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Flavor Physics

Plan of Talk

1. Introduction

2. Past: What have we learned?

Lessons from the B-factories

3. Present: Open questions

• The NP flavor puzzle

• The SM flavor puzzle

4. Future: What will we learn?

Flavor@LHC
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Introduction

Why is flavor physics interesting?

• Flavor physics is sensitive to new physics at ΛNP ≫ Eexperiment

FCNC suppressed within the SM by αnW , |Vij |,mf

• The Standard Model flavor puzzle:

Why are the flavor parameters small and hierarchical?

(Why) are the neutrino flavor parameters different?

• The New Physics flavor puzzle:

If there is NP at the TeV scale, why are FCNC so small?

The solution =⇒ Clues for the subtle structure of the NP
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Introduction

Why is flavor physics interesting?

• Flavor physics is sensitive to new physics at ΛNP ≫ Eexperiment

FCNC suppressed within the SM by αnW , |Vij |,mf

• The Standard Model flavor puzzle:

Why are the flavor parameters small and hierarchical?

(Why) are the neutrino flavor parameters different?

• The New Physics flavor puzzle:

If there is NP at the TeV scale, why are FCNC so small?

The solution =⇒ Clues for the subtle structure of the NP

• CDF: Att̄FB(mtt̄ > 450 GeV) = +0.48± 0.11

SM: Att̄FB(mtt̄ > 450 GeV) = +0.09± 0.01
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Introduction

A brief history of FCNC

• Γ(K → µµ) ≪ Γ(K → µν) =⇒ Charm [GIM, 1970]

• ∆mK =⇒ mc ∼ 1.5 GeV [Gaillard-Lee, 1974]

• εK ̸= 0 =⇒ Third generation [KM, 1973]

• ∆mB =⇒ mt ≫ mW [Various, 1986]
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Introduction

Why is CPV interesting?

• SM CPV cannot explain the baryon asymmetry – a puzzle:

There must exist new sources of CPV

Electroweak baryogenesis? (Testable at the LHC)

Leptogenesis? (Window to Λseesaw)

• Within the SM, a single CP violating parameter η:

In addition, QCD = CP invariant (θQCD irrelevant)

Strong predictive power (correlations + zeros)

Excellent tests of the flavor sector
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Introduction

Why is CPV interesting?

• SM CPV cannot explain the baryon asymmetry – a puzzle:

There must exist new sources of CPV

Electroweak baryogenesis? (Testable at the LHC)

Leptogenesis? (Window to Λseesaw)

• Within the SM, a single CP violating parameter η:

In addition, QCD = CP invariant (θQCD irrelevant)

Strong predictive power (correlations + zeros)

Excellent tests of the flavor sector

• D0: AbSL = (−7.9± 1.7± 0.9)× 10−3

SM: AbSL = (−0.23± 0.06)× 10−3

• LHCb: ∆ACP = (−0.82± 0.21± 0.11)× 10−2

SM: ∆ACP ∼< 10−3
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Introduction

A brief history of CPV

• 1964− 2000

• |ε| = (2.284± 0.014)× 10−3; Re(ε′/ε) = (1.67± 0.26)× 10−3
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Introduction

A brief history of CPV

• 1964− 2000

• |ε| = (2.284± 0.014)× 10−3; Re(ε′/ε) = (1.67± 0.26)× 10−3

• 2000− 2011

• SψKS = +0.67± 0.02

• SϕKS = +0.56± 0.18, Sη′KS
= +0.59± 0.07,

Sπ0KS
= +0.57± 0.17, Sf0KS = +0.62± 0.12

• SK+K−KS
= −0.82± 0.07, SKSKSKS = +0.74± 0.17

• Sπ+π− = −0.65± 0.07, Cπ+π− = −0.38± 0.06

• Sψπ0 = −0.93± 0.15, SDD = −0.89± 0.26, SD∗D∗ = −0.77± 0.14

• AK∓ρ0 = +0.37±0.11, AηK∓ = −0.37±0.09, Af2K∓ = −0.68±0.20

• AK∓π± = −0.098± 0.012, AηK∗0 = +0.19± 0.05

• . . .
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Flavor Physics

What have we learned?
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What have we learned?

