Testing NRQCD factorization at the LHC

Bernd Kniehl

II. Institut für Theoretische Physik Universität Hamburg

Physics opportunities with LHC at 7 TeV KEK, 16–18 February 2012

In collaboration with Mathias Butenschön Phys. Rev. Lett. **104**, 072001 (2010) Phys. Rev. Lett. **106**, 022003 (2011) Phys. Rev. D **84**, 051501(R) (2011) Phys. Rev. Lett. **107**, 232001 (2011) arXiv:1201.1872 [hep-ph]

Virtual corrections

Divergences

Outline

- **Introduction:** Heavy Quarkonia, NRQCD, J/ψ Production
- Virtual Corrections: Tensor Reduction and Integration-by-Parts
- Cancellation of Divergences
- 4 Numerical Evaluation and Final Results

5 Summary

Introduction
•000000000

Virtual corrections

Divergences

Heavy Quarkonia

Heavy quarkonia: Bound states of heavy quark and its antiquark.

- Charmonia ($c\overline{c}$) and Bottomonia ($b\overline{b}$)
- Top decays too fast for bound state.

n ^{2S+1} L _J	Name	Mass
1 ¹ S ₀	η_c	2980 MeV
1 ³ S ₁	J/ψ	3097 MeV
1 ³ P ₀	χ _c 0	3415 MeV
1 ³ P ₁	Xc1	3511 MeV
1 ¹ P ₁	hc	3526 MeV
1 ³ P ₂	Xc2	3556 MeV
2 ¹ S ₀	η_c'	3637 MeV
2 ³ S ₁	ψ'	3686 MeV

Charmonium spectrum (cc):

- 1974: Discovery of *J*/ψ:
 First observation of heavy quarks
- Long lifetime of *cc*: Spectrum and radiative transitions seen ⇒ Potential models
- Calculation of energy spectrum: Challenge for lattice QCD.
- Production and decay rates: One of first applications for perturbative QCD.

Production and Decay Rates of Heavy Quarkonia

The classic approach: Color-singlet model

• Calculate cross section for *cc*-pair in physical color-singlet

(= color neutral) state. In case of J/ψ : $c\overline{c}[{}^{3}S_{1}^{[1]}]$

- Then multiply by J/ψ wave function or its derivative at origin.
- Leftover infrared divergences at P wave quarkonia.

 Theoretically inconsistent

Nonrelativistic QCD (NRQCD):

- 1995: Rigorous effective field theory by Bodwin, Braaten, Lepage
- Based on factorization of soft and hard scales (Scale hierarchy: Mv², Mv ≪ Λ_{QCD} ≪ M)
- Theoretically consistent: No leftover singularities.
- Can explain hadroproduction at Tevatron

Virtual corrections

Divergences

J/ψ Production within NRQCD

Factorization theorem:
$$\sigma_{J/\Psi} = \sum_{n} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\Psi}[n] \rangle$$

- *n*: Every possible Fock state, including color-octet states.
- $\sigma_{c\overline{c}[n]}$: Production rate of $c\overline{c}[n]$, calculated in perturbative QCD.
- ⟨O^{J/ψ}[n]⟩: Long distance matrix elements (ME): describe cc[n] → J/ψ, universal, extracted from experiment.

Scaling rules: MEs scale with relative velocity v ($v^2 \approx 0.2$):

- Double expansion in *v* and α_s .
- Leading term in v ($n = {}^{3}S_{1}^{[1]}$) equals color-singlet model.

Virtual corrections

Divergences

Results Summary

Production of J/ψ : NRQCD vs. Experiment

Hadroproduction at Tevatron:

Photoproduction at HERA:

Importance of color octet unclear

Our work: NRQCD calculation for photo- and hadroproduction and e^+e^- annihilation at NLO

 \implies Establish universality of long distance matrix elements.

Virtual corrections

Divergences

Results Summary

Production of J/ψ : NRQCD vs. Experiment (cont.)

