The 2HDM in light of the recent LHC results

KEK

16 February 2012

Rui Santos
ISEL & CFTC

P.M. Ferreira, M. Sher, J.P. Silva

A. Arhrib, C.-W. Chiang, D.K. Ghosh
The 2HDM potential

\[
V(\Phi_1, \Phi_2) = m_1^2 \Phi_1^\dagger \Phi_1 + m_2^2 \Phi_2^\dagger \Phi_2 - (m_{12}^2 \Phi_1^\dagger \Phi_2 + \text{h.c.}) + \frac{1}{2} \lambda_1 (\Phi_1^\dagger \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^\dagger \Phi_2)^2 + \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2) + \lambda_4 (\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^\dagger \Phi_2)^2 + \text{h.c.}]
\]

\[\phi_1 \rightarrow \phi_1 \quad \phi_2 \rightarrow -\phi_2\]

“Normal” vacuum (CP conserving and non charge breaking)

\[
\begin{pmatrix} <\Phi_1>_N \\ <\Phi_2>_N \end{pmatrix} = \begin{pmatrix} 0 \\ v_1 \end{pmatrix} \quad \begin{pmatrix} 0 \\ v_2 \end{pmatrix}
\]

8 + 2 parameters - 2 are fixed by the minimum conditions and one by the W mass \(v^2 = v_1^2 + v_2^2\). The remaining 7 are

\[
m_h, m_H, m_A, m_{H\pm}, \tan\beta, \sin\alpha \quad M^2 = \frac{m_{12}^2}{\sin\beta \cos\beta}
\]
The 2HDM Lagrangian

- Couplings that involve gauge bosons
 \[\sin(\beta - \alpha) \]

- Couplings that involve fermions

We extend the Z\(_2\) symmetry to the fermions -
4 independent Yukawa Lagrangians

4 models with no FCNC at tree-level

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>leptons (h)</td>
<td>(\cos \alpha)</td>
<td>(-\sin \alpha)</td>
<td>(\cos \alpha)</td>
<td>(-\sin \alpha)</td>
</tr>
<tr>
<td>down (h)</td>
<td>(\cos \alpha)</td>
<td>(-\sin \alpha)</td>
<td>(-\sin \alpha)</td>
<td>(\cos \alpha)</td>
</tr>
<tr>
<td>up (h)</td>
<td>(\cos \alpha)</td>
<td>(\sin \beta)</td>
<td>(\cos \beta)</td>
<td>(\sin \beta)</td>
</tr>
<tr>
<td>leptons (H)</td>
<td>(\sin \alpha)</td>
<td>(\cos \alpha)</td>
<td>(\sin \alpha)</td>
<td>(\cos \alpha)</td>
</tr>
<tr>
<td>down (H)</td>
<td>(\sin \alpha)</td>
<td>(\cos \alpha)</td>
<td>(\cos \alpha)</td>
<td>(\sin \alpha)</td>
</tr>
<tr>
<td>up (H)</td>
<td>(\sin \alpha)</td>
<td>(\sin \alpha)</td>
<td>(\sin \alpha)</td>
<td>(\sin \alpha)</td>
</tr>
</tbody>
</table>

\(\text{III} = \text{I}' = \text{Y} = \text{Flipped}\)
\(\text{IV} = \text{II}' = \text{X} = \text{Leptonic}\)

\[\sin \alpha, \tan \beta \]
The data - Higgs results LHC@7TeV

- 2.8 standard deviations (126.5 GeV)
- LEE significance is 1.5 standard deviations

- 3.1 standard deviations (124 GeV)
- LEE significance is 1.9 standard deviations
Higgs results LHC@7TeV

• What do we “know”?

\[
\frac{\sigma^{2HDM}(pp \rightarrow h) \cdot BR^{2HDM}(h \rightarrow \gamma\gamma)}{\sigma^{SM}(pp \rightarrow h) \cdot BR^{SM}(h \rightarrow \gamma\gamma)} \approx 1
\]

regarding production and decay to $\gamma\gamma$ (VV)

2HDM is similar to the SM

\[
\frac{\sigma^{2HDM}(pp \rightarrow h) \cdot BR^{2HDM}(h \rightarrow VV)}{\sigma^{SM}(pp \rightarrow h) \cdot BR^{SM}(h \rightarrow VV)} \approx 1
\]

• What will data on new channels tell us?

\[
\frac{\sigma^{2HDM}(pp \rightarrow h) \cdot BR^{2HDM}(h \rightarrow \bar{b}b)}{\sigma^{SM}(pp \rightarrow h) \cdot BR^{SM}(h \rightarrow \bar{b}b)}
\]

how important are future searches for 2HDM?

