Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux

Mathias Garny (DESY)

KEK, POwLHC, 16.-18.02.12

based on arXiv:1112.5155, JCAP 1107 (2011) 028 (arXiv:1105.5367)

with Alejandro Ibarra, Stefan Vogl

Mathias Garny (DESY)

Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux

- Introduction
- Electroweak Internal Bremsstrahlung
- SU(2)_L singlet (Bino-like) DM
- $SU(2)_L$ doublet (Higgsino-like) DM
- Constraints from PAMELA \bar{p}/p measurement

WIMP Dark Matter

Kopp, Schwetz, Zupan 2011

Mathias Garny (DESY)

WIMP Dark Matter

• Anomalies in e^+/e^- and $e^+ + e^-$ reported by PAMELA and Fermi: Dark Matter? (not in this talk) Fermi 1110.2591

Mathias Garny (DESY)

WIMP Dark Matter

• PAMELA \bar{p}/p ratio measurement is in good agreement with expectation from secondary production

PAMELA 1007.0821

 This talk: Impact of p
/p constraints on WIMP with nearly degenerate mass spectrum

WIMP with nearly degenerate mass spectrum

 Scenarios where the dark matter particle χ couples to the Standard Model via a scalar particle η (e.g. η ≡ q̃) that is nearly degenerate in mass are difficult to constrain by collider searches of exotic charged or colored particles

 $m_{DM} \sim 10^2 - 10^3 {
m GeV}, \quad m_\eta - m_{DM} \lesssim \mathcal{O}(10-100) {
m GeV}$

• Complementarity of collider searches and indirect detection (direct detection)

- Majorana fermion χ (DM) couples to the SM via charged/colored scalar η, m_η ≥ m_{DM} (e.g. slepton/squark)
- Coupling to leptons

cf. Cao, Ma, Shaughnessy 2009

$$\chi \equiv (1, 1, 0) , \qquad \eta = \begin{pmatrix} \eta^+ \\ \eta^0 \end{pmatrix} \equiv (1, 2, 1/2)$$

$$\mathcal{L}_{int}^{fermion} = f \bar{\chi} (L_e i \sigma_2 \eta) + h.c. = f \bar{\chi} (\nu_{eL} \eta^0 - e_L \eta^+) + h.c.$$

 $\mathcal{L}_{int}^{scalar} = -\lambda_3 (\Phi^{\dagger} \Phi) (\eta^{\dagger} \eta) - \lambda_4 (\Phi^{\dagger} \eta) (\eta^{\dagger} \Phi)$

- Majorana fermion χ (DM) couples to the SM via charged/colored scalar η, m_η ≥ m_{DM} (e.g. slepton/squark)
- Coupling to leptons

cf. Cao, Ma, Shaughnessy 2009

$$\chi \equiv (1, 1, 0) , \qquad \eta = \begin{pmatrix} \eta^+ \\ \eta^0 \end{pmatrix} \equiv (1, 2, 1/2)$$

$$\mathcal{L}_{int}^{fermion} = f \bar{\chi}(L_e i \sigma_2 \eta) + h.c. = f \bar{\chi}(\nu_{eL} \eta^0 - e_L \eta^+) + h.c.$$

 $\mathcal{L}_{int}^{scalar} = -\lambda_3(\Phi^{\dagger} \Phi)(\eta^{\dagger} \eta) - \lambda_4(\Phi^{\dagger} \eta)(\eta^{\dagger} \Phi)$

$$m_{\eta^0}^2 = m_2^2 + (\lambda_3 + \lambda_4) v_{EW}^2 \ , m_{\eta^\pm}^2 = m_2^2 + \lambda_3 v_{EW}^2$$

- Majorana fermion χ (DM) couples to the SM via charged/colored scalar η, m_η ≥ m_{DM} (e.g. slepton/squark)
- Coupling to leptons

cf. Cao, Ma, Shaughnessy 2009

$$\chi \equiv (1, 1, 0) , \qquad \eta = \begin{pmatrix} \eta^+ \\ \eta^0 \end{pmatrix} \equiv (1, 2, 1/2)$$

$$\mathcal{L}_{int}^{fermion} = f \bar{\chi}(L_e i \sigma_2 \eta) + h.c. = f \bar{\chi}(\nu_{eL} \eta^0 - e_L \eta^+) + h.c.$$