Testing CKM – Take I

• Assume: CKM matrix is the only source of FV and CPV

=⇒ Four CKM parameters: λ,A, ρ, η

• λ known from K → πℓν

A known from b→ cℓν

• Many observables are f(ρ, η):

– b→ uℓν =⇒ ∝ |Vub/Vcb|2 ∝ ρ2 + η2

– ∆mBd
/∆mBs =⇒ ∝ |Vtd/Vts|2 ∝ (1− ρ)2 + η2

– SψKS
=⇒ 2η(1−ρ)

(1−ρ)2+η2

– Sρρ(α)

– ADK(γ)

– ϵK
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What have we learned?

The B-factories Plot
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Very likely, the CKM mechanism dominates FV and CPV

Flavor Physics 10/35



What have we learned?

Testing CKM - take II

• Assume: New Physics in leading tree decays - negligible

• Allow arbitrary new physics in loop processes

• Consider only tree decays and B0 −B
0
mixing

• Define hde
2iσd = ANP(B0 → B)/ASM(B0 → B)

=⇒ Four parameters: ρ, η (CKM), hd, σd (NP)

• Use |Vub/Vcb|, ADK , SψK , Sρρ, ∆mBd
, Ad

SL

• Fit to η, ρ, hd, σd

• Find whether η = 0 is allowed

If not =⇒ The KM mechanism is at work

• Find whether hd ≫ 1 is allowed

If not =⇒ The KM mechanism is dominant
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What have we learned?

η ̸= 0?
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• The KM mechanism is at work
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What have we learned?

hd ≪ 1?
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• The KM mechanism dominates CP violation

• The CKM mechanism is a major player in flavor violation
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What have we learned?

Several ∼ 3σ tensions

• SψK vs. sin 2β from global fit

• BR(B → τν) vs. prediction from global fit

• AbSL vs. (almost) null prediction of the SM

• ∆ACP vs. (almost) null prediction of the SM
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What have we learned?

Intermediate summary I

• The KM phase is different from zero (SM violates CP)

• The KM mechanism is the dominant source of the CP violation

observed in meson decays

• Complete alternatives to the KM mechanism are excluded

(Superweak, Approximate CP)

• CP violation in D,Bs may still hold surprises

• No evidence for corrections to CKM

• NP contributions to the observed FCNC are at most

comparable to the CKM contributions

• NP contributions are very small in s→ d, c→ u, b→ d, b→ s
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Flavor Physics

The NP Flavor Puzzle
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The NP flavor puzzle

The SM = Low energy effective theory

1. Gravity =⇒ ΛPlanck ∼ 1019 GeV

2. mν ̸= 0 =⇒ ΛSeesaw ≤ 1015 GeV

3. m2
H -fine tuning; Dark matter =⇒ ΛNP ∼ TeV

⇓
• The SM = Low energy effective theory

• Must write non-renormalizable terms suppressed by Λd−4
NP

• Ld=5 =
yνij

Λseesaw
LiLjϕϕ

• Ld=6 contains many flavor changing operators
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The NP flavor puzzle

New Physics

• The effects of new physics at a high energy scale ΛNP can be

presented as higher dimension operators

• For example, we expect the following dimension-six operators:
zsd
Λ2

NP
(dLγµsL)

2 + zcu
Λ2

NP
(cLγµuL)

2 + zbd
Λ2

NP
(dLγµbL)

2 + zbs
Λ2

NP
(sLγµbL)

2

• New contribution to neutral meson mixing, e.g.
∆mB

mB
∼ f2

B

3 × |zbd|
Λ2

NP

• Generic flavor structure ≡ zij ∼ 1 or, perhaps, loop− factor

Flavor Physics 18/35



The NP flavor puzzle

Some data

∆mK/mK 7.0× 10−15

∆mD/mD 8.7× 10−15

∆mB/mB 6.3× 10−14

∆mBs/mBs 2.1× 10−12

ϵK 2.3× 10−3

AΓ/yCP ≤ 0.2

SψKS 0.67± 0.02

Sψϕ ≤ 1
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The NP flavor puzzle

High Scale?