\[
\frac{\sigma^{2HDM}(pp \rightarrow h) \cdot BR^{2HDM}(h \rightarrow \tau^+\tau^-)}{\sigma^{SM}(pp \rightarrow h) \cdot BR^{SM}(h \rightarrow \tau^+\tau^-)}
\]
The Constraints
INDIRECT BOUNDS

All models

\[Z \to b\bar{b} \quad B_q\bar{B}_q \quad \tan\beta > 1 \]

\[\rho = \frac{M_W^2}{M_Z^2 c_W^2} = 1 \]

- \(m_A = m_{H^0} \)
- \(\sin(\beta - \alpha) = 1 \Rightarrow m_{H^0} = m_H \)
- \(\sin(\beta - \alpha) = 0 \Rightarrow m_{H^0} = m_h \)

\[|\delta\rho| \lesssim 10^{-3} \]

Compact spectrum

Used in all calculations presented.
INDIRECT BOUNDS B factories

\[B \rightarrow X_s \gamma \]

Models II and Y
\[X_iY_i = 1 \]

Models I and X
\[X_iY_i = 1/\tan^2 \beta \]

\[\mathcal{L}_Y^\pm = (2\sqrt{2}G_F)^{1/2} \sum_{i=2}^{\text{\text{n}}} (X_iU_{LV}M_D D_R + Y_i \overline{U}_{RM} U V D_L + Z_i \overline{N}_{LM} E E_R) H_i^+ + \text{h.c.} \]

\[\text{BR}(b \rightarrow s\gamma) = C|\eta_2 + G_W(x_t) + (|Y|^2/3)G_W(y_t) + (XY^*)G_H(y_t)|^2, \]

Models II and Y
\[m_{H^\pm} \gtrsim 300 \text{ GeV} \]

Models I and X
\[\tan \beta > 1 \]

Best available bound on the charged Higgs mass

\[m_{H^\pm} = 100 \text{ GeV} \]
h or H?

• All results will be presented in the \((\tan\beta; \sin\alpha)\) plane.

 • We started with 7 parameters.

• One of the CP-even Higgs mass is “known” (125 GeV).

• The other CP-even Higgs mass is either irrelevant or benchmarks will be discussed.

• \(m_{H^\pm} = m_A = 600\ \text{GeV}\) (relevant only \(h\) to \(\gamma\gamma\) due to charged Higgs loop).

 • \(M = m_{H^\pm} = m_A\) or \(M = 0\).
Is it the light CP-even (h)?

\begin{align*}
\frac{\sigma^{2HDM}(pp \rightarrow h) \, BR^{2HDM}(h \rightarrow \gamma\gamma)}{\sigma^{SM}(pp \rightarrow h) \, BR^{SM}(h \rightarrow \gamma\gamma)}
\end{align*}

In the quark sector sector I = LS and the cross section ratio is just \(\frac{\cos^2 \alpha}{\sin^2 \beta} \).

In Model I the ratio never reaches \(2^{\ast} \text{SM} \).

When \(\sin \alpha \approx \pm 1 \) the Higgs becomes fermiophobic and therefore it is not produced in gluon fusion.

In LS as the total width grows with \(\tan \beta \) (due to \(h \rightarrow \tau \tau \)) the allowed region to fit the Higgs shrinks. Again no \(2^{\ast} \text{SM} \).
Is it the light CP-even?

Again, in the quark sector sector II = F
But now the ratio is not just a factor.

The contributions of the b-quark become important and even dominant for large tanβ for both production and decay. This completely changes the picture: we can be above but also below the SM prediction.

For these models, the region of parameter space where we get a number of events close to SM, is more likely to be in the region of small sinα especially for large tanβ.
Is it the light CP-even?

A few events have also been detected in $h \rightarrow WW + ZZ$.

Does this information help improving the constraint in the $(\tan \beta; \sin \alpha)$ plane?

Model I and LS - the ratio is never much bigger than 1. Information about this decay is unlikely to prove useful in further constraining the parameter space; but a substantial enhancement would imply physics beyond the 2HDM.

Model II and F - irrelevant unless huge enhancement happens...
Is it the light CP-even?

We have also analysed the decay $h \rightarrow bb$. For the type I model one sees relatively little variation over much of parameter space. For the type II model, there is a much larger variation. However, if one restricts the parameter space to that allowed by the signal, then the variation is fairly small. The same happens in the LS and F models.
Is it the light CP-even?