Electroproduction at HERA:

Evidence of color-octet mechanism at LO

Production of J/ψ : NRQCD vs. Experiment (cont.)

Polarization at HERA:

$$\frac{d\sigma}{d\cos\vartheta} \propto 1 + \lambda_{\vartheta}\cos^2\vartheta$$
Puzzling situation: LO NRQCD and NLO CSM faired How about NLO NRQCD?

Testing NRQCD factorization in heavy-quarkonium production at the LHC

Production of J/ψ : Summary of Calculations

Hadroproduction:

	³ S ₁ ^[1]	${}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{0/1/2}^{[8]}$
Born	Baier, Rückl (1980)	Cho, Leibovich (1996)
NLO	Campbell et al. (2007)	Butenschön, BK (2010)
		Ma et al. (2010)

Photoproduction:

	³ S ₁ ^[1]	${}^{1}S_{0}^{[8]},{}^{3}S_{1}^{[8]},{}^{3}P_{0/1/2}^{[8]}$
Born	Berger, Jones (1981)	Ko, Lee, Song (1996)
NLO	Krämer et al. (1995)	Butenschön, BK (2009)

Open question of ME universality:

- NLO NRQCD calculation: after 14 years!
- Difficulty: virtual corrections to P states

Virtual corrections

Divergences

Direct J/ψ Production

Factorization formulas: (e.g. photoproduction)

 Convolute partonic cross sections with proton PDFs:

$$\sigma_{\scriptscriptstyle \mathsf{hadr}} = \sum_i \int dx \; f_{i/p}(x) \cdot \sigma_{\scriptscriptstyle \mathsf{part},i}$$

• NRQCD factorization:

$$\sigma_{\scriptscriptstyle \mathsf{part},i} = \sum_n \sigma(\gamma i
ightarrow c \overline{c}[n] + X) \cdot \langle \mathsf{O}^{J/\psi}[n]
angle$$

Amplitudes for cc[n] production by projector application, e.g.:

$$\begin{aligned} &A_{c\overline{c}[{}^{3}\mathbb{S}_{1}^{[1/8]}]} = \varepsilon_{\alpha} \operatorname{Tr}\left[\mathbb{C} \Pi^{\alpha} A_{c\overline{c}}\right]|_{q=0} \\ &A_{c\overline{c}[{}^{3}\mathbb{P}_{1}^{[8]}]} = \varepsilon_{\alpha\beta} \frac{d}{dq_{\beta}} \operatorname{Tr}\left[\mathbb{C} \Pi^{\alpha} A_{c\overline{c}}\right]|_{q=0} \end{aligned}$$

- $A_{c\overline{c}}$: Amputated pQCD amplitude for open $c\overline{c}$ production.
- q: Relative momentum between c and \overline{c} .

Main Difference to Previous Calculations

Virtual corrections: Two different approaches:

- First loop integration, then projectors: (Previous publications)
 - Loop integrals Coulomb divergent.
- First projectors, then loop integration: (Our method)
 - + No Coulomb singularities.
 - + One scale less in loop integration.
 - Loop integrals not standard form.

Where do Coulomb divergences come from?

- Projectors: Relative momentum $q \rightarrow 0$.
- Scalar diagrams with gluon between external c and c, e.g.:

$$I(q) \equiv \underbrace{P/2+q}_{00000} c$$

$$\lim_{q \to 0} I(q) = \frac{A}{q^2} + \frac{B}{\varepsilon} + C$$

But: $I(0) = \frac{B}{\varepsilon} + C$

Virtual correction: 00000 Divergences

Results Summary

Organisation of our Calculation

FeynArts: Generate Feynman diagrams

Mathematica script: Apply color projectors. Evaluate color factors with FeynCalc.

FORM: Apply spin projectors. Treat squared amplitudes.

