happens in the LS and F models.

For the LS model the TT channel gives dramatically different constraints in the $(tan\beta; sin\alpha)$ plane. If one can limit the

rate for h to TT down to less than twice the SM rate, then the parameter space will be much more severely restricted than implied by other processes.

- Data is consistent with the Higgs detected being the lightest CPeven scalar of a 2HDM in all four models.
- With the data to be collected this year and even combining all searches (channels) we will not be able to identify or exclude models unless:
 - a) Number of gamma events is much above/below SM
 - b) Number of WW/ZZ events is much above/below SM.
 - c) Indication of the LS model would be an enhancement in h to TT

- Hints for a 125 GeV state decaying into two photons. In the context of 2HDMs: h, H or A?
- We now focus on the heavier CP-even scalar, H.
- The lightest scalar h should have, thus far, evaded detection.
- The combined requirements on H and h place stringent limits on the parameter space. We will consider two qualitatively distinct cases.
- Case 1: m_h = 105 GeV and m_H = 125 GeV, thus precluding the decay H to hh.
- Case 2: m_h = 50 GeV and m_H = 125 GeV, implying that H to hh is kinematically allowed.

- LEP experiments searched for associated production of a light Higgs up to masses around 115 GeV.
- In 2HDMs, rates with hVV couplings (V = Z;W) are suppressed by $\sin^2(\beta-\alpha)$, which the LEP data constrains to lie below 0.2 for m_h = 105 GeV.
- This implies a very stringent constraint on the $(\sin\alpha; \tan\beta)$ plane, shown for m_h = 105 GeV (light yellow shaded areas).
- For $m_h = 50$ GeV, $\sin^2(\beta \alpha) < 0.04$ leads to even smaller allowed regions, shown in as dark red areas.

The LEP constraints forces $sin\alpha$ to be close to ± 1 , with a severe impact on the observability of the lightest Higgs.

- <u>Case 1</u>: $m_h = 105 \text{ GeV}$, $m_H = 125 \text{ GeV}$.
- The decay of the heavy Higgs has to lie very close to its SM value. SM/2 is excluded. This is consistent with its detectability in this channel at the LHC.

• For the light Higgs all values above SM/2 are excluded and therefore for this scenario the <u>lightest Higgs decay</u> into two photons will not be seen at <u>LHC</u> in the near future.

- An interesting situation for type I
 2HDM arises in the decays into bb.
- We find that H can decay into bb, with SM or with SM/2 ratios, in a small region close to $(\sin \alpha; \tan \beta) = (0.7; 2)$.
- This is the same region in which h to bb could have a rate close to the SM one. The same conclusions hold for H to TT and h to TT.
- This raises the interesting possibility that the decays into bb and $\tau\tau$ could be sensitive to both the heavy and the light Higgs scalars, while only H can be seen in the $\gamma\gamma$ and VV channel at the LHC.

- In model type II and Flipped both the decays to two photons and to VV are similar to type I the only difference is that values of 2*SM or larger, can be reached. Again h is undetectable in the decays to gauge bosons.
- But the situation may improve with respect to the type I model, concerning bb. We see that both H to bb and h to bb could occur at rates twice the SM rate, for $\sin\alpha$ > 0.8 and $\tan\beta$ > 13.
- Similar behavior is seen in TT.

- Next we consider the LS model. As in the type I model, h to two photons is unobservably small, while H may be detected.
- Unlike model I, we see that the decays of both h and H into $\tau\tau$ could be substantially larger than in the SM. Also, they prefer to be close to $\sin\alpha = \pm 1$.
- The decays into bb have features similar to those for model I. In particular, detection of H to bb at SM rates is possible for large sin α and any value for tan β , but simultaneous detection of h to bb around SM rates is only possible for low values of tan β .

- Case 2: m_h = 50 GeV and m_H = 125 GeV, implying that H to hh is kinematically allowed.
- When H to hh is opened, all other branching ratios are much suppressed and, in particular, H could not even be seen in the $\gamma\gamma$ channel. This violates our working hypothesis that current LHC hints correspond indeed to H to $\gamma\gamma$. As a result, we are interested in regions where $\lambda_{\underline{Hhh}}$ is close to zero.

$$\lambda_{Hhh} \propto \frac{\cos(\beta - \alpha)}{\sin(2\beta)} (m_H^2 + 2m_h^2) \sin(2\alpha) \left[1 - x \left(\frac{3}{\sin(2\beta)} - \frac{1}{\sin(2\alpha)} \right) \right]$$

- a) Exact Z2: $m_{12} = 0$.
- b) Softly broken Z2: $m_{12} \neq 0$.

$$x = \frac{2m_{12}^2}{m_H^2 + 2m_h^2}$$

- If m_{12} = 0 λ_{Hhh} is close to zero when $\sin\alpha$ = ±1 or 0 but only $\sin\alpha$ = ±1 are consistent with the LEP bounds (shown in yellow).
- Only close to $\sin \alpha = \pm 1$ H may be visible in H to YY or in any other channel other than H to hh. This a necessary but not a sufficient condition.
- Similar conclusions for the remaining models.
- The results are approximately the same for H to VV .
- Regarding bb and TT: H might be seen in both decays for type I; it might be seen in bb but not in TT for LS; it might be seen in TT but not in bb for the Flipped; and it will not be seen in either for the type II model.