• For zij ∼ 1 (and Im(zij) ∼ 1), ΛNP ∼>
10−4√
∆m/m

TeV

Mixing ΛCPC
NP ∼> ΛCPV

NP ∼>

K −K 1000 TeV 20000 TeV

D −D 1000 TeV 3000 TeV

B −B 400 TeV 800 TeV

Bs −Bs 70 TeV 70 TeV
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The NP flavor puzzle

High Scale?

• For zij ∼ 1 (and Im(zij) ∼ 1), ΛNP ∼>
10−4√
∆m/m

TeV

Mixing ΛCPC
NP ∼> ΛCPV

NP ∼>

K −K 1000 TeV 20000 TeV

D −D 1000 TeV 3000 TeV

B −B 400 TeV 800 TeV

Bs −Bs 70 TeV 70 TeV

• Did we misinterpret the Higgs fine tuning problem?

• Did we misinterpret the dark matter puzzle?
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The NP flavor puzzle

Small (hierachical?) flavor parameters?

• For ΛNP ∼ 1 TeV , zij ∼< 108(∆mij/m)

Mixing |zij | ∼< Im(zij) ∼<

K −K 8× 10−7 6× 10−9

D −D 5× 10−7 1× 10−7

B −B 5× 10−6 1× 10−6

Bs −Bs 2× 10−4 2× 10−4
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The NP flavor puzzle

Small (hierachical?) flavor parameters?

• For ΛNP ∼ 1 TeV , zij ∼< 108(∆mij/m)

Mixing |zij | ∼< Im(zij) ∼<

K −K 8× 10−7 6× 10−9

D −D 5× 10−7 1× 10−7

B −B 5× 10−6 1× 10−6

Bs −Bs 2× 10−4 2× 10−4

• The flavor structure of NP@TeV must be highly non-generic

Degeneracies/Alignment

• How? Why? = The NP flavor puzzle
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Flavor Physics

The SM Flavor Puzzle
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The SM flavor puzzle

Smallness and Hierarchy

Yt ∼ 1, Yc ∼ 10−2, Yu ∼ 10−5

Yb ∼ 10−2, Ys ∼ 10−3, Yd ∼ 10−4

Yτ ∼ 10−2, Yµ ∼ 10−3, Ye ∼ 10−6

|Vus| ∼ 0.2, |Vcb| ∼ 0.04, |Vub| ∼ 0.004, δKM ∼ 1

• For comparison: gs ∼ 1, g ∼ 0.6, g′ ∼ 0.3, λ ∼ 1

• SM flavor parameters have structure: smallness + hierarchy

• Why? = The SM flavor puzzle

– Approximate symmetry? [Froggatt-Nielsen]

– Strong dynamics? [Nelson-Strassler]

– Location in extra dimension? [Arkani-Hamed-Schmaltz]

– ?
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The SM flavor puzzle

Neutrino flavor parameters

• ∆m2
21 = (7.6±0.2)×10−5 eV2, |∆m2

32| = (2.4±0.1)×10−3 eV2

• |Ue2| = 0.56± 0.02, |Uµ3| = 0.68± 0.06, |Ue3| = 0.15± 0.03
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The SM flavor puzzle

Neutrino flavor parameters

• ∆m2
21 = (7.6±0.2)×10−5 eV2, |∆m2

32| = (2.4±0.1)×10−3 eV2

• |Ue2| = 0.56± 0.02, |Uµ3| = 0.68± 0.06, |Ue3| = 0.15± 0.03

• |U23| > any |Vij |; |U12| > any |Vij | (i ̸= j)

• m2/m3 ∼> 1/6 > any mi/mj for charged fermions

• So far, neither smallness nor hierarchy

• Is neutrino flavor different from charged fermion flavor?
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The SM flavor puzzle

Structure is in the eye of the beholder

|U |3σ =


0.79− 0.86 0.50− 0.61 0.0− 0.2

0.25− 0.53 0.47− 0.73 0.56− 0.79

0.21− 0.51 0.42− 0.69 0.61− 0.83


• Tribimaximal-ists:

|U |TBM =


√
2/3

√
1/3 0√

1/6
√
1/3

√
1/2√

1/6
√
1/3

√
1/2


• Anarch-ists:

|U |anarchy =


O(0.6) O(0.6) O(0.6)

O(0.6) O(0.6) O(0.6)

O(0.6) O(0.6) O(0.6)
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The Flavor Puzzles

Intermediate summary II

• Why is there smallness and hierarchy in the flavor parameters?