 $\mathcal{L}_{int}^{scalar} = -\lambda_3(\Phi^{\dagger} \Phi)(\eta^{\dagger} \eta) - \lambda_4(\Phi^{\dagger} \eta)(\eta^{\dagger} \Phi)$

$$m_{\eta^0}^2 = m_2^2 + (\lambda_3 + \lambda_4) v_{EW}^2 \;, m_{\eta^\pm}^2 = m_2^2 + \lambda_3 v_{EW}^2$$

$$\Omega_{DM}h^2 \simeq 0.11 \left(\frac{0.35}{f}\right)^4 \left(\frac{m_{DM}}{100 \,\text{GeV}}\right)^2 \left[\frac{1 + m_{\eta^\pm}^4 / m_{DM}^4}{(1 + m_{\eta^\pm}^2 / m_{DM}^2)^4} + \frac{1 + m_{\eta^0}^4 / m_{DM}^4}{(1 + m_{\eta^0}^2 / m_{DM}^2)^4}\right]^{-1}$$

- Majorana fermion χ (DM) couples to the SM via charged/colored scalar η, m_η ≥ m_{DM} (e.g. slepton/squark)
- Coupling to leptons

cf. Cao, Ma, Shaughnessy 2009

$$\chi \equiv (1, 1, 0) , \qquad \eta = \begin{pmatrix} \eta^+ \\ \eta^0 \end{pmatrix} \equiv (1, 2, 1/2)$$

$$\mathcal{L}_{int}^{fermion} = f \bar{\chi}(L_e i \sigma_2 \eta) + h.c. = f \bar{\chi}(\nu_{eL} \eta^0 - e_L \eta^+) + h.c.$$

 $\mathcal{L}_{int}^{scalar} = -\lambda_3(\Phi^{\dagger} \Phi)(\eta^{\dagger} \eta) - \lambda_4(\Phi^{\dagger} \eta)(\eta^{\dagger} \Phi)$

$$m_{\eta^0}^2 = m_2^2 + (\lambda_3 + \lambda_4) v_{EW}^2 \;, m_{\eta^\pm}^2 = m_2^2 + \lambda_3 v_{EW}^2$$

$$\Omega_{DM}h^2 \simeq 0.11 \left(\frac{0.35}{f}\right)^4 \left(\frac{m_{DM}}{100 \text{ GeV}}\right)^2 \left[\frac{1 + m_{\eta^{\pm}}^4/m_{DM}^4}{(1 + m_{\eta^{\pm}}^2/m_{DM}^2)^4} + \frac{1 + m_{\eta^0}^4/m_{DM}^4}{(1 + m_{\eta^0}^2/m_{DM}^2)^4}\right]^{-1}$$

• Coupling to quarks $\eta=({\bf 3},{\bf 2},1/6)$ or $\eta=({\bf 3},{\bf 2},2/3)$

Indirect detection

 For Majorana dark matter, the annihilation rate in the Milky Way halo into light fermions is strongly suppressed (e.g. MSSM Neutralino annihilating via squark/slepton)

$$\sigma v_{\chi\chi \to f\bar{f}} = a + bv^2 \qquad a \propto m_f^2/m_{DM}^2, \quad v/c \sim 10^{-3}$$

$$x - f^+$$

 χ

Indirect detection

• For Majorana dark matter, the annihilation rate in the Milky Way halo into light fermions is strongly suppressed (e.g. MSSM Neutralino annihilating via squark/slepton)

$$\sigma v_{\chi\chi \to f\bar{f}} = a + bv^2 \qquad a \propto m_f^2/m_{DM}^2, \quad v/c \sim 10^{-3}$$

• The helicity suppression is lifted by the associated emission of a gauge boson, yielding annihilation rates which could be large enough to allow the indirect detection of the dark matter particles

$$\chi \chi \to f \bar{f} V, \qquad V = \gamma, W, Z, g$$

Bergstrom 89; Flores, Olive, Rudaz 89; Drees, Jungman, Kamionkowski Nojiri 93

• The 2 \rightarrow 3 annihilation rate is particularly enhanced when the dark matter particle is degenerate with the intermediate scalar particle

Virtual Internal Bremsstrahlung

 $\bullet \ 2 \to 2 \ \text{annihilation}$

$$\sigma v_{\chi\chi \to f\bar{f}} = \left[\mathcal{O}(v^0) \mathcal{O}\left(\frac{m_f}{m_{DM}}\right)^2 + \mathcal{O}(v^2) \right] \mathcal{O}\left(\frac{m_{DM}}{m_{\eta}}\right)^4$$

