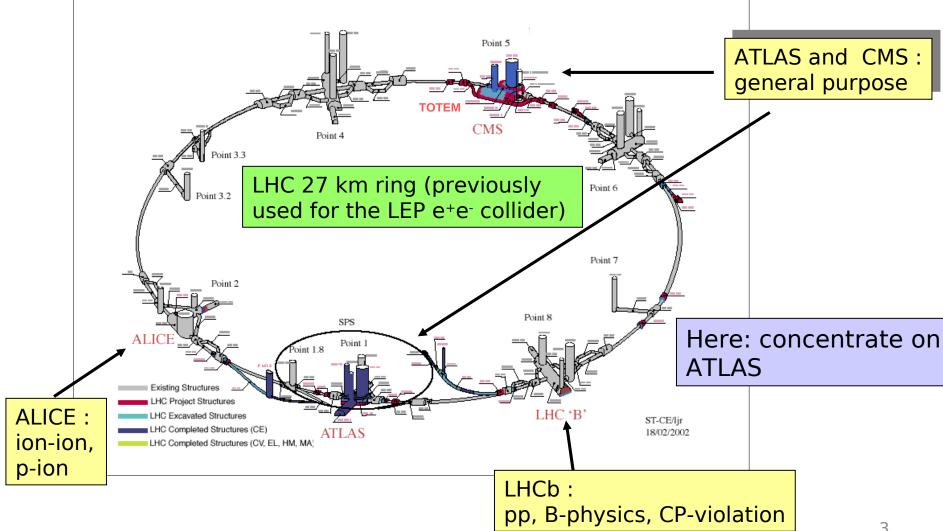
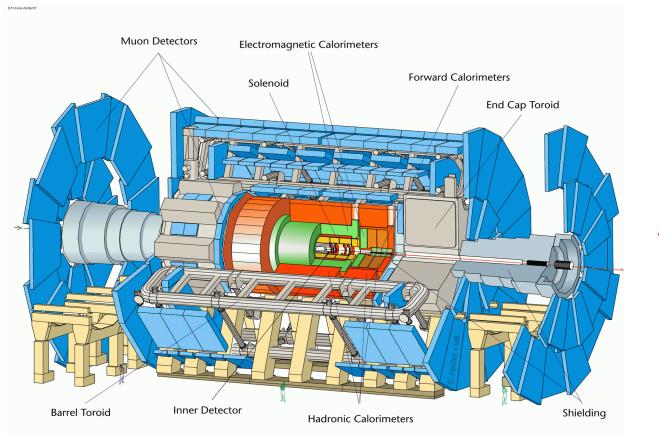
# Status of SUSY searches at the LHC

Giacomo Polesello INFN Sezione di Pavia

#### Introduction and outline

- The data taken in 2010 and 2011 at the LHC have been used for searching for SUSY signal
- No signal seen. Questions to address:
  - Review critically the prejudices which went into the first round of analyses
  - Assess the actual parameter space now excluded
  - Make proposals on how to proceed for the next round of searches:
- SUSY is a template for models with duplicate spectrum and stable lightest particle most of the material discussed can be applied to alternate models with the same phenomenology





 $L_{design} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$  (after 2012)  $\sqrt{s} = 14 \text{ TeV}$ pp

 $L_{initial}$  < few x 10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup> (before 2012)  $\sqrt{s} = 7 \text{ TeV}$ 

Note:  $\sqrt{s}$  is x7 Tevatron,  $L_{design}$  is x30 Tevatron

Heavy ions

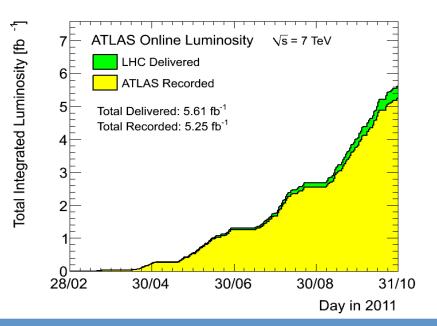


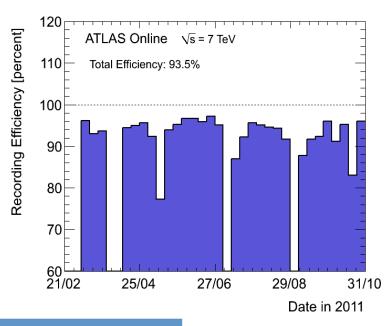




Length:  $\sim 46 \text{ m}$ Radius:  $\sim 12 \text{ m}$ 

Weight: ~ 7000 tons


~108 electronic channels


~ 3000 km of cables

- Inner Detector ( $|\eta|$ <2.5, B=2T) :
  - -- Si pixels and strips
  - -- Transition Radiation Detector (e/ $\pi$  separation)
- Calorimetry ( $|\eta|$ <5):
  - -- EM: Pb-LAr
  - -- HAD: Fe/scintillator (central), Cu/W-LAr (fwd)
- Muon Spectrometer ( $|\eta|$ <2.7) : air-core toroids with muon chambers

And ~2800 physicists from 169 Institutions, 37 countries, 5 continents

#### Collected luminosity and detector performance



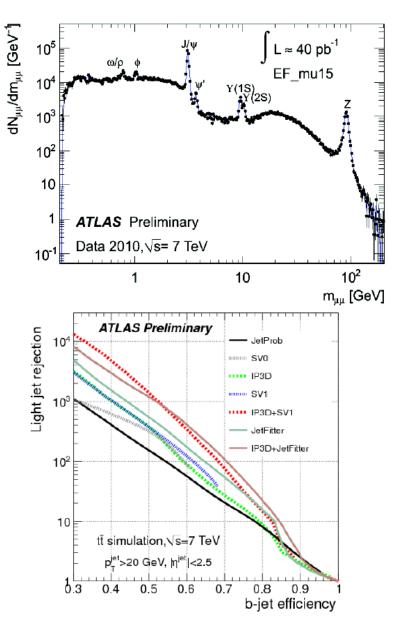


| Inner Tracking<br>Detectors |      |     | Calorimeters |            |            | Muon Detectors |      |      | Magnets |      |          |        |
|-----------------------------|------|-----|--------------|------------|------------|----------------|------|------|---------|------|----------|--------|
| Pixel                       | SCT  | TRT | LAr<br>EM    | LAr<br>HAD | LAr<br>FWD | Tile           | MDT  | RPC  | CSC     | TGC  | Solenoid | Toroid |
| 100                         | 99.9 | 100 | 98.4         | 99.3       | 99.4       | 98.3           | 99.8 | 99.5 | 99.8    | 99.9 | 99.7     | 99.5   |

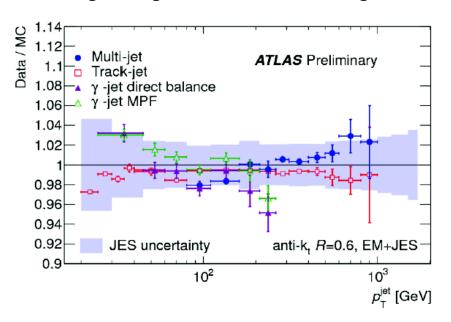
Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at Vs=7 TeV between March 13<sup>th</sup> and August 24th (in %), after the summer 2011 reprocessing campaign.