• Is there a relation Dirac/Majorana ⇔ hierarchy/anarchy?

Is there a relation Dirac/Majorana ⇔ Abelian/non-Abelian?

• How does new physics at TeV suppress its flavor violation?

Is the solution related to the previous ones?
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Flavor Physics

What will we learn?
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The LHC

Questions for the LHC

• What is the mechanism of electroweak symmetry breaking?

• What separates the electroweak scale from the Planck scale?

• What happened at the electroweak phase transition

(10−11 second after the big bang)?

• What are the dark matter particles?

• How was the baryon asymmetry generated?

• What is the solution of the flavor puzzles?
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The LHC

Experimentalists: Flavor at ATLAS/CMS???

• ATLAS/CMS are not optimized for flavor
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The LHC

Experimentalists: Flavor at ATLAS/CMS???

• ATLAS/CMS are not optimized for flavor

But...

• They can identify e, µ, (τ)

• They can tell 3rd generation quarks (b, t) from light quarks
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The LHC

Theorists: Flavor at ATLAS/CMS???

• The scale of flavor dynamics is unknown

• Very likely, it is well above the LHC direct reach
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The LHC

Theorists: Flavor at ATLAS/CMS???

• The scale of flavor dynamics is unknown

• Very likely, it is well above the LHC direct reach

But...

• If new particles that couple to the SM fermions are discovered –

=⇒ New flavor parameters can be measured

– Spectrum (degeneracies?)

– Flavor decomposition (alignment?)

• In combination with flavor factories, we may...

– Understand how the NP flavor puzzle is (not) solved

=⇒ Probe NP at ΛNP ≫ TeV

– Get hints about the solution to the SM flavor puzzle
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What will we learn?

Gauge+Gravity Mediation

• Example: High (but not too high) scale gauge mediation

• Gravity mediation sub-dominant but non-negligible

• r = gravity−med
gauge−med ∼

(
πmM

αmP

)2
1
nM

• M̃2
ẼL,R

(mM ) = m̃2
ẼL,R

(1+ rXẼL,R
)

• Degeneracy depends on r

Assume: The flavor structure of X determined by FN:

• XẼL
∼


1 Ue2 Ue3

· 1 Uµ3

· · 1

; XẼR
∼


1

me/mµ

Ue2

me/mτ

Ue3

· 1
mµ/mτ

Uµ3

· · 1


• Mixing depends only on X which is related to the SM flavor
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What will we learn?

SUSY flavor parameters from ℓ̃1, e, µ

True Measured

ℓ̃1 135.83 GeV 135.9 ± 0.1 GeV

χ0
1 224.83 GeV 225.10 ± 0.04 GeV

∆m(ℓ̃1,2) 4.95 GeV 5.06 ± 0.06 GeV

ℓ̃4 282.86 GeV 283.1 ± 0.2 GeV

ℓ̃5 303.41 GeV 306 ± 1 GeV

ℓ̃6 343.53 GeV 341 ± 1 GeV

|Ke2/Kµ2|2 0.069 0.054 ± 0.008

[Feng, Lester, Nir, Shadmi et al., PRD77(2008)076002; PRD80(2009)114004; JHEP01(2010)047]
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What will we learn?

Lessons from ℓ̃1, e, µ

• Determine ∆m21 and sin θ12:

It is consistent with µ→ eγ?

How the SUSY flavor problem is solved

• Determine ∆m21, ∆m54, . . .:

What is messenger scale of gauge mediation (Mm)?

Probe physics at Mm ∼ 1015 GeV

• Determine |Ke2/Kµ2|:
Is the FN mechanism at work?

How the SM flavor puzzle is solved
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What will we learn?

The role of flavor factories (FF)

ATLAS/CMS and flavor factories give complementary information

• In the absence of NP at ATLAS/CMS:

flavor factories will be crucial to find ΛNP

• Consistency between ATLAS/CMS and FF:

necessary to understand the NP flavor puzzle

• NP in c→ u? s→ d? b→ d? b→ s? t→ c? t→ u?

µ→ e? τ → µ? τ → e?

– MFV?

– Structure related to SM?

– Structure unrelated to SM?

– Anarchy?