Two methods for virtual corrections:

FORM: Perform our tensor reduction \implies Scalar integrals

FORM: Use Integration by parts relations \implies Master integrals (uses AIR)

FORM: Cancel scalar products by denominators. Neg. propagator powers. Directly apply IBP relations (uses AIR). \implies Master integrals (Not for ¹S₀ spin singlet state)

Mathematica script: Simplify results due to kinematics (Size dramatically reduced)

Analytical check: Results of two methods equal. All divergences cancel.

Numerical evaluation:

FORTRAN: Phase space integrations with VEGAS. Phase space slicing method.

Virtual corrections

Divergences

Results Summary

Virtual Corrections: Tensor Reduction

Partonic subprocesses: $\gamma g \rightarrow c \overline{c}[n] + g$ and $\gamma q \rightarrow c \overline{c}[n] + q$

Example loop diagram:

Application of projectors:

• P-States: Derivatives \implies double powers of propagators

• Setting $q = 0 \implies$ propagators with linear dependent momenta

• Example:
$$\int d^D Q \, \frac{Q^{\mu} \, Q^{\nu}}{Q^2 \left[(Q + \frac{P}{2} + q)^2 - m^2 \right] \left[(Q - \frac{P}{2} + q)^2 - m^2 \right]^2}$$

Standard Passarino-Veltman formulas do not work:

- Because naively: $D^{\mu\nu}(\frac{P}{2}, -\frac{P}{2}, -\frac{P}{2}, 0, m, m, m)$ \implies Gram determinants zero (by which we must divide)
- Denner-Dittmaier methods [NPB 734, 62] also do not apply here.

Virtual corrections

Divergences

Tensor Reduction: Our Formulas

Example:
$$\int d^D Q \, \frac{Q^{\mu} \, Q^{\nu}}{Q^2 \left[(Q + \frac{P}{2})^2 - m^2 \right] \left[(Q - \frac{P}{2})^2 - m^2 \right]^2}$$

Our approach:

- Classify integrals according to number of independent momenta, not according to number of propagators.
- Tensor decomposition for the example:

$$B^{\mu\nu}(rac{P}{2},0,m;-1,m;2,1) = g^{\mu\nu}B_{1,0} + rac{1}{4}P^{\mu}P^{\nu}B_{0,2}$$

We derived extension of Passarino-Veltman formulas valid for:

- Arbitrary number of Lorentz indices
- Up to five propagators of which one can have a double power
- One propagator momentum may depend linearly on the others.

Therefore: Can reduce all our tensor integrals to scalar ones!

Virtual corrections

Divergences

Integration by Parts: The Method

IBP relations:
$$0 = \frac{\partial}{\partial Q^{\mu}} Q^{\mu} f(Q, p_1, \dots, p_n)$$
$$0 = \frac{\partial}{\partial Q^{\mu}} p_i^{\mu} f(Q, p_1, \dots, p_n)$$

• $f(Q, p_1, ..., p_n)$: Integrand of dim. reg. Feynman integral

• Q: Loop momentum, p_i: External momenta

Reduction of scalar integrals:

- Application of IBP relations leads to relations between different integrals of one topology.
- A topology means integrals differing only in propagator powers.
- Linear combinations of these integral relations can express one integral in terms of others with lower powers of the propagators.
 Reduction to set of master integrals.

Integration by Parts: Our Application

Normally:

- IBP mainly applied in multi loop calculations.
- Normal one loop diagrams are already master integrals.

In our case:

- IBP works fantastically because: Linear dependent propagator momenta, double powers.
- Find reduction formulas with AIR (uses Laporta algorithm).

Our four topologies. Every scalar integral belongs to one:

- Propagator powers: $\lambda_i = -4, -3, -2, -1, 0, 1, 2$
- Dashed lines: Photons, gluons or light quarks

Integration by Parts: The Results

After the reduction:

- 14 master integrals (4 boxes, 5 triangles, 4 bubbles, 1 tadpole)
- Full analytic results known.