• 2 ightarrow 3 annihilation via FSR from nearly on-shell e^{\pm} (soft/collinear)

$$\sigma v_{\chi\chi o f \bar{f} \gamma}^{FSR} \simeq \frac{lpha_{em}}{\pi} \int_0^1 dx \frac{1-x}{x} \log[4m_{DM}^2(1-x)/m_f^2] \times \sigma v_{\chi\chi o f \bar{f}}$$

Virtual Internal Bremsstrahlung

 $\bullet \ 2 \to 2 \ \text{annihilation}$

$$\sigma v_{\chi\chi \to f\bar{f}} = \left[\mathcal{O}(v^0) \mathcal{O}\left(\frac{m_f}{m_{DM}}\right)^2 + \mathcal{O}(v^2) \right] \mathcal{O}\left(\frac{m_{DM}}{m_{\eta}}\right)^4$$

• 2 ightarrow 3 annihilation via FSR from nearly on-shell e^{\pm} (soft/collinear)

$$\sigma v_{\chi\chi o far f\gamma}^{FSR} \simeq rac{lpha_{em}}{\pi} \int_0^1 dx rac{1-x}{x} \log[4m_{DM}^2(1-x)/m_f^2] imes \sigma v_{\chi\chi o far f}$$

• 2 ightarrow 3 annihilation via VIB and FSR from off-shell e^{\pm}

$$\sigma v_{\chi\chi \to f\bar{f}\gamma}^{VIB/FSR} = \frac{\alpha_{em}}{\pi} \left[\mathcal{O}(v^0) \mathcal{O}\left(\frac{m_{DM}}{m_{\eta}}\right)^8 + \mathcal{O}(v^2) \mathcal{O}\left(\frac{m_{DM}}{m_{\eta}}\right)^4 \right]$$

$$\chi = \frac{\chi}{\chi^{+}} e^{+}$$

$$\chi = e^{-}$$

Bergstrom 89; Flores, Olive, Rudaz 89

Mathias Garny (DESY)

Electromagnetic Internal Bremsstrahlung $\chi \chi \rightarrow f \bar{f} \gamma$

Characteristic feature in the gamma ray spectrum

	$A_{\rm eff}(1 {\rm TeV})$	$\Delta E/E(1 \text{ TeV})$	ϵ_p	tobs
IACT1	0.18 km^2	15%	10^{-1}	50 h
IACT2	2.3 km^2	9%	10^{-2}	100 h
IACT3	23 km^2	7%	10^{-3}	5000 h

TABLE I: IACT benchmark models that, from top to bottom, roughly correspond to the H.E.S.S. 3. the future CTA 6 and the proposed DMA 7 telescope characteristics

solid: 2σ exclusion

s_1

dashed: 5σ dicovery

thin: S/B = 1%

Bringmann, Calore,

Vertongen, Weniger 11

Bergstrom 89; Bringmann, Bergstrom, Edsjo 07

Mathias Garny (DESY)

• Characteristic feature in the gamma ray spectrum

Bergstrom 89; Bringmann, Bergstrom, Edsjo 07

• Limits on the relevant cross sections from the non-observation of an excess in the cosmic \bar{p}/p ratio measured by PAMELA

MG, Ibarra, Vogl 11; Ciafaloni, Cirelli, Comelli, De Simone, Riotto, Urbano 11; Bell, Dent, Jacques, Weiler 11

Mathias Garny (DESY)

Spectrum of primary electroweak gauge bosons (for $m_{\eta^\pm}=m_{\eta^0})$

 m_{DM} = 300 GeV and $m_{\eta\pm}$ = $m_{\eta0}$ = 330 GeV

MG, Ibarra, Vogl 11

$$\frac{dN_W}{d\ln E} = \frac{1}{\sigma v(\chi \chi \to e\bar{e})} \left(\frac{v d\sigma(\chi \chi \to W\bar{e}\nu)}{d\ln E} + \frac{v d\sigma(\chi \chi \to We\bar{\nu})}{d\ln E} \right)$$

Ratio of 2 ightarrow 2 and 2 ightarrow 3 cross sections (for $m_{n^{\pm}}=m_{n^{0}}$)

 $m_{DM}=$ 300 GeV and $m_{n\pm}=m_{n0}$

MG, Ibarra, Vogl 11

- The 2 ightarrow 3 processes dominate for $m_\eta \lesssim 5 m_{DM}$
- Production of electroweak gauge bosons if $m_{DM} > M_W/2$, sizeable for $m_{DM}\gtrsim 100 {\rm GeV}$