[Hiller, Hochberg, Nir, JHEP0903(09)115; JHEP1003(10)079]]
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What will we learn?

Summary

Excluded

1

1

Kij

0
0

mj-mi

mj+mi

Flavor Factories
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What will we learn?

Summary

Excluded

1

1

Kij

0
0

mj-mi

mj+mi

Flavor Factories

Kij
1

1

0
0

Flavor

Factory

ATLAS/

CMS

mj-mi

mj+mi

FF+ATLAS/CMS
[Grossman, Ligeti, Nir, PTP122(09)125 [0904.4262]]
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Flavor Physics

Backup Transparencies
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Flavor Physics

∆ACP

Hochberg, Nir, work in progress

Grossman, Kagan, Nir, Phys. Rev. D75 (2007) 036008 [hep-ph/0609178]
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∆ACP

Evidence for New Physics

• ∆ACP = A(K+K−)−A(π+π−)

Af = Γ(D0→f)−Γ(D
0→f)

Γ(D0→f)+Γ(D
0→f)

• The Standard Model:

∆ACP ∼ 4αs

π ImV ∗
ubVcb

V ∗
usVcs

∼ 3× 10−4
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∆ACP

Evidence for New Physics

• ∆ACP = A(K+K−)−A(π+π−)

Af = Γ(D0→f)−Γ(D
0→f)

Γ(D0→f)+Γ(D
0→f)

• The Standard Model:

∆ACP ∼ 4αs

π ImV ∗
ubVcb

V ∗
usVcs

∼ 3× 10−4

• LHCb:

∆ACP = −(0.82± 0.21± 0.11)× 10−2

[LHCb, arXiv:1112.0938]
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∆ACP

Direct CP Violation

• ∆ACP (LHCb) =

adirCP (K
+K−)− adirCP (π

+π−) + (0.098± 0.029)aind

• aind = (−0.03± 0.23)× 10−2
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∆ACP

Direct CP Violation

• ∆ACP (LHCb) =

adirCP (K
+K−)− adirCP (π

+π−) + (0.098± 0.029)aind

• aind = (−0.03± 0.23)× 10−2

• =⇒ Direct CP violation:

adir(f) =
|Af |2−|Āf |2

|Af |2+|Āf |2

• Af = AT (1 + rfe
+iϕf e+iδf ), Āf = AT (1 + rfe

−iϕf e+iδf )

=⇒ adir(f) ≈ 2rf sinϕf sin δf

• rf ∼ 10−2 is required

Grossman, Kagan, Nir, Phys. Rev. D75 (2007) 036008 [hep-ph/0609178]

• Often strong constraints from D0 −D
0
mixing or ϵ′/ϵ
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Flavor Physics

Ab
SL

Blum, Hochberg, Nir, JHEP 09 (2010) 035
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Ab
SL

Evidence for New Physics

• AbSL =
N++

b −N−−
b

N++
b +N−−

b

• The Standard Model:

AbSL = −(2.8± 0.5)× 10−4

[Lenz and Niesrte, JHEP 0706, 072 (2007)]
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Ab
SL

Evidence for New Physics

• AbSL =
N++

b −N−−
b

N++
b +N−−

b

• The Standard Model:

AbSL = −(2.8± 0.5)× 10−4

[Lenz and Niesrte, JHEP 0706, 072 (2007)]

• D0:

AbSL = −(7.9± 1.7± 0.9)× 10−3

[D0, 1106.6308; PRD82,032001 (2010)]
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Ab
SL

Hints for New Physics?

SM Exp

AbSL −0.00028± 0.00005 −0.008± 0.002 D0

AdSL −0.0006± 0.0002 −0.005± 0.005 HFAG

ϕs(Bs → J/ψϕ) −0.036± 0.002 +0.13± 0.18± 0.07 LHCb

ϕs(Bs → J/ψf0) −0.036± 0.002 −0.44± 0.44± 0.02 LHCb
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Ab
SL

Four-quark operators

H∆B=∆S=2
eff = 1

Λ2

(∑5
i=1 ziQi +

∑3
i=1 z̃iQ̃i

)