Outstanding
Performance from
Both LHC and
detector

DAQ efficiency: 93.5% (5.25/5.61)


### Data analysis flow

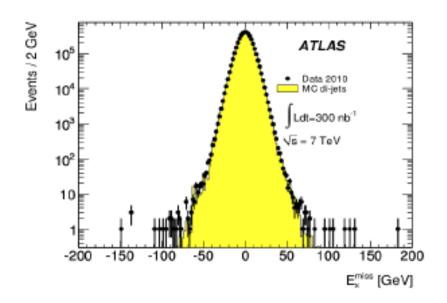
- Once good data on disk the work has just begun:
  - Calibration has to be determined and applied
  - Detector objects to be reconstructed
  - Reconstructed data to be made available on the grid
    - Complete calibration loop within 48 hours of data taking


#### Enormous work very efficiently performed by dedicated teams

- Starting from reconstructed data, two steps necessary before going for new physics searches:
  - Understanding of detector performance for main objects: leptons, jets, photons, b-jets,  $\tau$ -jets, Etmiss
  - Measurements of Standard Model processes to ensure that our detector understanding is adequate to look for deviations

#### Performance examples




Leptons: excellent id capabilities from the beginning, resolution at design value



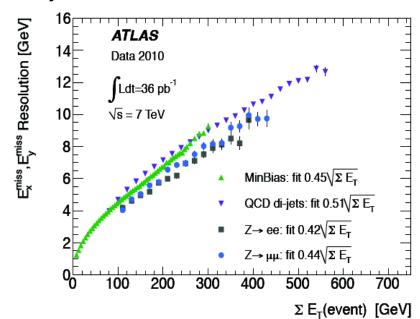
Jet energy scale known to 2-4% for Jet PT>20 GeV

B-tagging: key to detailed searches Advanced methods validated with 2011 data For 60% efficiency rejection of several hundreds On light jets

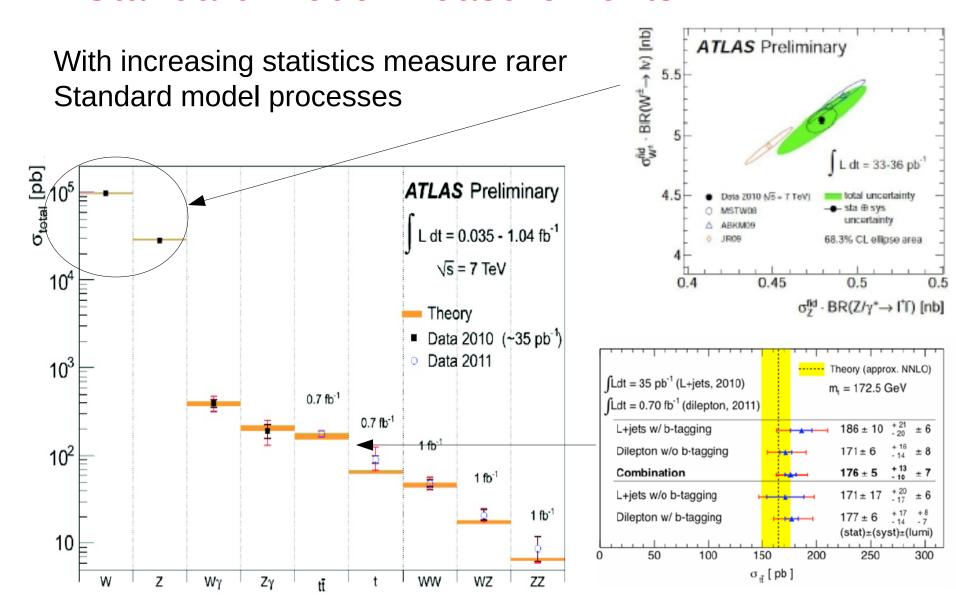
#### Understanding of detector performance: Etmiss



If all particles detected: Etmiss=0 High Etmiss signals invisible particle Such as a neutrino


Any local malfunction in the detector would Be registered as a tail in Etmiss distribution

From early data taking tails under control and measurement resolution in agreement with expected value


#### Key ingredient in SUSY analysis

$$\begin{split} E_{\textit{x}(\textit{y})}^{\text{miss}} &= E_{\textit{x}(\textit{y})}^{\text{miss,calo}} + E_{\textit{x}(\textit{y})}^{\text{miss},\mu} \\ E_{\textit{x}(\textit{y})}^{\text{miss,calo}} &= E_{\textit{x}(\textit{y})}^{\text{miss},e} + E_{\textit{x}(\textit{y})}^{\text{miss},\gamma} + E_{\textit{x}(\textit{y})}^{\text{miss,jets}} \\ + E_{\textit{x}(\textit{y})}^{\text{miss,softjets}} + (E_{\textit{x}(\textit{y})}^{\text{miss,calo},\mu}) + E_{\textit{x}(\textit{y})}^{\text{miss,CellOut}} \end{split}$$

Vector sum of the measured energy deposit of all objects in the detector

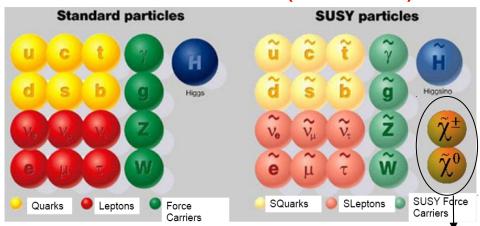


#### Standard model measurements



### SUSY modelling

- Unbroken minimal SUSY is well-defined
  - Modify SM Lagrangian so that it is invariant under transformation:


$$Q|\mathsf{boson}\rangle = |\mathsf{fermion}\rangle \quad \mathsf{Q}|\mathsf{fermion}\rangle = |\mathsf{boson}\rangle$$

- SUSY partners have same quantum numbers as SM particles, except spin, including mass
- But SUSY is broken: no partner pairs in observed spectrum
- Phenomenology driven by how SUSY breaking is performed: two main approaches
  - Totally agnostic: insert in SUSY Lagrangian all allowable SUSY breaking terms (MSSM)
  - Assume pattern driven by physical considerations: mass spectrum and couplings defined in terms of 4-5 parameters ex.: MSUGRA, GMSB
- What we are testing in first instance is the breaking pattern!

#### Minimal Supersymmetric Standard Model (MSSM)

#### Minimal particle content:

- •A superpartner for each SM particle
- •Two Higgs doublets and spartners: 5 Higgs bosons: h,H,A,H+,H-



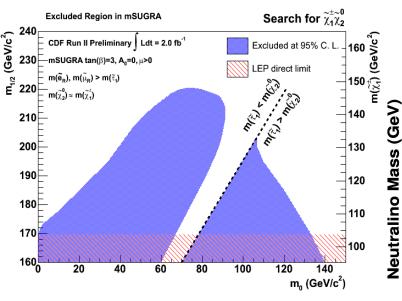
gaugino/higgsino mixing

- •Insert in Lagrangian all soft breaking terms: 105 parameters.
- •If we assume that flavour matrices are aligned with SM ones (minimal flavour violation): 19 parameters

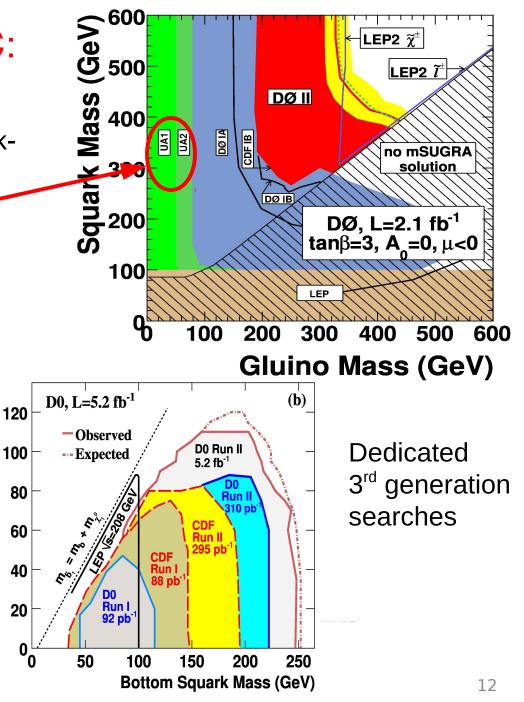
#### Additional ingredient: R-parity conservation: $R=(-1)^{3(B-L)+2S}$

- Sparticles are produced in pairs
- •The Lightest SUSY particle (LSP) is stable, neutral weakly interacting
  - Excellent dark matter candidate
  - It will escape collider detectors providing Etmiss signature

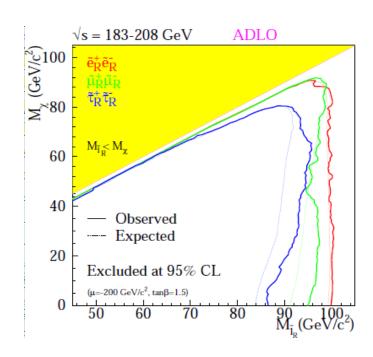
Models with R-parity violating terms are also studied: no  $E_T^{miss}$  signature, but often 'easier' kinematic signatures


## SUSY before LHC: Hadron colliders

Asymptotic sensitivity on squarkgluino production:


SppS: ~100 GeV (1989).