Mass splitting $m_{\eta^0}^2 - m_{\eta^\pm}^2 = \lambda_4 v_{EW}^2$ with $\lambda_4 \sim {\cal O}(1)$

Longitudinal W-bosons: no kinematic suppression at the endpoint \Rightarrow harder spectrum, enhanced cross-section

$$\begin{split} \sigma v(\chi \chi \to W e \nu) &\approx \quad \frac{1}{\sin^2(\theta_W)} \left(\frac{2m_{\eta \pm}^2}{m_{\eta 0}^2 + m_{\eta \pm}^2} \right)^4 \left[1 + \frac{5}{8} \frac{(m_{\eta 0}^2 - m_{\eta \pm}^2)^2}{M_W^2 m_{DM}^2} \right] \sigma v(\chi \chi \to \gamma e \bar{e}) \\ &\approx \quad 4.32 \left(\frac{2m_{\eta \pm}^2}{m_{\eta 0}^2 + m_{\eta \pm}^2} \right)^4 \left[1 + \lambda_4^2 \left(\frac{300 \text{ GeV}}{m_{DM}} \right)^2 \right] \sigma v(\chi \chi \to \gamma e \bar{e}) \end{split}$$

MG, Ibarra, Vogl 11

Mathias Garny (DESY) Con

Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux

- Introduction
- Electroweak Internal Bremsstrahlung
- $SU(2)_L$ singlet (Bino-like) DM
- $SU(2)_L$ doublet (Higgsino-like) DM
- Constraints from PAMELA \bar{p}/p measurement

Branching ratio $\sigma v(\chi \chi \to X)/\sigma v(\chi \chi \to \gamma f \bar{f})$ for $m_{\eta^u} = m_{\eta^d}$ and $m_W/2 \ll m_{DM} = 300 \text{GeV} \ll m_{\eta}$

DM $\chi = (1,1,0)$	η	$Wf\overline{f}'$	ZfŦ	gf f
DM coupling to L_e	(1,2,1/2)	4.32	1.82	-
DM coupling to e _R	(1,1,1)	-	0.30	-
DM coupling to q_L	(3,2,1/6)	7.79	3.02	61.4
DM coupling to <i>u_R</i>	(3,1,2/3)	-	0.30	38.4
DM coupling to d_R	(3,1,-1/3)	—	0.30	154

$SU(2)_L$ singlet DM

Ratio of $2 \rightarrow 2$ and $2 \rightarrow 3$ cross sections for singlet Majorana DM annihilating into right-handed up-quarks or left-handed quarks, respectively, with mass splittings $\Delta m = 10, 50, 100$ GeV

Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux

- Introduction
- Electroweak Internal Bremsstrahlung
- SU(2)_L singlet (Bino-like) DM
- $SU(2)_L$ doublet (Higgsino-like) DM
- Constraints from PAMELA \bar{p}/p measurement

- Two doublets $\chi_1 \equiv (1,2,-\frac{1}{2})$, $\chi_2 \equiv (1,2,\frac{1}{2})$ (anomaly free)
- Mass splitting from radiative corrections $(m_{\chi^\pm}-m_{\chi^0})_{rad}\simeq 0.34 {
 m GeV}$
- Mass splitting from Dim-5 operator (we assume $\Lambda \lesssim 10 \text{TeV})$

$$\begin{split} \delta \mathcal{L}_{\rm mass}^{\rm fermion} &= \frac{1}{\Lambda} \Big[c_1(\bar{\chi}_1 i \sigma_2 \Phi^*) (\Phi^{\dagger} i \sigma_2 \chi_1^c) + c_2(\bar{\chi}_2 \Phi) (\Phi^{\top} \chi_2^c) + c_3(\bar{\chi}_2 \Phi) (\Phi^{\dagger} i \sigma_2 \chi_1^c) \Big] + {\rm h.c.} \\ \delta m_{\pm} &= m_{\chi^{\pm}} - m_{\chi} = \frac{v_{EW}^2}{2\Lambda} \big(c_3 + |c_1 - c_2| \big) \\ \delta m_0 &= m_{\chi'} - m_{\chi} = \frac{v_{EW}^2}{\Lambda} |c_1 - c_2| \end{split}$$