One feature:

• Resulting expressions contain terms like: $\frac{1}{\varepsilon} \cdot B(...)$ with *B* a tadpole or bubble master integral

Consequences:

- Must expand corresponding master integrals up to $O(\varepsilon)$.
- Information about what are UV- and what IR-divergences is lost!
- In order to distinguish between UV and IR divergences: Extract UV divergences before IBP is applied. (No problem.)

Virtual corrections

Divergences •0000

Cancellation of Divergences

UV-divergences: Cancellation within virtual corrections:

- Loop integrals
- Charm mass renormalization
- Strong coupling constant renormalization
- Wave function renormalization of external particles

IR-divergences: Cancellation between:

- Virtual corrections (loop integrals + wave function renormal.)
- Soft and collinear parts of real corrections
- Universal part absorbed into proton and photon PDFs
- Radiative corrections to long distance matrix elements

Introduction Virtual corrections Divergences Results Summary

Overview over IR Singularity Structure

Virtual corrections

Divergences

Structure of Soft Singularities

S and P states: Soft #1 + Soft #2 + Soft #3 terms:

$$\begin{split} & A_{\text{soft,s}} = A_{\text{soft}}(0) = A_{\text{Born,s}} \cdot E(0) \\ & A_{\text{soft,p}} = A'_{\text{soft}}(0) = A_{\text{Born,p}} \cdot E(0) + A_{\text{Born,s}} \cdot E'(0) \\ & |A_{\text{soft,s}}|^2 = |A_{\text{Born,s}}|^2 \cdot E(0)^2 \\ & |A_{\text{soft,p}}|^2 = |A_{\text{Born,p}}|^2 \cdot E(0)^2 + 2 \operatorname{Re} A^*_{\text{Born,s}} A_{\text{Born,p}} \cdot E(0) E'(0) \\ & + |A_{\text{Born,s}}|^2 \cdot E'(0)^2 \end{split}$$

Testing NRQCD factorization in heavy-quarkonium production at the LHC

Virtual corrections

Divergences

Results Summary

Radiative Corrections to Long Distance MEs

In NRQCD: Long distance MEs = $c\overline{c}$ scattering amplitudes:

 $\begin{array}{l} \textbf{O}[n] = \textbf{4-fermion operators} \\ (n = {}^{3}\textbf{S}_{1}^{[1]}, {}^{1}\textbf{S}_{0}^{[8]}, {}^{3}\textbf{S}_{1}^{[8]}, {}^{3}\textbf{P}_{0/1/2}^{[8]}, \ldots) \end{array}$

Corrections to $\langle O^{J/\psi}[^3\!S_1^{[1/8]}]\rangle$ with NRQCD Feynman rules:

• UV singularity cancelled by renormalization of 4-fermion operat.

• IR singularity cancels soft #3 terms of *p* states!

Virtual corrections

Divergences

Real Corrections: Phase Space Slicing

Example: Squared amplitude for $\gamma + g \rightarrow c\overline{c}[{}^{3}S_{1}^{[8]}] + d + \overline{d}$:

- Infrared divergences: Cannot do complete integration numerically.
- Collinear and soft limits: Phase space and |M|² factorizes → Analytical D dimensional integration possible!

(Plotted against $(k_d + k_{\overline{d}})^2$ and $\cos \theta(c\overline{c}, d)$ in $d - \overline{d}$ rest frame for $s = 100 \text{ GeV}^2$, $t = -20 \text{ GeV}^2$.)

Idea: Split integration into two regions:

• $\delta s > 100(k_i \cdot k_j)^2$ or $\delta \sqrt{s} > 2E_{3/4}$: Analytical integration.

2 $\delta s < 100(k_i \cdot k_j)^2$ and $\delta \sqrt{s} < 2E_{3/4}$: Numerical integration.

Both contributions: $\log \delta$ terms. These terms cancel for small δ !