For the LS model the $\tau\tau$ channel gives dramatically different constraints in the ($\tan\beta$; $\sin\alpha$) plane. If one can limit the rate for h to $\tau\tau$ down to less than twice the SM rate, then the parameter space will be much more severely restricted than implied by other processes.
Is it the light CP-even?

- Data is consistent with the Higgs detected being the lightest CP-even scalar of a 2HDM in all four models.

- With the data to be collected this year and even combining all searches (channels) we will not be able to identify or exclude models unless:

 a) Number of gamma events is much above/below SM

 b) Number of WW/ZZ events is much above/below SM.

 c) Indication of the LS model would be an enhancement in h to $\tau\tau$
Is it the heavy CP-even?

• Hints for a 125 GeV state decaying into two photons. In the context of 2HDMs: h, H or A?

• We now focus on the heavier CP-even scalar, H.

• The lightest scalar h should have, thus far, evaded detection.

• The combined requirements on H and h place stringent limits on the parameter space. We will consider two qualitatively distinct cases.

• Case 1: $m_h = 105$ GeV and $m_H = 125$ GeV, thus precluding the decay H to hh.

• Case 2: $m_h = 50$ GeV and $m_H = 125$ GeV, implying that H to hh is kinematically allowed.
Is it the heavy CP-even?

- LEP experiments searched for associated production of a light Higgs up to masses around 115 GeV.

- In 2HDMs, rates with hVV couplings ($V = Z; W$) are suppressed by $\sin^2(\beta - \alpha)$, which the LEP data constrains to lie below 0.2 for $m_h = 105 \text{ GeV}$.

- This implies a very stringent constraint on the $(\sin \alpha; \tan \beta)$ plane, shown for $m_h = 105 \text{ GeV}$ (light yellow shaded areas).

- For $m_h = 50 \text{ GeV}$, $\sin^2(\beta - \alpha) < 0.04$ leads to even smaller allowed regions, shown in as dark red areas.

The LEP constraints forces $\sin \alpha$ to be close to ±1, with a severe impact on the observability of the lightest Higgs.
Is it the heavy CP-even?

- **Case 1:** $m_h = 105$ GeV, $m_H = 125$ GeV.

- The decay of the heavy Higgs has to lie very close to its SM value. SM/2 is excluded. This is consistent with its detectability in this channel at the LHC.

- For the light Higgs all values above SM/2 are excluded and therefore for this scenario the lightest Higgs decay into two photons will not be seen at LHC in the near future.
Is it the heavy CP-even?

- An interesting situation for type I 2HDM arises in the decays into bb.
- We find that H can decay into bb, with SM or with SM/2 ratios, in a small region close to $(\sin\alpha; \tan\beta) = (0.7; 2)$.
- This is the same region in which h to bb could have a rate close to the SM one. The same conclusions hold for H to $\tau\tau$ and h to $\tau\tau$.
- This raises the interesting possibility that the decays into bb and $\tau\tau$ could be sensitive to both the heavy and the light Higgs scalars, while only H can be seen in the $\gamma\gamma$ and VV channel at the LHC.
Is it the heavy CP-even?

- In model type II and Flipped both the decays to two photons and to VV are similar to type I – the only difference is that values of $2\times\text{SM}$ or larger, can be reached. Again h is undetectable in the decays to gauge bosons.

- But the situation may improve with respect to the type I model, concerning bb. We see that both H to bb and h to bb could occur at rates twice the SM rate, for $\sin\alpha > 0.8$ and $\tan\beta > 13$.

- Similar behavior is seen in $\tau\tau$.

Is it the heavy CP-even?

- Next we consider the LS model. As in the type I model, h to two photons is unobservably small, while H may be detected.

- Unlike model I, we see that the decays of both h and H into $\tau^+\tau^-$ could be substantially larger than in the SM. Also, they prefer to be close to $\sin\alpha = \pm 1$.

- The decays into $b\bar{b}$ have features similar to those for model I. In particular, detection of H to $b\bar{b}$ at SM rates is possible for large $\sin\alpha$ and any value for $\tan\beta$, but simultaneous detection of h to $b\bar{b}$ around SM rates is only possible for low values of $\tan\beta$.
Is it the heavy CP-even?

- Case 2: $m_h = 50$ GeV and $m_H = 125$ GeV, implying that H to hh is kinematically allowed.

