Flavor Physics: Past, Present, Future

Workshop on Physics Opportunities with LHC at 7 TeV

KEK, Japan 16 February 2012

Yossi Nir (Weizmann Institute of Science)

Flavor Physics

Flavor Physics

Plan of Talk

- 1. Introduction
- 2. Past: What have we learned? Lessons from the B-factories
- 3. Present: Open questions
 - The NP flavor puzzle
 - The SM flavor puzzle
- 4. Future: What will we learn? Flavor@LHC

Flavor Physics

Why is flavor physics interesting?

- Flavor physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiment}$ FCNC suppressed within the SM by $\alpha_W^n, |V_{ij}|, m_f$
- The Standard Model flavor puzzle: Why are the flavor parameters small and hierarchical? (Why) are the neutrino flavor parameters different?
- The New Physics flavor puzzle:
 If there is NP at the TeV scale, why are FCNC so small?
 The solution ⇒ Clues for the subtle structure of the NP

Why is flavor physics interesting?

- Flavor physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiment}$ FCNC suppressed within the SM by $\alpha_W^n, |V_{ij}|, m_f$
- The Standard Model flavor puzzle: Why are the flavor parameters small and hierarchical? (Why) are the neutrino flavor parameters different?
- The New Physics flavor puzzle:
 If there is NP at the TeV scale, why are FCNC so small?
 The solution ⇒ Clues for the subtle structure of the NP
- CDF: $A_{\text{FB}}^{t\bar{t}}(m_{t\bar{t}} > 450 \text{ GeV}) = +0.48 \pm 0.11$ SM: $A_{\text{FB}}^{t\bar{t}}(m_{t\bar{t}} > 450 \text{ GeV}) = +0.09 \pm 0.01$

A brief history of FCNC

- $\Gamma(K \to \mu \mu) \ll \Gamma(K \to \mu \nu) \implies \text{Charm [GIM, 1970]}$
- $\Delta m_K \implies m_c \sim 1.5 \; GeV$ [Gaillard-Lee, 1974]
- $\varepsilon_K \neq 0 \implies \text{Third generation [KM, 1973]}$
- $\Delta m_B \implies m_t \gg m_W$ [Various, 1986]

Why is CPV interesting?

- SM CPV cannot explain the baryon asymmetry a puzzle: There must exist new sources of CPV Electroweak baryogenesis? (Testable at the LHC) Leptogenesis? (Window to Λ_{seesaw})
- Within the SM, a single CP violating parameter η: In addition, QCD = CP invariant (θ_{QCD} irrelevant) Strong predictive power (correlations + zeros) Excellent tests of the flavor sector

Why is CPV interesting?

- SM CPV cannot explain the baryon asymmetry a puzzle: There must exist new sources of CPV Electroweak baryogenesis? (Testable at the LHC) Leptogenesis? (Window to Λ_{seesaw})
- Within the SM, a single CP violating parameter η: In addition, QCD = CP invariant (θ_{QCD} irrelevant) Strong predictive power (correlations + zeros) Excellent tests of the flavor sector
- D0: $A_{SL}^b = (-7.9 \pm 1.7 \pm 0.9) \times 10^{-3}$ SM: $A_{SL}^b = (-0.23 \pm 0.06) \times 10^{-3}$
- LHCb: $\Delta A_{\rm CP} = (-0.82 \pm 0.21 \pm 0.11) \times 10^{-2}$ SM: $\Delta A_{\rm CP} \lesssim 10^{-3}$

A brief history of CPV

- 1964 2000
 - $|\varepsilon| = (2.284 \pm 0.014) \times 10^{-3}; \ \mathcal{R}e(\varepsilon'/\varepsilon) = (1.67 \pm 0.26) \times 10^{-3}$