Virtual corrections

Divergences

Parameter Dependences

Dependence on slicing parameter and unphysical scales:

- Phase space slicing works!
 - \Longrightarrow Check on our kinematics and soft / collinear limits
- Dependence on renormalization and factorization scale: $0.7 \leq \sigma/\sigma_0 \leq 1.6$ if $0.5 < \mu_r/\mu_0 = \mu_f/\mu_0 < 2$.

Virtual corrections

Divergences

Global fit at NLO in NRQCD

Fit CO	LDMEs to	all available	world data on	J/ψ inclusive production:
type	\sqrt{s}	collider	collaboration	reference
рр	200 GeV	RHIC	PHENIX	PRD82(2010)012001
p p	1.8 TeV	Tevatron I	CDF	PRL97(1997)572; 578
p p	1.96 TeV	Tevatron II	CDF	PRD71(2005)032001
рр	7 TeV	LHC	ALICE, ATLAS,	talks; arXiv:1011.4193
			CMS, LHCb	
γp	300 GeV	HERA I	H1, ZEUS	EPJ25(2002)25; 27(2003)173
γp	319 GeV	HERA II	H1	EPJ68(2010)401
γγ	197 GeV	LEP II	DELPHI	PLB565(2003)76
e ⁺ e ⁻	10.6 GeV	KEKB	BELLE	PRD79(2009)071101
Best fit	values.			
10 ⁻² G	ieV ^{3+2L} PR	L106(2011)02	2003 new	
⟨𝟸(¹ ,	S ^[8] _{0_}))	4.50 ± 0.72	4.97 ± 0.4	44
⟨𝒴(³ ,	S ^[8])〉	0.312 ± 0.093	0.224 ± 0.0	059
$\langle \mathscr{O}(^3)$	$P_0^{[8]})\rangle$	-1.21 ± 0.35	-1.61 ± 0	.20
• χ^2 /d.o.f. = 857/194 = 4.42 for default prediction				
• $\propto v^4 \langle O_1(^3S_1) \rangle \rightsquigarrow NRQCD$ velocity scaling rules $$				

Virtual corrections

Divergences

Results Summary

Comparison with RHIC and Tevatron

- Data well described by CS+CO at NLO.
- CS orders of magnitudes below data.

Virtual corrections

Divergences

Results Summary

Comparison with Tevatron (cont.)

Relative importance of CO processes:

- Short-distance $\sigma(c\overline{c}[{}^{3}P_{J}^{[8]}]) < 0$ for $p_{T} \geq 7$ GeV.
- But: Short-distance cross sections and LDMEs unphysical (NRQCD scale and scheme dependence) ~> No problem!

Virtual corrections

Divergences

Results Summary

Comparison with ATLAS at LHC

- Data well described by CS+CO at NLO.
- CS orders of magnitudes below data.

Virtual corrections

Divergences

Results Summary

Comparison with CMS at LHC

- Data well described by CS+CO at NLO.
- CS orders of magnitudes below data.

Virtual corrections

Divergences

Results Summary

Comparison with ALICE and LHBb at LHC

• CS orders of magnitudes below data.

Virtual corrections

Divergences

Results Summary

Comparison with LHBb at LHC (cont.)

Virtual corrections

Divergences

Results Summary

Comparison with ZEUS at HERA I (1)

- $W = \gamma p$ CM energy.
- z = fraction of γ energy going to J/ψ in p rest frame.
- Singularity for $z \rightarrow 1$ eliminated by shape function in SCET.
- Data well described by CS+CO at NLO.
- CS factor of 3–5 below the data.

Virtual corrections

Divergences

Results Summary

Comparison with ZEUS at HERA I (2)

- Data for 0.4 < z < 0.9 exhausted by direct photoproduction.
- Resolved photoproduction only relevant for $z \leq 0.4$.

Virtual corrections

Divergences

Results Summary

Comparison with ZEUS at HERA I (3)

- $\langle \mathscr{O}({}^{3}P_{0}^{[8]}) \rangle < 0 \rightsquigarrow {}^{3}P_{0}^{[8]}$ contribution negative.
- Negative interference with ${}^{1}S_{0}^{[8]}$ contribution beneficial.
- ${}^{3}S_{1}^{[8]}$ contribution negligible here.