Tevatron: ~400 GeV

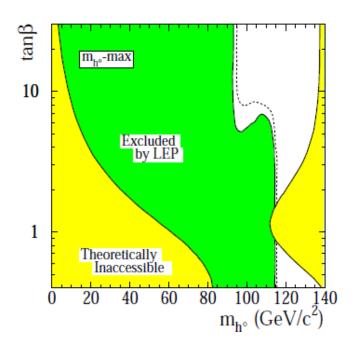

LHC 7 TeV: ~1.5 TeV (2012)



EW production of Chargino-neutralino: mSUGRA interpretation



### SUSY before LHC: LEP




Very stringent limits on m(higgs)-tanß plane from Higgs direct searches

Model-independent limits of ~100 GeV on all sparticles coupling to the Z, in particular:

- Sleptons
- Chargino

Results also interpreted in terms of cMSSM/mSUGRA



#### SUSY at the LHC: the menu

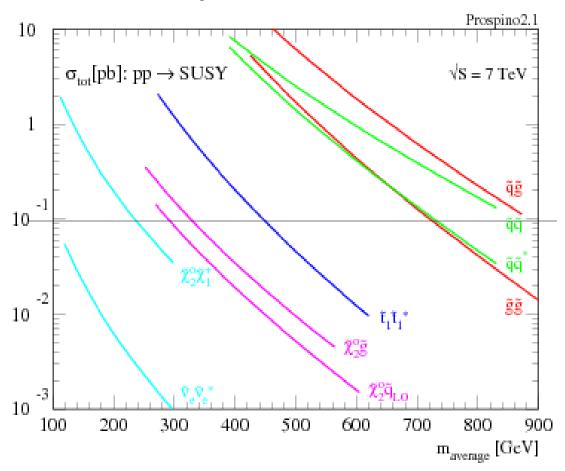
- Generic searches based on models with
  - Duplicate spectrum of particles w.r.t. Standard Model (sparticles)
  - For each sparticle complex decay chain involving jets and one or more leptons, photons, taus, b-jets +
  - E<sub>T</sub><sup>miss</sup> (R-parity conservation)
    - Sparticles produced in pairs, decay to Lightest Supersymmetric Particle (LSP), in most cases chi01
    - One invisible particle (LSP) per decay chain → E<sub>T</sub><sup>miss</sup>
  - R-parity violating signatures:
    - Resonant peaks: single sparticle production or LSP decay
    - Displaced vertices from LSP decay
  - Long lived particles from:
    - Degeneracies (e.g. MSSM with m(chargino)=m(chi01) or AMSB)
    - Weak couplings (e.g. GMSB decays of NLSP into gravitino LSP)
    - Heavy virtual intermediate states (gluino decays in split SUSY)
- Concentrate on the following on R-parity conserving SUSY:Etmiss

### Search strategy with early LHC data

- Initial strategy driven by:
  - Accessible cross-section with low integrated luminosity
  - Reliance on robust signatures under good experimental control from early data taking (e.g. lepton ID 'easier' than b or t tagging)
  - Reducibility of Standard Model backgrounds and ability to predict them precisely
  - Within this framework address simple signatures covering the broadest possible range of SUSY models

#### SUSY cross-sections

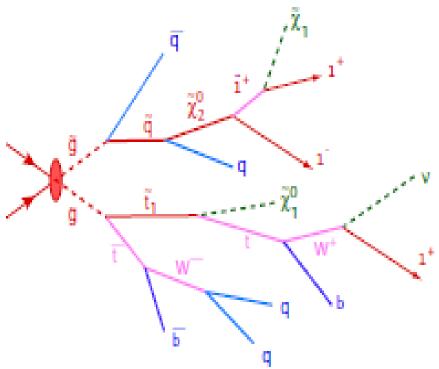
#### Consider an integrated luminosity of 1 fb<sup>-1</sup>


Squarks and gluinos accessible up to TeV scale with large branching fractions and efficiencies.

Backgrounds after  $E_T^{miss}$  cut manageable

For direct stop, cross-section up to 400 GeV, 10k-fold top background: need dedicated strategy

Charginos-neutralinos to 200 GeV if leptonic BR's Considered: deal with WZ and top backgrounds


Sleptons to < 200 GeV: need to handle top and WW



First round: concentrate on production of Gluinos and squarks of first two generations

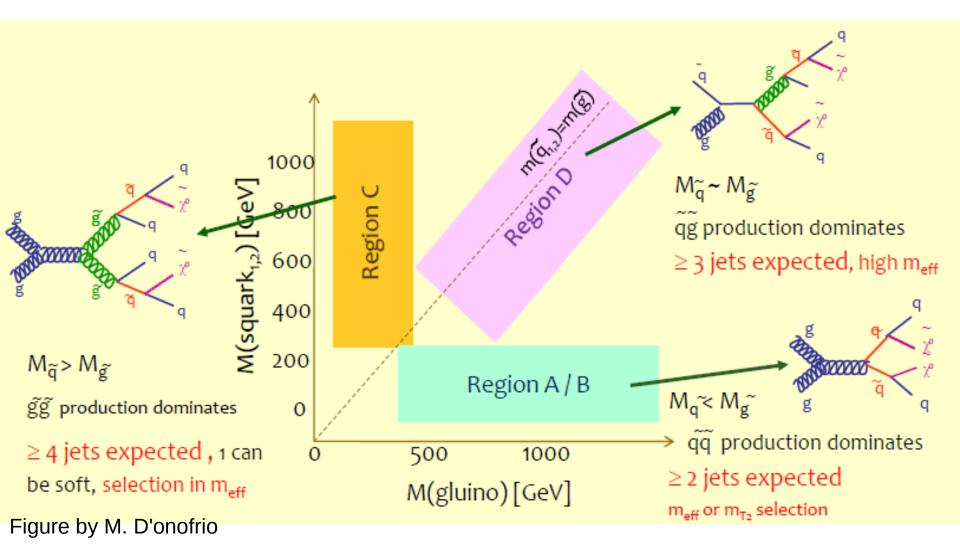
### SUSY decays

Develop model-independent analysis: focus on robust generic signatures Common to most models and with high rejection of Standard Model



- Etmiss from LSP escaping detection+
- High PT jets from squark/gluino decay
- Leptons from chargino/neutralino decays
- •b-jets and  $\tau$ -jets from decays of third generation sparticles
- • $\gamma$  from decays of  $\chi^0_1$  into gravitino in models with light gravitino

Analysis published in all these channels: describe in detail flow of most general one