A brief history of CPV

- 1964 2000
 - $|\varepsilon| = (2.284 \pm 0.014) \times 10^{-3}; \ \mathcal{R}e(\varepsilon'/\varepsilon) = (1.67 \pm 0.26) \times 10^{-3}$
- 2000 2011
 - $S_{\psi K_S} = +0.67 \pm 0.02$
 - $S_{\phi K_S} = +0.56 \pm 0.18, \ S_{\eta' K_S} = +0.59 \pm 0.07,$ $S_{\pi^0 K_S} = +0.57 \pm 0.17, \ S_{f_0 K_S} = +0.62 \pm 0.12$
 - $S_{K^+K^-K_S} = -0.82 \pm 0.07, \ S_{K_SK_SK_S} = +0.74 \pm 0.17$
 - $S_{\pi^+\pi^-} = -0.65 \pm 0.07, C_{\pi^+\pi^-} = -0.38 \pm 0.06$
 - $S_{\psi\pi^0} = -0.93 \pm 0.15, \ S_{DD} = -0.89 \pm 0.26, \ S_{D^*D^*} = -0.77 \pm 0.14$
 - $\mathcal{A}_{K^{\mp}\rho^{0}} = +0.37 \pm 0.11, \, \mathcal{A}_{\eta K^{\mp}} = -0.37 \pm 0.09, \, \mathcal{A}_{f_{2}K^{\mp}} = -0.68 \pm 0.20$
 - $\mathcal{A}_{K^{\mp}\pi^{\pm}} = -0.098 \pm 0.012, \ \mathcal{A}_{\eta K^{*0}} = +0.19 \pm 0.05$
 - . . .

Flavor Physics

Flavor Physics

What have we learned?

Testing CKM – Take I

- Assume: CKM matrix is the only source of FV and CPV \implies Four CKM parameters: λ, A, ρ, η
- λ known from $K \to \pi \ell \nu$ A known from $b \to c \ell \nu$
- Many observables are $f(\rho, \eta)$:

$$-b \rightarrow u\ell\nu \implies \propto |V_{ub}/V_{cb}|^2 \propto \rho^2 + \eta^2$$

$$-\Delta m_{B_d}/\Delta m_{B_s} \implies \propto |V_{td}/V_{ts}|^2 \propto (1-\rho)^2 + \eta^2$$

$$-S_{\psi K_S} \implies \frac{2\eta(1-\rho)}{(1-\rho)^2 + \eta^2}$$

$$-S_{\rho\rho}(\alpha)$$

$$-\mathcal{A}_{DK}(\gamma)$$

The B-factories Plot

CKMFitter

Very likely, the CKM mechanism dominates FV and CPV

Testing CKM - take II

- Assume: New Physics in leading tree decays negligible
- Allow arbitrary new physics in loop processes
- Consider only tree decays and $B^0 \overline{B}^0$ mixing
- Define $h_d e^{2i\sigma_d} = A^{\text{NP}}(B^0 \to \overline{B})/A^{\text{SM}}(B^0 \to \overline{B})$ \implies Four parameters: ρ, η (CKM), h_d, σ_d (NP)
- Use $|V_{ub}/V_{cb}|$, \mathcal{A}_{DK} , $S_{\psi K}$, $S_{\rho\rho}$, Δm_{B_d} , \mathcal{A}_{SL}^d
- Fit to $\eta, \rho, h_d, \sigma_d$
- Find whether $\eta = 0$ is allowed If not \implies The KM mechanism is at work
- Find whether $h_d \gg 1$ is allowed If not \implies The KM mechanism is dominant

What have we learned?

 $\eta \neq 0$?

• The KM mechanism is at work

What have we learned?

 $h_d \ll 1$?