- When H to hh is opened, all other branching ratios are much suppressed and, in particular, H could not even be seen in the $\gamma\gamma$ channel. This violates our working hypothesis that current LHC hints correspond indeed to H to $\gamma\gamma$. As a result, we are interested in regions where λ_{Hhh} is close to zero.

\[
\lambda_{Hhh} \propto \frac{\cos (\beta - \alpha)}{\sin (2\beta)} \left(m_H^2 + 2m_h^2 \right) \sin (2\alpha) \left[1 - x \left(\frac{3}{\sin (2\beta)} - \frac{1}{\sin (2\alpha)} \right) \right]
\]

- a) Exact Z2: $m_{12} = 0$.
- b) Softly broken Z2: $m_{12} \neq 0$.

\[
x = \frac{2m_{12}^2}{m_H^2 + 2m_h^2}
\]
Is it the heavy CP-even?

- If $m_{12} = 0 \lambda_{Hhh}$ is close to zero when $\sin \alpha = \pm 1$ or 0 but only $\sin \alpha = \pm 1$ are consistent with the LEP bounds (shown in yellow).

- Only close to $\sin \alpha = \pm 1$ H may be visible in H to $\gamma \gamma$ or in any other channel other than H to hh. This a necessary but not a sufficient condition.

- Similar conclusions for the remaining models.

- The results are approximately the same for H to VV.

- Regarding bb and $\tau \tau$: H might be seen in both decays for type I; it might be seen in bb but not in $\tau \tau$ for LS; it might be seen in $\tau \tau$ but not in bb for the Flipped; and it will not be seen in either for the type II model.
Is it the heavy CP-even?

• If $m_{12} = 0$, the $\sin \alpha = \pm 1$ constraint also has a very strong impact on the detectability of the light scalar h.

• To avoid the LEP bound, h is close to gaugephobic. Thus, it cannot be seen in VV, regardless of the specific 2HDM considered.

• We have checked that h to $\gamma \gamma$ and h to bb is undetectable, while h to $\tau \tau$ is only detectable in the LS model.

• Notice that, in the scenario $m_H = 125$ GeV, $m_h = 50$ GeV, and $m_{12} = 0$, the LS model has a very interesting prediction: H may be seen in $\gamma \gamma$, VV, and bb at rates around the SM value, but it will not show up in $\tau \tau$, while h exhibits exactly the opposite features.
Is it the heavy CP-even?

\[
\frac{2m_{12}^2}{m_H^2 + 2m_h^2} = \frac{\sin(2\alpha) \sin(2\beta)}{3\sin(2\alpha) - \sin(2\beta)}
\]

- Lines in the (\(\sin\alpha; \tan\beta\)) plane where \(\lambda_{Hhh}\) vanishes. A judicious choice of \(m_{12}\) guarantees that \(H\) to \(\gamma\gamma\) is not swamped by \(H\) to \(hh\).

- If \(m_{12} \neq 0\) we might have \(H\) to \(\gamma\gamma\) at levels consistent with LHC hints in regions away from \(\sin\alpha = \pm 1\).

- This is shown as a scatter plot drawn for the type II model (similar for all other models) and for random choices of \(m_{12}\). One can now cover almost the entire LEP allowed region.

- In this case, the phenomenology is very similar to the \(m_h = 105 \text{ GeV}\) case.
Is it the heavy CP-even?

- **Case 1:** $m_h = 105$ GeV, $m_H = 125$ GeV.

<table>
<thead>
<tr>
<th>Model /Process</th>
<th>$H \rightarrow \gamma\gamma$</th>
<th>$H \rightarrow VV$</th>
<th>$H \rightarrow \bar{b}b$</th>
<th>$H \rightarrow \tau^+\tau^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>SM</td>
<td>SM</td>
<td>SM (all tan β)</td>
<td>SM (all tan β)</td>
</tr>
<tr>
<td>Type II</td>
<td>> SM</td>
<td>> SM</td>
<td>> SM (high tan β)</td>
<td>> SM (high tan β)</td>
</tr>
<tr>
<td>Flipped</td>
<td>> SM</td>
<td>> SM</td>
<td>> SM (high tan β)</td>
<td>SM (all tan β)</td>
</tr>
<tr>
<td>LS</td>
<td>SM</td>
<td>SM</td>
<td>SM (all tan β)</td>
<td>> SM (all tan β)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model /Process</th>
<th>$h \rightarrow \gamma\gamma$</th>
<th>$h \rightarrow VV$</th>
<th>$h \rightarrow \bar{b}b$</th>
<th>$h \rightarrow \tau^+\tau^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>No</td>
<td>No</td>
<td>SM (low tan β)</td>
<td>SM (low tan β)</td>
</tr>
<tr>
<td>Type II</td>
<td>No</td>
<td>No</td>
<td>> SM (high tan β)</td>
<td>> SM (high tan β)</td>
</tr>
<tr>
<td>Flipped</td>
<td>No</td>
<td>No</td>
<td>> SM (high tan β)</td>
<td>SM (low tan β)</td>
</tr>
<tr>
<td>LS</td>
<td>No</td>
<td>No</td>
<td>SM (low tan β)</td>
<td>> SM (all tan β)</td>
</tr>
</tbody>
</table>
Is it the heavy CP-even?