Virtual corrections

Divergences

Results Summary

Comparison with H1 at HERA I

- Data well described by CS+CO at NLO.
- CS factor of 3–5 below data.

Virtual corrections

Divergences

Results Summary

Comparison with H1 at HERA II

- Data well described by CS+CO at NLO.
- CS factor of 3–5 below the data.

Virtual corrections

Divergences

Results Summary

Comparison with DELPHI at LEP II

- Agreement with NRQCD at NLO worse than 2002 with LO.
- Just 16 DELPHI events with $p_T > 1$ GeV.
- No results from ALEPH, L3, OPAL.
- Data exhausted by single-resolved contribution.

Virtual corrections

Divergences

Results Summary

Comparison with BELLE at KEKB

• At NLO, both CSM and NRQCD agree with data.

Virtual corrections

Divergences

Results Summary

Polarized J/ψ photoproduction

Decay angular distribution: $\frac{d\Gamma(J/\psi \to l^+ l^-)}{d\cos\theta \, d\phi} \approx 1 + \lambda \cos^2 \theta + \mu \sin(2\theta) \cos \phi + \frac{v}{2} \sin^2 \theta \cos(2\phi)$ Polarization observables in spin density matrix formalism: $\lambda = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \qquad \mu = \frac{\sqrt{2}\text{Re}\, d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}, \qquad v = \frac{2d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}$

 $\lambda = 0, +1, -1$: unpolarized, transversely and longitudinally porarized.

Virtual corrections

Divergences

Results Summary

Comparison with H1 and ZEUS

- No z cut on ZEUS data ~> diffractive production included.
- Perturbative stability in NRQCD higher than in CSM.
- J/ψ preferrably unpolarized at large p_T .

Virtual corrections

Divergences

Results Summary

Comparison with H1 and ZEUS (cont.)

- Large scale uncertainties due to low cut $p_T > 1$.
- Overall χ² w.r.t. default prediction more than halved by going from CSM to NRQCD.

Virtual corrections

Divergences

Results Summary

Comparison with CDF and ALICE

- CDF I and II data mutually inconsistent for $p_T < 12$ GeV.
- CDF J/ψ polarization anomaly persits at NLO.
- 4/8 ALICE points agree w/ NLO NRQCD within errors, others $<2\sigma$ away.

Virtual corrections

Divergences

Results Summary

Decomposition for ALICE

- $d\sigma_{\text{unpol}} = d\sigma_{00} + 2d\sigma_{11}$; $d\sigma_{1,-1}$ auxiliary.
- Previously unknown ${}^{3}P_{J}^{[8]}$ NLO correction significant.

Testing NRQCD factorization in heavy-quarkonium production at the LHC

Introduction	Virtual corrections	Divergences 00000	Results	Summary
Summarv				

- NRQCD provides rigorous factorization theorem for production and decay of heavy quarkonia; predicts:
 - existence of CO states;
 - universality of LDMEs.
- Previous LO tests not conclusive.
- Here: first global analysis of unpolarized- J/ψ world data at NLO.
- Hadro- and photoproduction: striking evidence of NRQCD vs. CSM.
- $\gamma\gamma$ scattering, e^+e^- annihilation: not conclusive yet.
- Contributions from feed-down and *B* decays throughout small against theoretical uncertainties.
- Hadroproduction data alone cannot reliably fix all 3 CO LDMEs and give misleading results for their linear combinations; cf. Ma et al., PRL106(2011)042002; PRD84(2011)114001; MB & BK, AIPConfProc1343(2011)409.

Summary (cont.)

- Case for NRQCD less strong in polarized J/ψ photoproduction at HERA.
- Polarized J/ψ hadroproduction at Tevatron in severe conflict with NLO NRQCD, while first LHC data nicely agree.
- Physics opportunities with LHC at 7 TeV (and above) include verification/falsification of NRQCD factorization in charmonium and bottomonium yield and polarization!