- The KM mechanism dominates CP violation
- The CKM mechanism is a major player in flavor violation

Flavor Physics

Several $\sim 3\sigma$ tensions

- $S_{\psi K}$ vs. $\sin 2\beta$ from global fit
- $BR(B \to \tau \nu)$ vs. prediction from global fit
- A_{SL}^b vs. (almost) null prediction of the SM
- $\Delta A_{\rm CP}$ vs. (almost) null prediction of the SM

Intermediate summary I

- The KM phase is different from zero (SM violates CP)
- The KM mechanism is the dominant source of the CP violation observed in meson decays
- Complete alternatives to the KM mechanism are excluded (Superweak, Approximate CP)
- CP violation in D, B_s may still hold surprises
- No evidence for corrections to CKM
- NP contributions to the observed FCNC are at most comparable to the CKM contributions
- NP contributions are very small in $s \to d, c \to u, b \to d, b \to s$

Flavor Physics

The SM = Low energy effective theory

- 1. Gravity $\implies \Lambda_{\text{Planck}} \sim 10^{19} \text{ GeV}$
- 2. $m_{\nu} \neq 0 \Longrightarrow \Lambda_{\text{Seesaw}} \leq 10^{15} \text{ GeV}$
- 3. m_H^2 -fine tuning; Dark matter $\implies \Lambda_{\rm NP} \sim TeV$

- The SM = Low energy effective theory
- Must write non-renormalizable terms suppressed by $\Lambda_{\rm NP}^{d-4}$

•
$$\mathcal{L}_{d=5} = \frac{y_{ij}^{\nu}}{\Lambda_{\text{seesaw}}} L_i L_j \phi \phi$$

• $\mathcal{L}_{d=6}$ contains many flavor changing operators

New Physics

• The effects of new physics at a high energy scale $\Lambda_{\rm NP}$ can be presented as higher dimension operators

- For example, we expect the following dimension-six operators: $\frac{z_{sd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu s_L)^2 + \frac{z_{cu}}{\Lambda_{\rm NP}^2} (\overline{c_L} \gamma_\mu u_L)^2 + \frac{z_{bd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu b_L)^2 + \frac{z_{bs}}{\Lambda_{\rm NP}^2} (\overline{s_L} \gamma_\mu b_L)^2$
- New contribution to neutral meson mixing, *e.g.* $\frac{\Delta m_B}{\Delta m_B} \sim \frac{f_B^2}{2} \times \frac{|z_{bd}|}{2}$

$$\frac{\Delta m_B}{m_B} \sim \frac{J_B}{3} \times \frac{J^2 \delta d}{\Lambda_{\rm NP}^2}$$

• Generic flavor structure $\equiv z_{ij} \sim 1$ or, perhaps, loop – factor

Some data

$\Delta m_K/m_K$	7.0×10^{-15}
$\Delta m_D/m_D$	8.7×10^{-15}
$\Delta m_B/m_B$	6.3×10^{-14}
$\Delta m_{B_s}/m_{B_s}$	2.1×10^{-12}
ϵ_K	2.3×10^{-3}
$A_{\Gamma}/y_{ m CP}$	≤ 0.2
$S_{\psi K_S}$	0.67 ± 0.02
$S_{\psi\phi}$	≤ 1

High Scale?

• For
$$z_{ij} \sim 1$$
 (and $\mathcal{I}m(z_{ij}) \sim 1$), $\Lambda_{\rm NP} \gtrsim \frac{10^{-4}}{\sqrt{\Delta m/m}} TeV$

Mixing	$\Lambda_{ m NP}^{ m CPC}\gtrsim$	$\Lambda_{ m NP}^{ m CPV}\gtrsim$
$K - \overline{K}$	$1000 { m TeV}$	$20000~{\rm TeV}$
$D - \overline{D}$	$1000 { m TeV}$	$3000 { m TeV}$
$B - \overline{B}$	$400 { m TeV}$	$800 { m TeV}$
$B_s - \overline{B_s}$	$70 { m TeV}$	$70 { m TeV}$

High Scale?