Qsb1 = b̄αLγµs
α
Lb̄
β
Lγµs

β
L, Q̃sb1 = b̄αRγµs

α
Rb̄

β
Rγµs

β
R,

Qsb2 = b̄αRs
α
Lb̄
β
Rs

β
L, Q̃sb2 = b̄αLs

α
Rb̄

β
Ls

β
R,

Qsb3 = b̄αRs
β
Lb̄
β
Rs

α
L, Q̃sb3 = b̄αLs

β
Rb̄

β
Ls

α
R,

Qsb4 = b̄αRs
α
Lb̄
β
Ls

β
R, Qsb5 = b̄αRs

β
Lb̄
β
Ls

α
R

AbSL =⇒ Λ ∼< 700 TeV
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Ab
SL

MFV

• z̃i highly suppressed;

z1
y4t (VtsV

∗
tb)

2
= r+1 − r−1 y

2
b ,

z2,3
y4t (VtsV

∗
tb)

2
= r2,3(v

2/Λ2)y2b ,

z4,5
y4t (VtsV

∗
tb)

2
= r+4,5ybys − r−4,5y

3
bys

• r+1,4,5 - real

• AbSL =⇒ ΛMFV ∼< 500 GeV tanβ
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Ab
SL

MFV + small tan β

• If yb ≪ 1: Only Q2,3 can give large CPV in Bs −Bs mixing

• AbSL =⇒ ΛQ2 ∼< 250 GeV
√
tanβ

• Further predictions:

SψK ≈ SSM
ψK − 0.15 ≈ 0.65± 0.05

Sψϕ ≈ SSM
ψϕ + 0.25 ≈ 0.25± 0.06

• Most likely, tree-level exchange of a scalar
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Ab
SL

CP violation as a probe of New Physics

The size of new MFV effects on CP violating observables:

yb ∼ 1 yb ≪ 1

i Sψϕ SψK ϵK Sψϕ SψK ϵK

1 small small large small small large

2,3 large large small large large small

4,5 large small large small small large

• A-priori, seven different patterns

• Four would exclude MFV: SLL, SLS, LSS, LLL

• Within MFV:

LLS =⇒ Q2,3, LSL =⇒ Q4,5+large tanβ, SSL =⇒ Q1,4,5
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What have we learned?

Flavor Violation (FV)

• Lkinetic+gauge has a large global symmetry: Gglobal = [U(3)]5

• LYukawa = QLiY
u
ij ϕ̃URj +QLiY

d
ijϕDRj + LLiY

e
ijϕERj

breaks Gglobal → U(1)B × U(1)e × U(1)µ × U(1)τ

• Flavor physics:

interactions that break the [SU(3)]5 symmetry

⇓
• QL → VQQL, UR → VUUR, DR → VDDR

= Change of interaction basis

• Can be used to reduce the number of parameters in Y u, Y d
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What have we learned?

Kobayashi and Maskawa (I)

The number of real and imaginary quark flavor parameters:

• With two generations:

2× (4R + 4I)− 3× (1R + 3I) + 1I = 5R + 0I

• With three generations:

2× (9R + 9I)− 3× (3R + 6I) + 1I = 9R + 1I

• The two generation SM is CP conserving

The three generation SM is CP violating

CP violation = a single imaginary parameter in the CKM matrix:

• LW ∼ gVij ūLidLjW
−

V ≃


1 λ Aλ3(ρ+ iη)

−λ 1 Aλ2

Aλ3(1− ρ+ iη) −Aλ2 1
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What have we learned?

Kobayashi and Maskawa (II)

The achievements:

• Predicting the third generation

• Suggesting the correct mechanism of CP violation
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What have we learned?

SψKS

• Babar/Belle: AψKS
(t) =

dΓ
dt [B

0
phys(t)→ψKS ]− dΓ

dt [B
0
phys(t)→ψKS ]

dΓ
dt [B

0
phys(t)→ψKS ]+ dΓ

dt [B
0
phys(t)→ψKS ]

• Theory: AψKS
(t) = SψKS

sin(∆mBt)

• SM: SψKS
= Im

[
V ∗
tbVtd

VtbV ∗
td

VcbV
∗
cd

V ∗
cbVcd

]
= 2η(1−ρ)

η2+(1−ρ)2

• The approximations involved are better than one percent!

• Experiments: SψKS
= 0.671± 0.024
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