- Case 2 a) $m_h = 50$ GeV and $m_H = 125$ GeV, $m_{12} = 0$.

<table>
<thead>
<tr>
<th>Model /Process</th>
<th>$H \rightarrow \gamma\gamma$</th>
<th>$H \rightarrow VV$</th>
<th>$H \rightarrow \bar{b}b$</th>
<th>$H \rightarrow \tau^+\tau^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>SM</td>
<td>SM</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Type II</td>
<td>$>$ SM</td>
<td>$>$ SM</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Flipped</td>
<td>$>$ SM</td>
<td>$>$ SM</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>LS</td>
<td>SM</td>
<td>SM</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model /Process</th>
<th>$h \rightarrow \gamma\gamma$</th>
<th>$h \rightarrow VV$</th>
<th>$h \rightarrow \bar{b}b$</th>
<th>$h \rightarrow \tau^+\tau^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Type II</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Flipped</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>LS</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The experimental searches on h to $\tau\tau$ already allow us to set bounds on the 2HDM parameter space.

Type II and LS are the most constrained models due to the large cross section and branching ratio into $\tau\tau$. Note that in LS, the allowed regions close to $\sin\alpha = \pm1$ are not compatible with h being detected in $\gamma\gamma$ at rates close to the SM rates.

No bounds on models I and Flipped because either cross section or branching ratio into $\tau\tau$ is too small.
Conclusions

• In a CP-conserving 2HDM with a softly broken Z2 symmetry, both h and H scalars are consistent with the LHC results presented so far.

• More luminosity will probably tell us if the number of $\gamma \gamma$ and VV events is consistent with the SM predictions. A large difference in either $\gamma \gamma$ or VV may be explained by a 2HDM.

• Bounds derived from experimental searches on h to $\tau \tau$ and h to $b\bar{b}$ may help clarify which types of 2HDM’s are allowed (or at least constrain the parameter space).
Workshop on Multi-Higgs Models
28-31 August 2012
Lisbon - Portugal

This Workshop brings together those interested in the theory and phenomenology of Multi-Higgs models. The program is designed to include talks given by some of the leading experts in the field, and also ample time for discussions and collaboration between researchers. A particular emphasis will be placed on identifying those features of the models which are testable at the LHC.

For registration and/or to propose a talk, send an email to:
ferreira@cii.fc.ul.pt

Web Page: http://www.ciul.ul.pt/~2hdmwork/

Organizing Committee:
Augusto Barroso, CFTC
Pedro Ferreira, ISEL and CFTC
Rui Santos, ISEL and CFTC
João P. Silva, ISEL and CFTP
Luís Lavoura, CFTP

International Advisory Committee:
F.J. Botella
G.C. Branco
H. Haber
M. Krawczyk
P. Osland
Theoretical

Remaining parameters are fixed by the theoretical constraints - tree-level vacuum stability (potential is bounded from below at tree-level) and perturbative unitarity.
Is it the heavy \textit{CP}-even?

- In all four models, decays \(h \) to \(\gamma\gamma \), \(WW \) and \(ZZ \) will be unobservable.

- \(H \) to \(hh \) is kinematically inaccessible. Type I: decays of \(h \) and \(H \) into \(bb \) and \(\tau\tau \) can both be observed at a rate similar to SM. Type II and Flipped: decays can both occur at rates twice that of the SM. In LS one can have a huge enhancement in the \(H \) to \(\tau\tau \) and \(h \) to \(\tau\tau \) rates.

- \(H \) to \(hh \) is kinematically allowed, and will generally be large.

 If \(m_{12} = 0 \), \(\sin\alpha = \pm 1 \) - \(h \) to \(\gamma\gamma \), \(VV \) and \(bb \) is undetectable, while \(h \) to \(\tau\tau \) is only detectable in the LS model.

 If \(m_{12} \neq 0 \), the region of parameter-space in which the \(\lambda_{Hhh} \) coupling is suppressed is substantially expanded, and can cover most of the LEP-allowed region (similar results as for case I).