• For
$$z_{ij} \sim 1$$
 (and $\mathcal{I}m(z_{ij}) \sim 1$), $\Lambda_{\rm NP} \gtrsim \frac{10^{-4}}{\sqrt{\Delta m/m}} TeV$

Mixing	$\Lambda_{ m NP}^{ m CPC}\gtrsim$	$\Lambda_{ m NP}^{ m CPV}\gtrsim$
$K - \overline{K}$	$1000 { m TeV}$	$20000~{\rm TeV}$
$D - \overline{D}$	$1000 { m TeV}$	$3000 { m TeV}$
$B - \overline{B}$	$400 { m TeV}$	$800 { m TeV}$
$B_s - \overline{B_s}$	$70 { m TeV}$	$70 { m ~TeV}$

- Did we misinterpret the Higgs fine tuning problem?
- Did we misinterpret the dark matter puzzle?

Small (hierachical?) flavor parameters?

• For $\Lambda_{\rm NP} \sim 1 \ TeV, \ z_{ij} \lesssim 10^8 (\Delta m_{ij}/m)$

Mixing	$ z_{ij} \lesssim$	$\mathcal{I}m(z_{ij}) \lesssim$
$K - \overline{K}$	8×10^{-7}	6×10^{-9}
$D - \overline{D}$	5×10^{-7}	1×10^{-7}
$B-\overline{B}$	5×10^{-6}	1×10^{-6}
$B_s - \overline{B_s}$	2×10^{-4}	2×10^{-4}

Small (hierachical?) flavor parameters?

• For $\Lambda_{\rm NP} \sim 1 \ TeV, \ z_{ij} \lesssim 10^8 (\Delta m_{ij}/m)$

Mixing	$ z_{ij} \lesssim$	$\mathcal{I}m(z_{ij}) \lesssim$
$K - \overline{K}$	8×10^{-7}	6×10^{-9}
$D - \overline{D}$	5×10^{-7}	1×10^{-7}
$B - \overline{B}$	5×10^{-6}	1×10^{-6}
$B_s - \overline{B_s}$	2×10^{-4}	2×10^{-4}

- The flavor structure of NP@TeV must be highly non-generic Degeneracies/Alignment
- How? Why? = The NP flavor puzzle

Flavor Physics

Smallness and Hierarchy

$$\begin{array}{ccccccccccccccc} Y_t \sim 1, & Y_c \sim 10^{-2}, & Y_u \sim 10^{-5} \\ Y_b \sim 10^{-2}, & Y_s \sim 10^{-3}, & Y_d \sim 10^{-4} \\ Y_\tau \sim 10^{-2}, & Y_\mu \sim 10^{-3}, & Y_e \sim 10^{-6} \\ V_{us} |\sim 0.2, & |V_{cb}| \sim 0.04, & |V_{ub}| \sim 0.004, & \delta_{\rm KM} \sim 1 \end{array}$$

- For comparison: $g_s \sim 1$, $g \sim 0.6$, $g' \sim 0.3$, $\lambda \sim 1$
- SM flavor parameters have structure: smallness + hierarchy
- Why? = The SM flavor puzzle
 - Approximate symmetry? [Froggatt-Nielsen]
 - Strong dynamics? [Nelson-Strassler]
 - Location in extra dimension? [Arkani-Hamed-Schmaltz]
 - ?

Neutrino flavor parameters

- $\Delta m_{21}^2 = (7.6 \pm 0.2) \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| = (2.4 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- $|U_{e2}| = 0.56 \pm 0.02$, $|U_{\mu3}| = 0.68 \pm 0.06$, $|U_{e3}| = 0.15 \pm 0.03$

Neutrino flavor parameters

- $\Delta m_{21}^2 = (7.6 \pm 0.2) \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| = (2.4 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- $|U_{e2}| = 0.56 \pm 0.02$, $|U_{\mu3}| = 0.68 \pm 0.06$, $|U_{e3}| = 0.15 \pm 0.03$
- $|U_{23}| > \text{any } |V_{ij}|; |U_{12}| > \text{any } |V_{ij}| \quad (i \neq j)$
- $m_2/m_3 \gtrsim 1/6$ > any m_i/m_j for charged fermions
- So far, neither smallness nor hierarchy
- Is neutrino flavor different from charged fermion flavor?