### **Analysis definition**

- For squark and gluino production and R parity conserved, signature common to all models is E<sub>T</sub><sup>miss</sup>+ jets
- Preselection: Cuts on jet p<sub>T</sub> and E<sub>T</sub><sup>miss</sup> such as to guarantee high
   Trigger efficiency
- Optimisation 1: Define signal regions based on decay topologies occurring in generic models
- Optimisation 2: Set final cut on discriminant variable (some combination of jet momenta and ETmiss) to optimize sensitivity to reference models with appropriate mass scale

Ex: 
$$m_{eff} \equiv \sum_{i=1}^{n} |p_T^{(i)}| + E_T^{miss}$$

- Compare SM predictions with data
- Interpret results in different SUSY models

### 0-lepton signatures optimisation



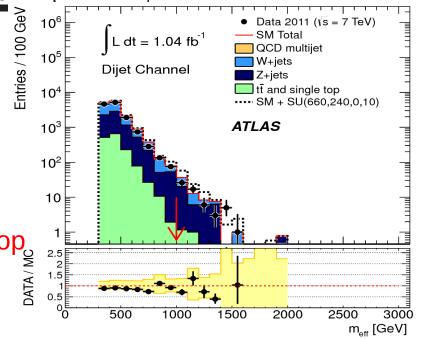
For two-jets topologies exploit kinematics of two heavy particles decaying into jets plus invisibles through ad-hoc variables:  $M_{T2}$ ,  $\alpha_{f}$ , R

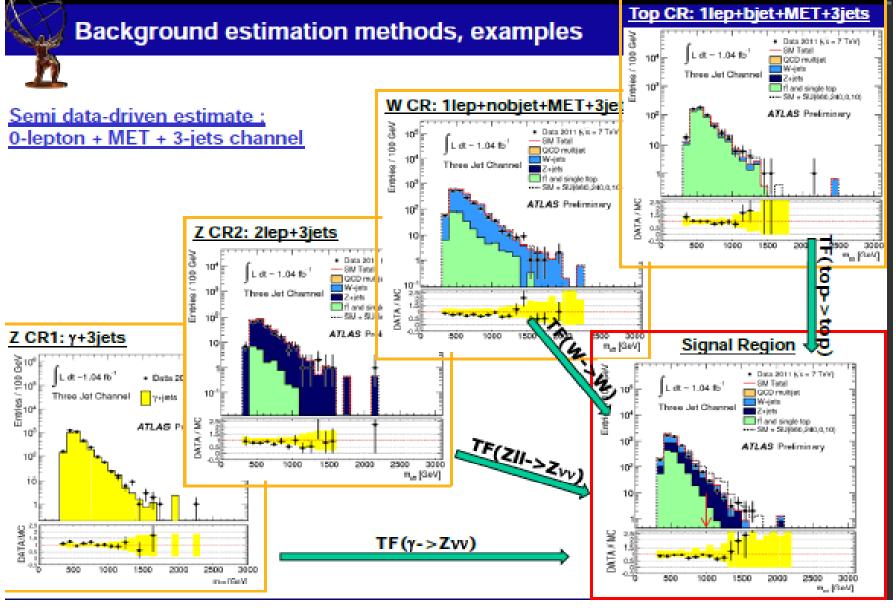
### SR definition and backgrounds

Trigger

Channel definition QDC rejection

| Signal Region                                               | $\geq 2\text{-jet}$ | ≥ 3-jet | ≥ 4-jet    | High mass |
|-------------------------------------------------------------|---------------------|---------|------------|-----------|
| $E_{ m T}^{ m miss}$                                        | > 130               | > 130   | > 130      | > 130     |
| Leading jet $p_T$                                           | > 130               | > 130   | > 130      | > 130     |
| Second jet p <sub>T</sub>                                   | > 40                | > 40    | > 40       | > 80      |
| Third jet p <sub>T</sub>                                    | _                   | > 40    | > 40       | > 80      |
| Fourth jet $p_T$                                            | _                   | _       | > 40       | > 80      |
| $\Delta \phi$ (jet, $P_{\rm T}^{\rm miss}$ ) <sub>min</sub> | > 0.4               | > 0.4   | > 0.4      | > 0.4     |
| $E_{ m T}^{ m tmiss}/m_{ m eff}$                            | > 0.3               | > 0.25  | > 0.25     | > 0.2     |
| $m_{ m eff}$                                                | > 1000              | > 1000  | > 500/1000 | > 1100    |


Trigger drives the Basic analysis cuts High trigger selectivity Necessary to achieve High sensitivity


#### Main backgrounds:

- QCD (small after cuts)
- •W+jets
- •Z+jets

•tt and single τορ

For each background we need to develop method with minimal Systematic uncertainty





Method for top/EWK backgrounds: define region in data (CR) where a given background dominant, predict background in SR through a transfer function evaluated with Monte Carlo

### Results on 0-lepton+Etmiss

| Process        | Signal Region            |                          |                                               |                                                |                          |  |  |  |  |
|----------------|--------------------------|--------------------------|-----------------------------------------------|------------------------------------------------|--------------------------|--|--|--|--|
| Trocess        | ≥ 2-jet                  | ≥ 3-jet                  | $\geq$ 4-jet,<br>$m_{\rm eff} > 500~{ m GeV}$ | $\geq$ 4-jet,<br>$m_{\rm eff} > 1000~{ m GeV}$ | High mass                |  |  |  |  |
| Z/γ+jets       | 32.3 ± 2.6 ± 6.9         | 25.5 ± 2.6 ± 4.9         | 209 ± 9 ± 38                                  | 16.2 ± 2.2 ± 3.7                               | 3.3 ± 1.0 ± 1.3          |  |  |  |  |
| W+jets         | 26.4 ± 4.0 ± 6.7         | $22.6 \pm 3.5 \pm 5.6$   | $349 \pm 30 \pm 122$                          | 13.0 ± 2.2 ± 4.7                               | 2.1 ± 0.8 ± 1.1          |  |  |  |  |
| tī+ single top | $3.4 \pm 1.6 \pm 1.6$    | $5.9 \pm 2.0 \pm 2.2$    | $425 \pm 39 \pm 84$                           | 4.0 ± 1.3 ± 2.0                                | 5.7 ± 1.8 ± 1.9          |  |  |  |  |
| QCD multi-jet  | $0.22 \pm 0.06 \pm 0.24$ | $0.92 \pm 0.12 \pm 0.46$ | 34 ± 2 ± 29                                   | $0.73 \pm 0.14 \pm 0.50$                       | $2.10 \pm 0.37 \pm 0.82$ |  |  |  |  |
| Total          | 62.4 ± 4.4 ± 9.3         | 54.9 ± 3.9 ± 7.1         | $1015 \pm 41 \pm 144$                         | 33.9 ± 2.9 ± 6.2                               | 13.1 ± 1.9 ± 2.5         |  |  |  |  |
| Data           | 58                       | 59                       | 1118                                          | 40                                             | 18                       |  |  |  |  |

Limits on

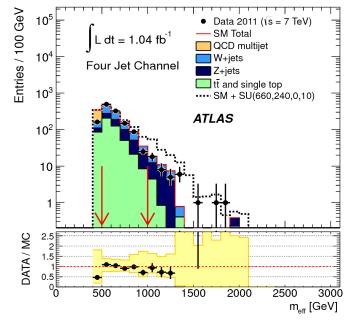
 $\sigma_{new} = \sigma A \epsilon$ Production X-section