- If $m_{12} = 0$, the $\sin \alpha = \pm 1$ constraint also has a <u>very strong impact on</u> the detectability of the light scalar h.
- To avoid the LEP bound, h is close to gaugephobic. Thus, it cannot be seen in VV, regardless of the specific 2HDM considered.
- We have checked that h to $\gamma\gamma$ and h to bb is undetectable, while h to $\tau\tau$ is only detectable in the LS model.
- Notice that, in the scenario m_H = 125 GeV, m_h = 50 GeV, and m_{12} = 0, the LS model has a very interesting prediction: H may be seen in $\gamma\gamma$, VV, and bb at rates around the SM value, but it will not show up in $\tau\tau$, while h exhibits exactly the opposite features.

$$\frac{2m_{12}^{2}}{m_{H}^{2} + 2m_{h}^{2}} = \frac{\sin(2\alpha)\sin(2\beta)}{3\sin(2\alpha) - \sin(2\beta)}$$

- Lines in the (sin α ; tan β) plane where λ_{Hhh} vanishes. A judicious choice of m_{12} guarantees that H to $\gamma\gamma$ is not swamped by H to hh.
- If $m_{12} \neq 0$ we might have H to $\gamma\gamma$ at levels consistent with LHC hints in regions away from $\sin\alpha = \pm 1$.
- This is shown as a scatter plot drawn for the type II model (similar for all other models) and for random choices of m_{12} . One can now cover almost the entire LEP allowed region.
- In this case, the phenomenology is very similar to the m_h = 105 GeV case.

• <u>Case 1</u>: $m_h = 105 \ GeV$, $m_H = 125 \ GeV$.

Model /Process	$H \to \gamma \gamma$	H o VV	$H ightarrow ar{b} b$	$H \to \tau^+ \tau^-$
Type I	SM	$_{ m SM}$	SM (all $\tan \beta$)	SM (all $\tan \beta$)
Type II	> SM	> SM	$> SM (high \tan \beta)$	$> SM (high tan \beta)$
Flipped	> SM	> SM	$> SM (high tan \beta)$	SM (all $\tan \beta$)
LS	SM	SM	SM (all $\tan \beta$)	$> SM (all tan \beta)$

Model /Process	$h o \gamma \gamma$	h o VV	h o ar b b	$h o au^+ au^-$
Type I	No	No	SM (low $\tan \beta$)	SM (low $\tan \beta$)
Type II	No	No	$> SM (high tan \beta)$	$> SM (high tan \beta)$
Flipped	No	No	$> SM (high tan \beta)$	SM (low $\tan \beta$)
LS	No	No	SM (low $\tan \beta$)	$> SM (all tan \beta)$

• Case 2 a) $m_h = 50$ GeV and $m_H = 125$ GeV, $m_{12} = 0$.

Model /Process	$H o \gamma \gamma$	H o VV	$H ightarrow ar{b}b$	$H \to \tau^+ \tau^-$
Type I	SM	$_{ m SM}$	Yes	Yes
Type II	> SM	> SM	No	No
Flipped	> SM	> SM	No	Yes
LS	SM	SM	Yes	No

Model /Process	$h o \gamma \gamma$	$h \to VV$	h o ar b b	$h \to \tau^+ \tau^-$
Type I	No	No	No	No
Type II	No	No	No	No
Flipped	No	No	No	No
LS	No	No	No	Yes

Bounds from TT

- The experimental searches on h to TT already allow us to set bounds on the 2HDM parameter space
- Type II and LS are the most constrained models due to the large cross section and branching ratio into $\tau\tau$. Note that in LS, the allowed regions close to $\sin\alpha = \pm 1$ are not compatible with h being detected in $\gamma\gamma$ at rates close to the SM rates.
- No bounds on models I and Flipped because either cross section or branching ratio into TT is too small.

Conclusions

- In a CP-conserving 2HDM with a softly broken Z2 symmetry, both h and H scalars are consistent with the LHC results presented so far.
- More luminosity will probably tell us if the number of $\gamma\gamma$ and VV events is consistent with the SM predictions. A large difference in either $\gamma\gamma$ or VV may be explained by a 2HDM.
- Bounds derived from experimental searches on h to $\tau\tau$ and h to bb may help clarify which types of 2HDM's are allowed (or at least constrain the parameter space).

Workshop on Multi-Higgs Models

28-31 August 2012

Lisbon - Portugal

This Workshop brings together those interested in the theory and phenomenology of Multi-Higgs models. The program is designed to include talks given by some of the leading experts in the field, and also ample time for discussions and collaboration between researchers. A particular emphasis will be placed on identifying those features of the models which are testable at the LHC.

For registration and/or to propose a talk, send an email to:

ferreira@cii.fc.ul.pt

Web Page: http://www.ciul.ul.pt/~2hdmwork/

Theoretical

Remaining parameters are fixed by the theoretical constraints - tree-level vacuum stability (potential is bounded from below at tree-level) and perturbative unitarity.

- In all four models, decays h to $\gamma\gamma$, WW and ZZ will be unobservable.
- H to hh is kinematically inaccessible. Type I: decays of h and H into bb and $\tau\tau$ can both be observed at a rate similar to SM. Type II and Flipped: decays can both occur at rates twice that of the SM. In LS one can have a huge enhancement in the H to $\tau\tau$ and h to $\tau\tau$ rates.
- H to hh is kinematically allowed, and will generally be large.

If $m_{12} = 0$, $\sin \alpha = \pm 1$ - h to $\gamma \gamma$, VV and bb is undetectable, while h to $\tau \tau$ is only detectable in the LS model.

If $m_{12} \neq 0$, the region of parameter-space in which the λ_{Hhh} coupling is suppressed is substantially expanded, and can cover most of the LEP-allowed region (similar results as for case I).