Structure is in the eye of the beholder

$$|U|_{3\sigma} = \begin{pmatrix} 0.79 - 0.86 & 0.50 - 0.61 & 0.0 - 0.2 \\ 0.25 - 0.53 & 0.47 - 0.73 & 0.56 - 0.79 \\ 0.21 - 0.51 & 0.42 - 0.69 & 0.61 - 0.83 \end{pmatrix}$$

• Tribimaximal-ists:

$$|U|_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0\\ \sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2}\\ \sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

• Anarch-ists:

$$|U|_{\text{anarchy}} = \begin{pmatrix} \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \\ \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \\ \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \end{pmatrix}$$

Intermediate summary II

- Why is there smallness and hierarchy in the flavor parameters?
- Is there a relation Dirac/Majorana ⇔ hierarchy/anarchy?
 Is there a relation Dirac/Majorana ⇔ Abelian/non-Abelian?
- How does new physics at TeV suppress its flavor violation? Is the solution related to the previous ones?

Flavor Physics

What will we learn?

Questions for the LHC

- What is the mechanism of electroweak symmetry breaking?
- What separates the electroweak scale from the Planck scale?
- What happened at the electroweak phase transition $(10^{-11} \text{ second after the big bang})?$
- What are the dark matter particles?
- How was the baryon asymmetry generated?
- What is the solution of the flavor puzzles?

Experimentalists: Flavor at ATLAS/CMS???

• ATLAS/CMS are not optimized for flavor

Experimentalists: Flavor at ATLAS/CMS???

• ATLAS/CMS are not optimized for flavor

But...

- They can identify $e, \mu, (\tau)$
- They can tell 3rd generation quarks (b, t) from light quarks

Theorists: Flavor at ATLAS/CMS???

- The scale of flavor dynamics is unknown
- Very likely, it is well above the LHC direct reach

Theorists: Flavor at ATLAS/CMS???

- The scale of flavor dynamics is unknown
- Very likely, it is well above the LHC direct reach

But...

- If new particles that couple to the SM fermions are discovered –
 ⇒ New flavor parameters can be measured
 - Spectrum (degeneracies?)
 - Flavor decomposition (alignment?)
- In combination with flavor factories, we may...
 - Understand how the NP flavor puzzle is (not) solved \implies Probe NP at $\Lambda_{\rm NP} \gg TeV$
 - Get hints about the solution to the SM flavor puzzle

What will we learn?

Gauge+Gravity Mediation

- Example: High (but not too high) scale gauge mediation
 - Gravity mediation sub-dominant but non-negligible

•
$$r = \frac{\text{gravity-med}}{\text{gauge-med}} \sim \left(\frac{\pi m_M}{\alpha m_P}\right)^2 \frac{1}{n_M}$$

•
$$\widetilde{M}^2_{\tilde{E}_{L,R}}(m_M) = \tilde{m}^2_{\tilde{E}_{L,R}}(\mathbf{1} + rX_{\tilde{E}_{L,R}})$$

• Degeneracy depends on r

Assume: The flavor structure of X determined by FN:

•
$$X_{\tilde{E}_L} \sim \begin{pmatrix} 1 & U_{e2} & U_{e3} \\ \cdot & 1 & U_{\mu3} \\ \cdot & \cdot & 1 \end{pmatrix}; \quad X_{\tilde{E}_R} \sim \begin{pmatrix} 1 & \frac{m_e/m_\mu}{U_{e2}} & \frac{m_e/m_\tau}{U_{e3}} \\ \cdot & 1 & \frac{m_\mu/m_\tau}{U_{\mu3}} \\ \cdot & \cdot & 1 \end{pmatrix}$$

• Mixing depends only on X which is related to the SM flavor

SUSY flavor parameters from $\tilde{\ell}_1, e, \mu$

Flavor Physics

What will we learn?