Cut acceptance

Reconstruction efficiency

Limits (fb) 22

25


429

27

17

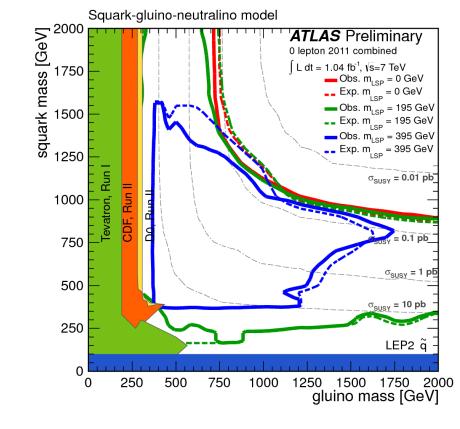
15-20% uncertainty on background prediction

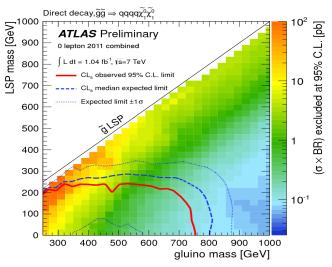
Next step is matching these limits with Specific SUSY models



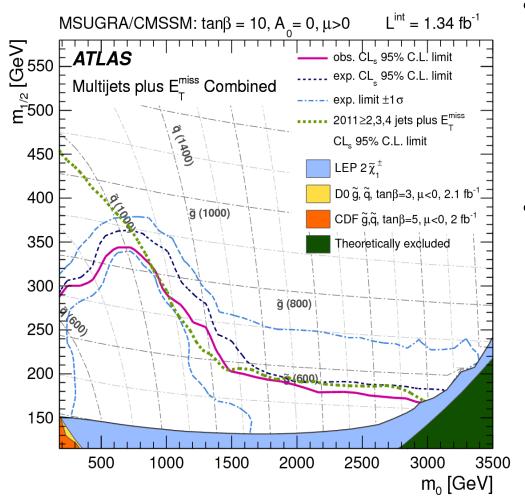
#### MSSM interpretation

Simplifying assumptions to map 19 parameters onto 2-dim space:


- Only production of gluinos and squarks of first two generations
- Other sparticle masses= 5 TeV
- •m(LSP)=0

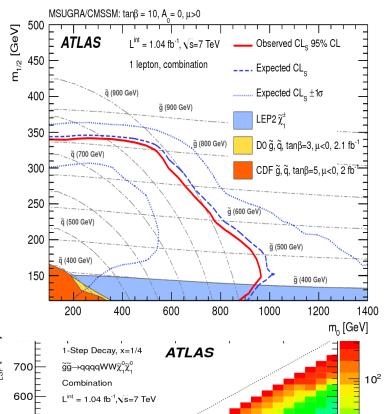

#### Only allowed decays:

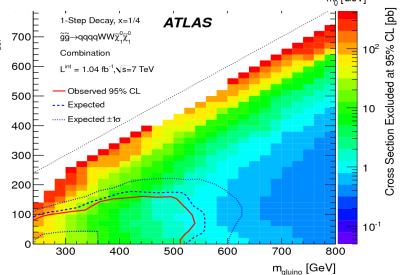
$$egin{array}{ll} ilde{g} & 
ightarrow q ar{q} ilde{\chi}_1^0 \ ilde{q} & 
ightarrow q ilde{\chi}_1^0 \end{array}$$


Equal squark-gluino masses excluded below 1075 GeV

Generic exclusion valid for m(LSP)<200 GeV
For heavier LSP cannot put absolute Limits on squark or gluino masses







#### All hadronic results in cMSSM/mSUGRA



- Even with more complex decays than simplified MSSM limits above 1 TeV for m(squark)=m(gluino)
- Weaker limits high m<sub>0</sub>: only gluino production, and dominant decay:
  - $g \rightarrow qq \chi$ , softer kinematics as  $\chi$  in this case can be also higher mass chargino/neutralino

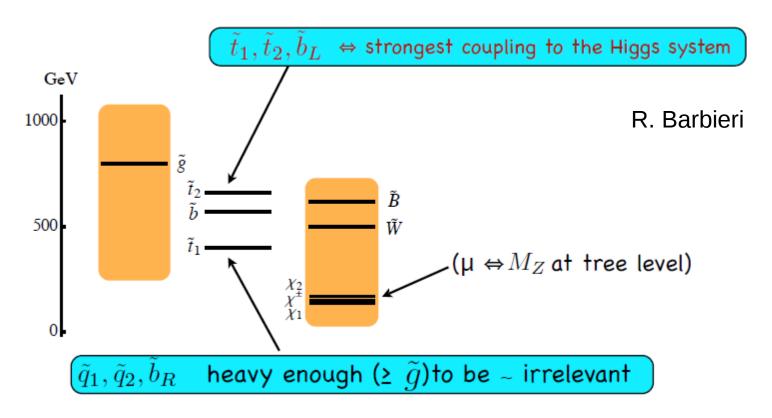
### Role of lepton+jet analyses





Several analyses requiring
E<sub>T</sub><sup>miss</sup>+jets+leptons performed
by ATLAS and CMS: 1, 2, multileptons

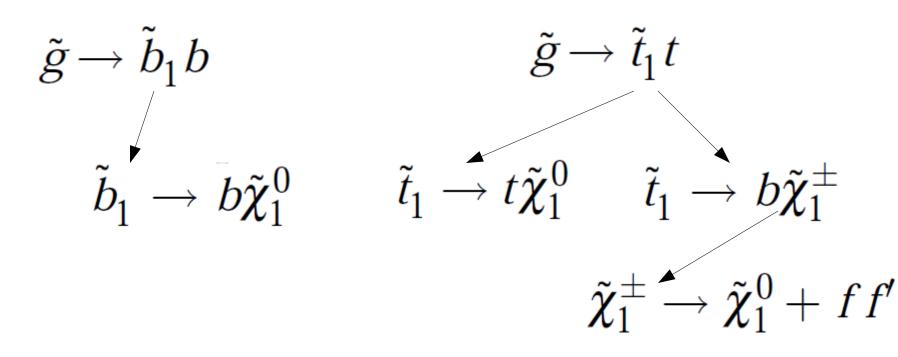
Essential to address models which may escape standard  $E_T^{miss}$ +jets analysis because of soft hadronic part


Rates dependent on all model parameters: difficult to quote results in terms of limits on sparticle production

#### Two approaches to interpret results:

- •Constrained models: e.g. mSUGRA,
- Simplified models: isolate specific chains with given kinematics and compute excluded rate for the chain as a function of two involved masses

#### Additional gluino decays: theory guidance


#### SUSY spectrum required by naturalness



Decays of gluinos involving 3<sup>rd</sup> generation squarks not addressed by generic searches: dedicated searches in final states with b-jets

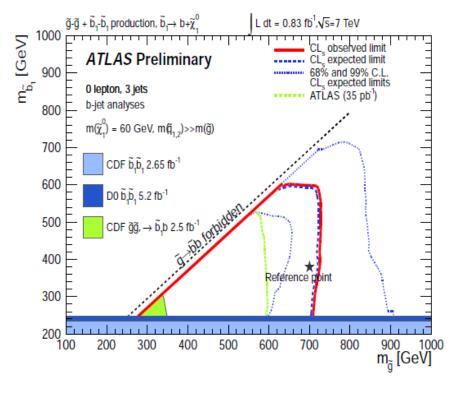
### Gluino decays into third generation

Template models for first round:

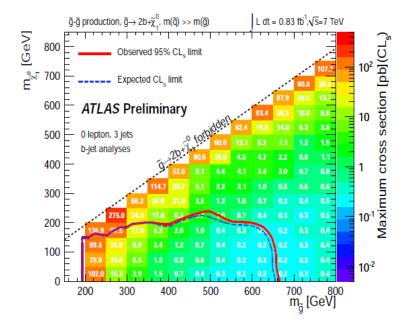


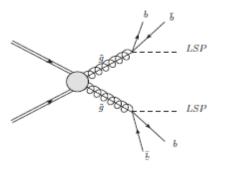
Assume gluino to decay 100% in each of these channels