Backup Slides

Tensor Reduction: Definitions

Idea: Derive general formulas for arbitrary number of Lorentz indices.

Tensor decomposition of most general B-function:

$$\int \frac{d^{D}Q \quad Q^{\mu_{1}} Q^{\mu_{2}} \cdots Q^{\mu_{P}}}{\left[Q^{2} - m_{0}^{2}\right]^{y} \left[(Q + p)^{2} - m_{1}^{2}\right] \left[(Q + ap)^{2} - m_{5}^{2}\right]^{x}} \qquad (x \leq 0; \ y \leq 1)$$

$$\equiv B^{\mu_1 \cdots \mu_P}(p, m_0, m_1; a, m_5; x, y) = \sum_{n=0}^{P \text{DIV2}} \left\{ g^n p^{P-2n} \right\}^{\mu_1 \cdots \mu_P} B_{n, P-2n}$$

Here, $\{g^n p^{P-2n}\}^{\mu_1...\mu_P}$ is the sum of all different terms when distributing the *P* Lorentz indices over the *n* g's and the (P-2n) p's.

Example:
$$\begin{split} \mathbf{B}^{\mu\nu\rho\sigma} &= p^{\mu}p^{\nu}p^{\rho}p^{\sigma}\mathbf{B}_{0,4} + \left(g^{\mu\nu}p^{\rho}p^{\sigma}+g^{\mu\rho}p^{\nu}p^{\sigma}+g^{\mu\sigma}p^{\nu}p^{\rho}\right. \\ &+ \left. \left(g^{\nu\rho}p^{\mu}p^{\sigma}+g^{\nu\sigma}p^{\mu}p^{\rho}+g^{\rho\sigma}p^{\mu}p^{\nu}\right)\mathbf{B}_{1,2} \right. \\ &+ \left. \left(g^{\mu\nu}g^{\rho\sigma}+g^{\mu\rho}g^{\nu\sigma}+g^{\mu\sigma}g^{\nu\rho}\right)\mathbf{B}_{2,0} \end{split} \end{split}$$

Tensor Reduction: Step 1

Step 1: Multiply with $g_{\mu_1\mu_2}$ and p_{μ_1} and compare Lorentz structure:

Reduction formulas for B-functions:

$$B_{r+1,s} = \frac{1}{D+2r+s-1} \left[B_{r,s}(\emptyset) + m_0^2 B_{r,s} - Z_{r,s+1} \right]$$
$$B_{r,s+1} = \frac{1}{p^2} \left[Z_{r,s} - s B_{r+1,s-1} \right]$$

with

$$Z_{i,j} = rac{1}{2} \left[egin{matrix} B_{i,j}(1) - B_{i,j}(0) - \left(p^2 - m_1^2 + m_0^2
ight) B_{i,j}
ight]
ight.$$

Here, $B_{i,j}(\emptyset)$ and $B_{i,j}(1)$ are the coefficients of the tensor structure $\{g^i p^j\}^{\mu_1 \dots \mu_{2i+j}}$ after deleting the 0th/1st propagator.

Tensor Reduction: Step 2

Tensor coefficients for integrals with deleted propagators:

$$B_{r,s}(\mathbf{1}) = \begin{cases} x = 0, \ s > 0: & 0 \\ x = 0, \ s = 0: & A_r(m_0; 0, 0, y) \\ x > 0: & a^s B_{r,s}(ap, m_0, m_5; 1, m_5; x - 1, y) \end{cases}$$
$$B_{r,s}(\mathbf{0}) = \begin{cases} y > 1: & B_{r,s}(p, m_0, m_1; a, m_5; x, y - 1) \\ y = 1, \ x = 0: & (-1)^s A_r(m_1; m_5, x, 1) \\ y = 1, \ x > 0: & \sum_{\alpha=0}^s {s \choose \alpha} (-1)^{\alpha} (a - 1)^{s - \alpha} \\ & \times B_{r,s - \alpha} ((a - 1)p, m_1, m_5; 1, m_5; x - 1, 1) \end{cases}$$

- Normal Passarino-Veltman: x = 0 and y = 1.
- C- and D-functions (two and three independent external momenta): We derived formulas as well, are more complicated.
 ⇒ Can reduce all occurring tensor integrals to scalar ones.