Lessons from $\tilde{\ell}_1, e, \mu$

- Determine Δm_{21} and $\sin \theta_{12}$: It is consistent with $\mu \to e\gamma$? How the SUSY flavor problem is solved
- Determine $\Delta m_{21}, \Delta m_{54}, \ldots$: What is messenger scale of gauge mediation (M_m) ? Probe physics at $M_m \sim 10^{15}$ GeV
- Determine $|K_{e2}/K_{\mu2}|$: Is the FN mechanism at work? How the SM flavor puzzle is solved

The role of flavor factories (FF)

ATLAS/CMS and flavor factories give complementary information

- In the absence of NP at ATLAS/CMS: flavor factories will be crucial to find Λ_{NP}
- Consistency between ATLAS/CMS and FF: necessary to understand the NP flavor puzzle
- NP in $c \to u$? $s \to d$? $b \to d$? $b \to s$? $t \to c$? $t \to u$? $\mu \to e$? $\tau \to \mu$? $\tau \to e$?
 - MFV?
 - Structure related to SM?
 - Structure unrelated to SM?
 - Anarchy?

[Hiller, Hochberg, Nir, JHEP0903(09)115; JHEP1003(10)079]]

What will we learn?

What will we learn?

Summary

Flavor Physics

Thanks to my flavor collaborators:

Kfir Blum, Jonathan Feng, Sky French, Oram Gedalia, Eilam Gross, Daniel Grossman, Yuval Grossman, Gudrun Hiller, Yonit Hochberg, Gino Isidori, David Kirkby, Christopher Lester, Zoltan Ligeti, Gilad Perez, Yael Shadmi, Jesse Thaler, Ofer Vitells, Tomer Volansky, Jure Zupan **Flavor Physics**

Backup Transparencies

Flavor Physics

Hochberg, Nir, work in progress

Grossman, Kagan, Nir, Phys. Rev. D75 (2007) 036008 [hep-ph/0609178]

ΔA_{CP}

Evidence for New Physics

•
$$\Delta A_{CP} = A(K^+K^-) - A(\pi^+\pi^-)$$

$$A_f = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

• The Standard Model:

$$\Delta A_{CP} \sim \frac{4\alpha_s}{\pi} \mathcal{I}m \frac{V_{ub}^* V_{cb}}{V_{us}^* V_{cs}} \sim 3 \times 10^{-4}$$

ΔA_{CP}

Evidence for New Physics

•
$$\Delta A_{CP} = A(K^+K^-) - A(\pi^+\pi^-)$$

$$A_f = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

• The Standard Model:

$$\Delta A_{CP} \sim \frac{4\alpha_s}{\pi} \mathcal{I}m \frac{V_{ub}^* V_{cb}}{V_{us}^* V_{cs}} \sim 3 \times 10^{-4}$$

• LHCb:

$$\Delta A_{CP} = -(0.82 \pm 0.21 \pm 0.11) \times 10^{-2}$$

[LHCb, arXiv:1112.0938]

Direct CP Violation

• $\Delta A_{CP}(\text{LHCb}) =$ $a_{CP}^{\text{dir}}(K^+K^-) - a_{CP}^{\text{dir}}(\pi^+\pi^-) + (0.098 \pm 0.029)a^{\text{ind}}$

• $a^{\text{ind}} = (-0.03 \pm 0.23) \times 10^{-2}$

Direct CP Violation

- $\Delta A_{CP}(\text{LHCb}) =$ $a_{CP}^{\text{dir}}(K^+K^-) - a_{CP}^{\text{dir}}(\pi^+\pi^-) + (0.098 \pm 0.029)a^{\text{ind}}$
- $a^{\text{ind}} = (-0.03 \pm 0.23) \times 10^{-2}$