Final state 4 b-jets + Etmiss Final state: 4 bjets + 4W (\*) + Etmiss


B-jets + 0 -lepton analysis

B jets with 0, 1, 2 lepton analysis


### 0 jet analysis

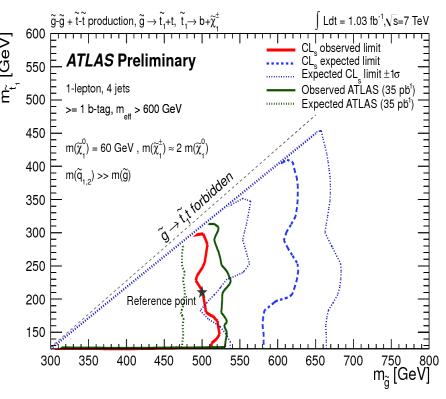

Analysis: 0 leptons + 3 jets +  $E_T^{miss}$  with 1 or 2 tagged b-jets

- $\tilde{g}\tilde{g}$  +  $\tilde{b}_1\tilde{b}_1$  production
- $\tilde{g} \rightarrow \tilde{b}_1 b$  (BR=1),  $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$  (BR=1)
- $m(\tilde{\chi}^0)$  = 60 GeV,  $m(\tilde{\chi}_1^{\pm}) \approx 2\tilde{\chi}_1^0$



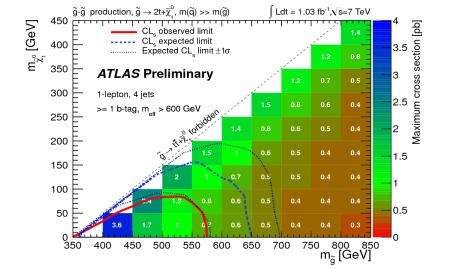
#### Exclude gluino masses below ~700 GeV

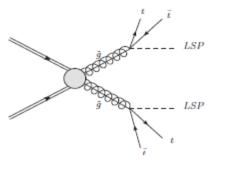





Simplified model: Gluino 3-body decay

### 1 lepton analysis


Analysis: 1 lepton + 4 jets +  $E_T^{miss^{\frac{1}{5}}}$ 1 jet tagged as b


- $\tilde{g}\tilde{g} + \tilde{t}_1\tilde{t}_1$  production
- $\tilde{g} \rightarrow \tilde{t}_1 t \text{ (BR=1)}, \ \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \text{ (BR=1)}$
- $m(\tilde{\chi}^0)$  = 60 GeV,  $m(\tilde{\chi}_1^{\pm}) \approx 2\tilde{\chi}_1^0$



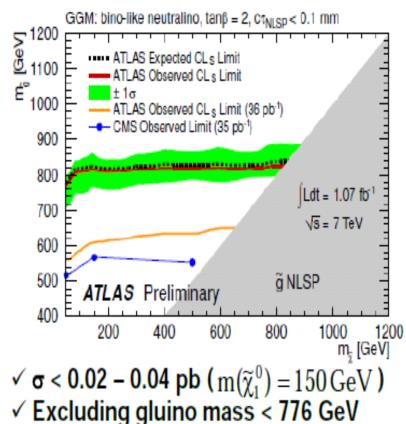
#### Exclude gluino mass below 520 GeV

 $\tilde{g}$  3 body decay into  $t\bar{t}\tilde{\chi}_1^0$ 





m(gluino)>560 GeV


### Outlook on gluino-mediated third generation

- Work going on to extend the range of stop/sbottom decays for which analyses are optimised/interpreted
- Two analyses in advanced state of approval
  - Re-optimised 0 and 1 lepton analyses on 2 fb-1
  - Same-sign lepton analysis
- Further signatures under study for winter conferences

#### General Gauge Mediation (GGM) models

- Standard E<sub>T</sub>miss analysis assumes chi01 LSP
- If gravitino (G) LSP and chi01 NLSP, additional photons in events with photons from the decay

- Additional handle, select events with E<sub>T</sub>miss, jets and 1 or 2 photons
- For only gluino production exclude gluinos below ~800 GeV



#### Conclusions on SUSY with 1 fb-1 from Etmiss searches

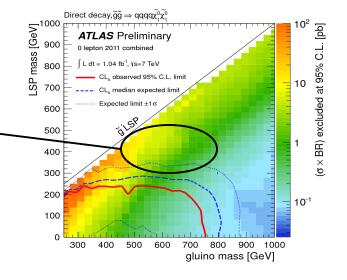
#### • We exclude generic models where

- 1)1st and 2nd generation quarks and gluinos are
  - Below 1.1 TeV if they have similar masses
  - Below 7-800 GeV if one of the two is much heavier
- 2) Squark decays q->q chi01, and gluino decays g->qq chi01
- 3) m(chi01)< 200 GeV

#### Weaker limits for heavier chi01

- Conclusions valid when specialising to CMMSM/mSUGRA
  - Confirmed by searches with leptonic signatures
  - For high m0 region where decays in heavy flavours important, and also heavier gauginos involved limits somewhat less stringent (mg<600 GeV)</li>
- Generic limit extended to cases with different gluino decays
  - For gluino decaying 100% bb chi01, direct or sbottom-mediated, limit is between 700 and 800
     GeV from dedicated searches requiring tagged b-jets
  - For gluino decaying 100% stop-top limit is around 520 GeV
- If chi01 decays chi01->Gγ gluino limits at 800 GeV

### Perspectives (1)


 Effectively volume of 19-parameter MSSM covered to date not very large. Question is how to enhance coverage of our searches

First step is to lift limitations on generic squark-gluino

interpretation:

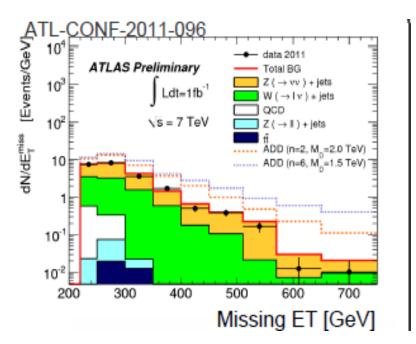
 Develop ad-hoc strategies for when chi01 gets near squark and gluino mass (degenerate spectra)

 Study decays happening through long chains with many visible objects: high multiplicity searches



- In both cases softer kinematics of final state objects: enhanced role of leptonic signatures: loss in BR's but higher trigger and selection efficiencies. Watch same-sign leptons
- Increase range of considered final state objects: e.g hadronic tau decays

### Example: monojets


Search done in framework of ADD searches

#### 3 Selections:

Low PT: Jet with PT>120 GeV,  $|\eta|$ <2, Etmiss>120 GeV, veto on Additional jets with PT>30 GeV

High PT Jet with PT>220 GeV,  $|\eta|$ <2, Etmiss>220 GeV, veto on Additional jets with PT>60 GeV, Veto on 3<sup>rd</sup> jet pt>30 GeV  $\Delta\phi(J2>Etmiss)>0.5$ 

V. High PT: Same as High pt with J1>300 J2>350



Model independent limits:

1.7 pb Low PT 0.11 pb High PT

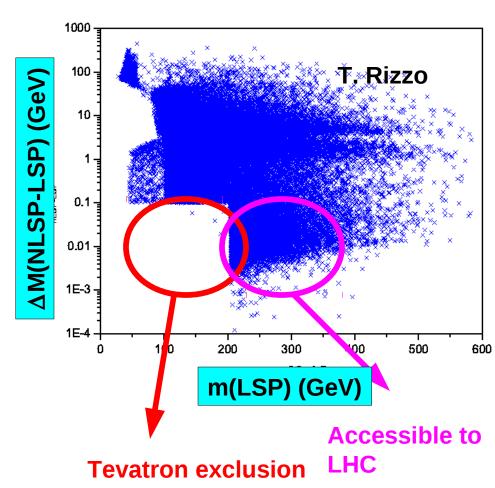
0.035 pb V High PT

For Moriond analyses oriented to SUSY signatures as well

### Perspectives (2)

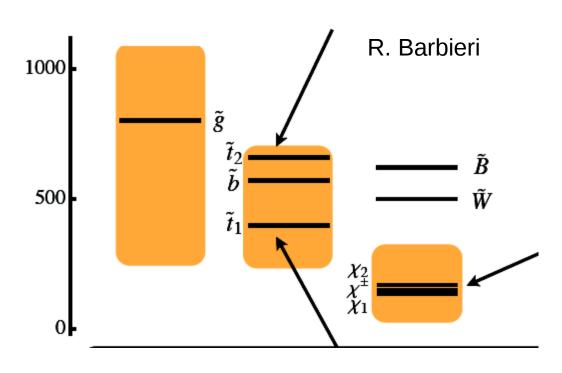
Focus on signatures which appear as 'forgotten' in scans

of 19-MSSM


#### Example:

If chargino is degenerate with chi01, it can be metastable

Signature already addressed in Specific SUSY breaking models:


- Searches for heavy muon-like particles
- Searches for decays inside detector (broken tracks)

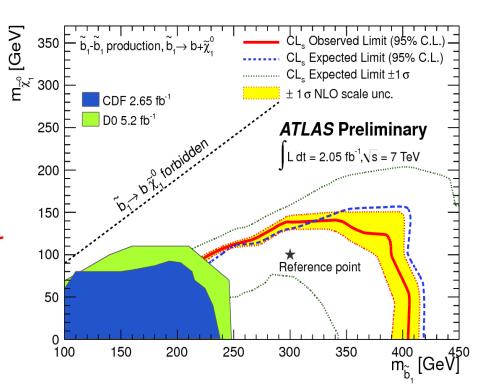
Increase emphasis on such Signatures and extend Interpretation to MSSM



### Perspectives (3)

- Even if squark & gluinos are inaccessible at the LHC, other sparticles may/should be lighter
- Focus on sparticles which must be light if SUSY wants to solve the fine-tuning problem. From theoretical guidance:
- Look for direct production of light stop/sbottom:
  - Consider all possible decay chains
  - Ad hoc selections taking into account kinematics
- Look for EW production of gauginos:
  - mostly leptonic signatures
  - •go as low as possible in lepton p<sub>T</sub>

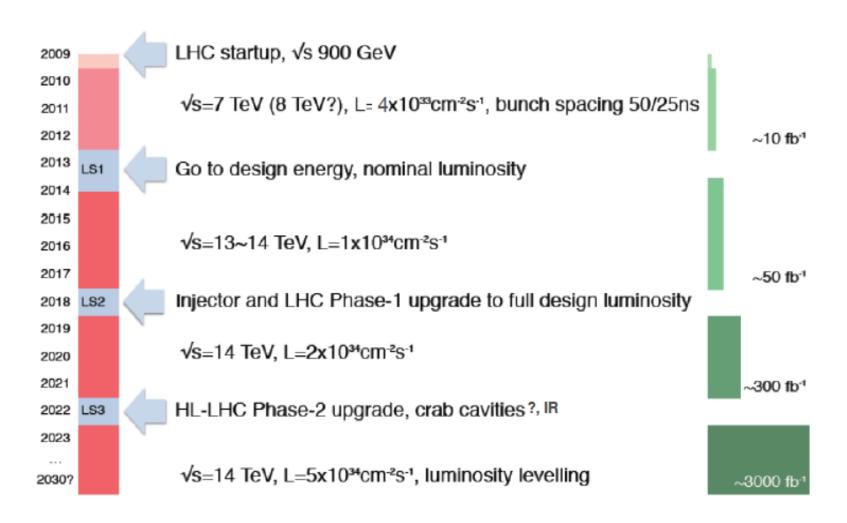



### Example: direct sbottom production

Analysis: 2 b-tagged jets and Etmiss (0 leptons)

 $\tilde{b}_1 \tilde{b}_1$  production

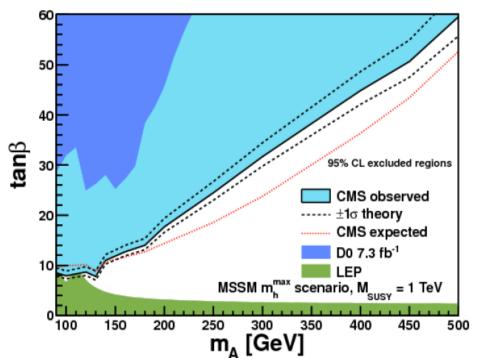
$$\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \text{ (BR=1)}$$

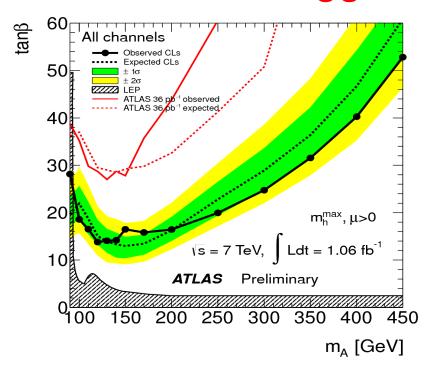

Exclude sbottom lighter than ~350-390 GeV if chi01 lighter than ~120 GeV



Pioneering direct production analysis.

Illustrate characteristic issue: need enough mass gap with chi01 to ensure triggerable and detectable hadronic system


### The further future: LHC timeline

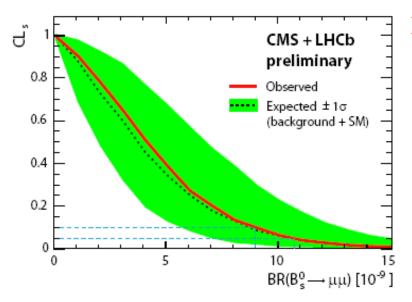



#### Conclusions

- With early LHC data ATLAS and CMS started probing the TeV scale
- Null results of searches are eroding the number of SUSY breaking scheme candidate for describing our world
- Early generation searches based on simplifying assumptions and on very constrained models yield limits on squarks and gluinos in the TeV range
- Complete exploration of SUSY requires:
  - Extending the mass coverage in 'basic' scenarios
  - Searching for squarks and gluinos in more complex/general scenarios
  - Addressing exotic signatures
  - Look for low cross-section direct production of sparticles which should be light in SUSY
- For all of the above points both experiments have active analysis groups, and in many cases results are available already with 2010/early 2011 data
- By the time of 2012 winter conferences results based on this approach with the full 5 fb<sup>-1</sup> will be available

### Info from other LHC searches: MSSM Higgs



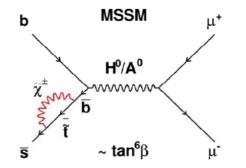


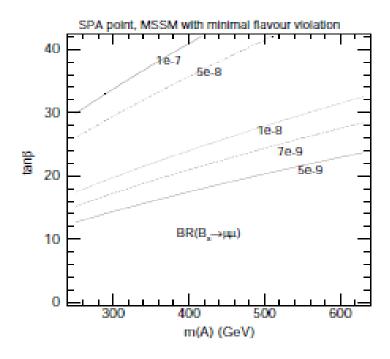

Direct searches sparticle searches have low sensitivity to  $tan\beta$  and m(A) parameters of MSSM

Higgs searches provide highest sensitivity on these parameters Already significant coverage from A→ττ