Gamma 5: Occurrence

Where do we have γ_5 ?

- Diagrams are pure QCD, free of γ_5 .
- But γ_5 in projector onto $c\overline{c}$ spin singlet states (like 1S_0):

Amplitude for $c\overline{c}[{}^{1}S_{0}]$ production: $A_{c\overline{c}[}{}^{1}S_{0}] = Tr[C\Pi_{0}A_{c\overline{c}}]|_{q=0}$

• A[cc]: Original diagrams with charm spinors amputated

•
$$\Pi_0 = (2m)^{-3/2} \left(\not P/2 - \not q - m \right) \gamma_5 \left(\not P/2 + \not q + m \right)$$

• Trace taken over *c*-spinline.

 $\implies \text{Long trace with } \gamma_5 \colon \text{Tr} [\gamma_5 \gamma_\alpha \gamma_\beta \gamma_\gamma \gamma_\delta \gamma_\epsilon \gamma_\zeta \gamma_\eta \gamma_\theta]$

γ_5 in *D* dimensions:

• $\{\gamma_5, \gamma^{\mu}\} = 0$ and $\text{Tr}[\gamma_5 \gamma^{\alpha} \gamma^{\beta} \gamma^{\gamma} \gamma^{\delta}] = 4i\varepsilon^{\alpha\beta\gamma\delta}$ incompatible. (Ambiguous results when changing order of rule application) Gamma 5

Tensor Reduction

Gamma 5: 't Hooft-Veltman-Breitenlohner-Maison

't Hooft-Veltman scheme: (= Breitenlohner-Maison scheme)

- Definition: $\gamma_5 := \frac{1}{4!} \varepsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$
- γ 's *D*-dimensional, but ε 4-dimensional!
- $\{\gamma_5, \gamma^{\mu}\} = 0$ no longer valid!
- Our application: No γ_5 related counterterms.

't Hooft-Veltman in our calculation:

$$\begin{array}{l} \bullet \quad A_{c\overline{c}[{}^{1}S_{0}]} \propto \operatorname{Tr}\left[\gamma_{5} \gamma_{\mu_{1}} \ldots \gamma_{\mu_{n}}\right] \rightarrow \frac{i}{4!} \varepsilon^{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} \operatorname{Tr}\left[\gamma_{\alpha_{1}}\gamma_{\alpha_{2}}\gamma_{\alpha_{3}}\gamma_{\alpha_{4}}\gamma_{\mu_{1}} \ldots \gamma_{\mu_{n}}\right] \\ \bullet \quad \text{In the end: } A^{*}A \propto \varepsilon^{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} \varepsilon^{\beta_{1}\beta_{2}\beta_{3}\beta_{4}} \rightarrow - \begin{vmatrix} \tilde{g}^{\alpha_{1}\beta_{1}} \ldots \tilde{g}^{\alpha_{1}\beta_{4}} \\ \vdots & \vdots \\ \tilde{g}^{\alpha_{4}\beta_{1}} \ldots \tilde{g}^{\alpha_{4}\beta_{4}} \end{vmatrix} \\ \bullet \quad \tilde{g}^{\mu\nu} \text{ 4-dimensional: } \tilde{g}_{\mu\nu}g^{\nu\rho} = \tilde{g}_{\mu}{}^{\rho}, \quad \tilde{g}_{\mu\nu}p^{\nu} = \tilde{p}_{\mu}, \quad \tilde{g}_{\mu\nu}\tilde{g}^{\mu\nu} = 4. \end{array}$$

Gamma 5