•
$$\Longrightarrow$$
 Direct CP violation:
 $a^{\operatorname{dir}}(f) = \frac{|A_f|^2 - |\bar{A}_f|^2}{|A_f|^2 + |\bar{A}_f|^2}$

- $A_f = A_T (1 + r_f e^{+i\phi_f} e^{+i\delta_f}), \quad \bar{A}_f = A_T (1 + r_f e^{-i\phi_f} e^{+i\delta_f})$ $\implies a^{dir}(f) \approx 2r_f \sin \phi_f \sin \delta_f$
- $r_f \sim 10^{-2}$ is required

Grossman, Kagan, Nir, Phys. Rev. D75 (2007) 036008 [hep-ph/0609178]

• Often strong constraints from $D^0 - \overline{D}^0$ mixing or ϵ'/ϵ

 ΔA_{CP}

Flavor Physics

Blum, Hochberg, Nir, JHEP 09 (2010) 035

Evidence for New Physics

•
$$A_{\rm SL}^b = \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

• The Standard Model:

 $A^b_{\rm SL} = -(2.8\pm0.5)\times10^{-4}$

[Lenz and Niesrte, JHEP 0706, 072 (2007)]

Evidence for New Physics

•
$$A_{\rm SL}^b = \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

• The Standard Model:

 $A^b_{\rm SL} = -(2.8 \pm 0.5) \times 10^{-4}$

[Lenz and Niesrte, JHEP 0706, 072 (2007)]

$$A^b_{\rm SL} = -(7.9 \pm 1.7 \pm 0.9) \times 10^{-3}$$

[D0, 1106.6308; PRD82,032001 (2010)]

Hints for New Physics?

	SM	Exp	
A^b_{SL}	-0.00028 ± 0.00005	-0.008 ± 0.002	D0
$A^d_{ m SL}$	-0.0006 ± 0.0002	-0.005 ± 0.005	HFAG
$\phi_s(B_s \to J/\psi\phi)$	-0.036 ± 0.002	$+0.13 \pm 0.18 \pm 0.07$	LHCb
$\phi_s(B_s \to J/\psi f^0)$	-0.036 ± 0.002	$-0.44 \pm 0.44 \pm 0.02$	LHCb

Four-quark operators

$$\mathcal{H}_{\text{eff}}^{\Delta B = \Delta S = 2} = \frac{1}{\Lambda^2} \left(\sum_{i=1}^5 z_i Q_i + \sum_{i=1}^3 \tilde{z}_i \widetilde{Q}_i \right)$$

$$A^b_{\rm SL} \implies \Lambda \lesssim 700 \text{ TeV}$$

$\underline{\mathbf{MFV}}$

• \tilde{z}_i highly suppressed;

$$\frac{z_1}{y_t^4 (V_{ts} V_{tb}^*)^2} = r_1^+ - r_1^- y_b^2,$$

$$\frac{z_{2,3}}{y_t^4 (V_{ts} V_{tb}^*)^2} = r_{2,3} (v^2 / \Lambda^2) y_b^2,$$

$$\frac{z_{4,5}}{y_t^4 (V_{ts} V_{tb}^*)^2} = r_{4,5}^+ y_b y_s - r_{4,5}^- y_b^3 y_s$$

•
$$r_{1,4,5}^+$$
 - real

•
$$A_{\rm SL}^b \implies \Lambda_{\rm MFV} \lesssim 500 \ {\rm GeV} \ \tan \beta$$

$\mathbf{MFV} + \mathbf{small} \ \mathbf{tan} \ \beta$

- If $y_b \ll 1$: Only $Q_{2,3}$ can give large CPV in $B_s \overline{B}_s$ mixing
- $A_{\rm SL}^b \implies \Lambda_{Q_2} \lesssim 250 \ {\rm GeV} \ \sqrt{\tan\beta}$
- Further predictions: $S_{\psi K} \approx S_{\psi K}^{\rm SM} - 0.15 \approx 0.65 \pm 0.05$ $S_{\psi \phi} \approx S_{\psi \phi}^{\rm SM} + 0.25 \approx 0.25 \pm 0.06$
- Most likely, tree-level exchange of a scalar