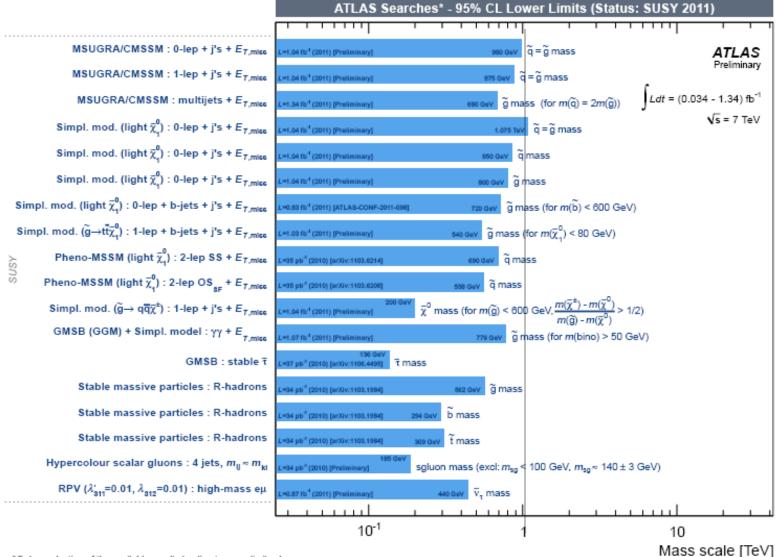
As we become sensitive to light higgs below 135-140 GeV more and more of the plane will be covered

#### Info from other LHC searches: rare decays



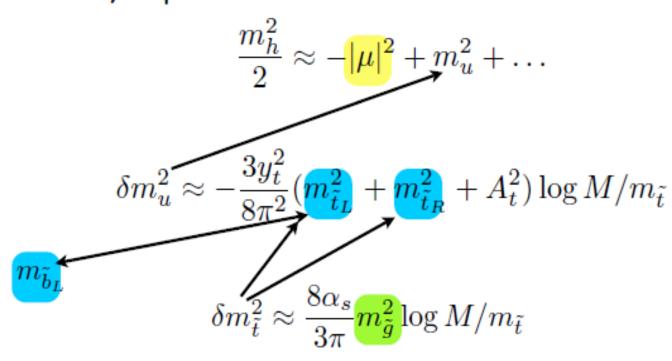


Very strong dependence on m(A) and tanb

$$BR(B_s \to \mu\mu) \propto \tan \beta^6/m(A)^4$$

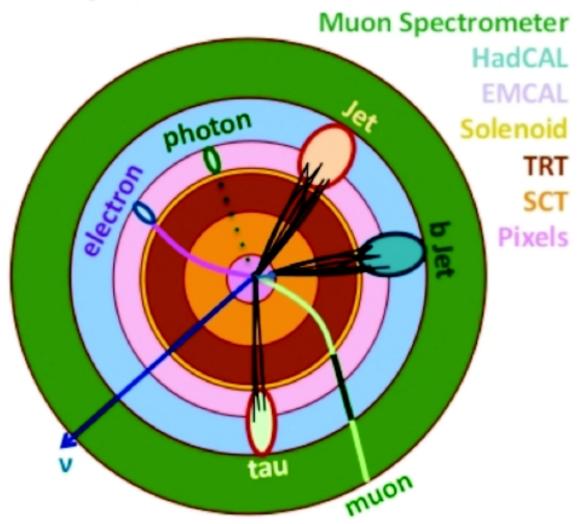

For given assumptions on the SUSY Mass spectrum very stringent limits On the m(A)-tanb plane,

BR(B<sub>s</sub>  $\rightarrow \mu^{+}\mu^{-}$ ) < 1.08 (0.9) ×10<sup>-8</sup> @ 95% (90%) C.L.






### Summary table




### Fine tuning equations and SUSY spectrum

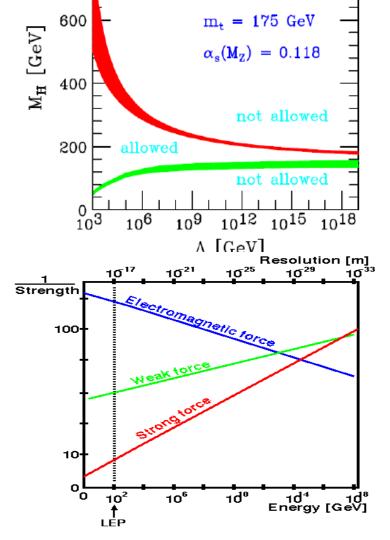
#### The key equations:



#### Simplified Detector Transverse View

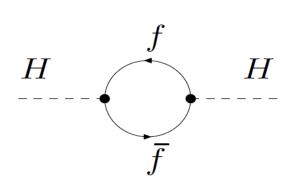


#### Why physics beyond Standard Model?


Gravity is not yet incorporated in the model

Hierarchy/naturalness problem

Standard Model valid only up to scale  $\Lambda < M_{pl}$  Example:  $m_h = 115 \text{ GeV } \Lambda < 10^6 \text{ GeV}$  Therefore Higgs mass becomes instable to quantum corrections from fermion loops:


$$\delta m_H^2 \propto \lambda_f^2 \Lambda^2$$

- Lack of unification of couplings in SM
- •Dark Matter problem: SM particles only account for a small fraction of the matter observed in the universe



#### Naturalness problem and SUSY solution

Correction to higgs mass from fermion loop:



$$\Delta m_H^2 \sim \frac{\lambda_f^2}{4\pi^2} (\Lambda^2 + m_f^2) +$$

Where  $\Lambda$  high energy cutoff For  $\Lambda \sim M_{Planck} \sim 10^{18}$  GeV corrections explode

Correction from scalar

$$\widetilde{f}$$
  $\Delta m_H^2 \sim -\frac{\lambda_{\widetilde{f}}^2}{4\pi^2} (\Lambda^2 + m_{\widetilde{f}}^2) + \dots$ 

Corrections have opposite sign. Cancellations if for each fermion degree of freedom one has scalars such that:  $\lambda_{\tilde{f}}^2 = \lambda_f^2 \quad m_{\tilde{f}} = m_f$ 

Achieved in theory invariant under transformation Q:

$$Q|\mathsf{boson}\rangle = |\mathsf{fermion}\rangle \quad \mathsf{Q}|\mathsf{fermion}\rangle = |\mathsf{boson}\rangle$$

$$Q|fermion\rangle = |boson\rangle$$

Supersymmetry

Very general class of theories, specialize to minimal model: MSSM

#### SUSY breaking models

Spontaneous breaking not possible in MSSM, need to postulate hidden sector

Supersymmetry breaking origin (Hidden sector)

Flavor-blind MSSM (Visible sector)

Phenomenology of the model and free parameters determined by the nature of the messenger field mediating the breaking. Examples:

- Gravity: mSUGRA. Parameters:  $m_0, m_{1/2}, A_0, \tan \beta, \ \operatorname{sgn} \mu$ 
  - LSP is  $\tilde{\chi}^0_1$ :  $E_T^{miss}$  + jets signatures
- Gauge interactions: GMSB. Parameters:  $\Lambda = F_m/M_m$ ,  $M_m$ ,  $N_5$

 $\tan \beta$ ,  $sgn(\mu)$ ,  $C_{grav}$ 

LSP is light gravitino  $\widetilde{G}$ . Signatures:  $\gamma + E_T^{miss}$  from  $\chi^{\widetilde{0}}_1 \rightarrow \gamma \widetilde{G}$  if  $\chi^{\widetilde{0}}_1$  NLSP leptons+ $E_T^{miss}$  or long-lived leptons if slepton NLSP

- Anomalies: AMSB. Parameters:  $m_0, m_{3/2}, \tan \beta, sign(\mu)$

47