CP violation as a probe of New Physics

The size of new MFV effects on CP violating observables:

		$y_b \sim 1$			$y_b \ll 1$	
i	$S_{\psi\phi}$	$S_{\psi K}$	ϵ_K	$S_{\psi\phi}$	$S_{\psi K}$	ϵ_K
1	small	small	large	small	small	large
$2,\!3$	large	large	small	large	large	small
$4,\!5$	large	small	large	small	small	large

- A-priori, seven different patterns
- Four would exclude MFV: SLL, SLS, LSS, LLL
- Within MFV:

 $LLS \implies Q_{2,3}, LSL \implies Q_{4,5} + large \tan\beta, SSL \implies Q_{1,4,5}$

Flavor Violation (FV)

- $\mathcal{L}_{\text{kinetic+gauge}}$ has a large global symmetry: $G_{\text{global}} = [U(3)]^5$
- $\mathcal{L}_{\text{Yukawa}} = \overline{Q_L}_i Y_{ij}^u \tilde{\phi} U_{Rj} + \overline{Q_L}_i Y_{ij}^d \phi D_{Rj} + \overline{L_L}_i Y_{ij}^e \phi E_{Rj}$ breaks $G_{\text{global}} \to U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$
- Flavor physics:

interactions that break the $[SU(3)]^5$ symmetry

- $Q_L \to V_Q Q_L$, $U_R \to V_U U_R$, $D_R \to V_D D_R$ = Change of interaction basis
- Can be used to reduce the number of parameters in Y^u, Y^d

Kobayashi and Maskawa (I)

The number of real and imaginary quark flavor parameters:

- With two generations: $2 \times (4_R + 4_I) - 3 \times (1_R + 3_I) + 1_I = 5_R + 0_I$
- With three generations: $2 \times (9_R + 9_I) - 3 \times (3_R + 6_I) + 1_I = 9_R + 1_I$
- The two generation SM is CP conserving The three generation SM is CP violating

CP violation = a single imaginary parameter in the CKM matrix:

•
$$\mathcal{L}_W \sim g V_{ij} \bar{u}_{Li} d_{Lj} W^-$$

 $V \simeq \begin{pmatrix} 1 & \lambda & A \lambda^3 (\rho + i\eta) \\ -\lambda & 1 & A \lambda^2 \\ A \lambda^3 (1 - \rho + i\eta) & -A \lambda^2 & 1 \end{pmatrix}$

Flavor Physics

Kobayashi and Maskawa (II)

The achievements:

- Predicting the third generation
- Suggesting the correct mechanism of CP violation

What have we learned?

$$S_{\psi K_S}$$

• Babar/Belle:
$$A_{\psi K_S}(t) = \frac{\frac{d\Gamma}{dt}[\overline{B^0_{\text{phys}}}(t) \rightarrow \psi K_S] - \frac{d\Gamma}{dt}[B^0_{\text{phys}}(t) \rightarrow \psi K_S]}{\frac{d\Gamma}{dt}[\overline{B^0_{\text{phys}}}(t) \rightarrow \psi K_S] + \frac{d\Gamma}{dt}[B^0_{\text{phys}}(t) \rightarrow \psi K_S]}$$

• Theory:
$$A_{\psi K_S}(t) = S_{\psi K_S} \sin(\Delta m_B t)$$

• SM:
$$S_{\psi K_S} = \mathcal{I}m\left[\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \frac{V_{cb} V_{cd}^*}{V_{cb}^* V_{cd}}\right] = \frac{2\eta (1-\rho)}{\eta^2 + (1-\rho)^2}$$

- The approximations involved are better than one percent!
- Experiments: $S_{\psi K_S} = 0.671 \pm 0.024$