• Annihilation via gauge interaction $\chi\chi \rightarrow WW, ZZ$

$$\sigma v_{\chi\chi \to WW} = \frac{g^4}{32\pi} \frac{m_{\chi}^2 - M_W^2}{(m_{\chi}^2 + m_{\chi^{\pm}}^2 - M_W^2)^2} \sqrt{1 - M_W^2/m_{\chi}^2}$$

$$\sigma v_{\chi\chi \to ZZ} = \frac{g^4}{64\pi c_W^4} \frac{m_{\chi}^2 - M_Z^2}{(m_{\chi}^2 + m_{\chi'}^2 - M_Z^2)^2} \sqrt{1 - M_Z^2/m_{\chi}^2}$$

 $\bullet\,$ Annihilation into fermions via charged scalar $\eta\,$

$$\eta \equiv (1, 2, -\frac{1}{2}) : \mathcal{L}_{int} = f(\bar{\chi}_1 i \sigma_2 \eta^*) e_R - \lambda_3 (\Phi^{\dagger} \Phi) (\eta^{\dagger} \eta) - \lambda_4 (\Phi^{\dagger} \eta) (\eta^{\dagger} \Phi)$$
$$\eta \equiv (1, 1, 1) : \mathcal{L}_{int} = f(\bar{\chi}_1 i \sigma_2 L_e^c) \eta - \lambda_3 (\Phi^{\dagger} \Phi) (\eta^{\dagger} \eta)$$

 $\bullet\,$ Annihilation into fermions via charged scalar $\eta\,$

$$\eta \equiv (1, 2, -\frac{1}{2}) : \mathcal{L}_{int} = f(\bar{\chi}_1 i \sigma_2 \eta^*) e_R - \lambda_3 (\Phi^{\dagger} \Phi) (\eta^{\dagger} \eta) - \lambda_4 (\Phi^{\dagger} \eta) (\eta^{\dagger} \Phi)$$
$$\eta \equiv (1, 1, 1) : \mathcal{L}_{int} = f(\bar{\chi}_1 i \sigma_2 L_e^c) \eta - \lambda_3 (\Phi^{\dagger} \Phi) (\eta^{\dagger} \eta)$$

•
$$\chi\chi \to \gamma e\bar{e}$$
 via VIB, FSR

$$\sigma v_{\chi\chi \to f\bar{f}\gamma}^{VIB/FSR} = \frac{\alpha_{em}}{\pi} \left[\mathcal{O}(v^0) \mathcal{O}\left(\frac{m_{DM}}{m_{\eta}}\right)^8 + \mathcal{O}(v^2) \mathcal{O}\left(\frac{m_{DM}}{m_{\eta}}\right)^4 \right]$$

• $\chi\chi \rightarrow Ze\bar{e}$ via VIB, FSR, and ISR

$$\sigma v_{\chi\chi \to f\bar{f}Z}^{VIB/FSR/ISR} = \frac{\alpha_{em}}{\pi} \left[\mathcal{O}(v^0) \mathcal{O}\left(\frac{m_{DM}}{m_{\eta}}\right)^4 + \mathcal{O}(v^2) \mathcal{O}\left(\frac{m_{DM}}{m_{\eta}}\right)^4 \right]$$

- $\bullet~$ Cross-sections for $2 \rightarrow 2$ and $2 \rightarrow 3$ annihilation
- Typically $\chi\chi
 ightarrow WW/ZZ$ channels dominate
- The channels $\chi\chi
 ightarrow f ar{f} V$ can be important for $m_\eta pprox m_{DM}$

Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux

- Introduction
- Electroweak Internal Bremsstrahlung
- SU(2)_L singlet (Bino-like) DM
- $SU(2)_L$ doublet (Higgsino-like) DM
- Constraints from PAMELA \bar{p}/p measurement

• Rate of \bar{p} per unit of kinetic energy and volume

$$Q(T,\vec{r}) = \frac{1}{2} \frac{\rho^2(\vec{r})}{m_{\chi}^2} \sum_f \langle \sigma v \rangle_f \frac{dN_{\bar{p}}^f}{dT}$$

- Isothermal, NFW, Einasto profile with $ho(r_{\odot})=0.39 {
 m GeV/cm^3}$
- Propagation: two-zone diffusion model compatible with B/C ratio, three parameter sets corresponding to MIN, MED, MAX \bar{p} flux

$$0 = \frac{\partial f_{\bar{p}}}{\partial t} = \nabla \cdot (\mathcal{K}(T, \vec{r}) \nabla f_{\bar{p}}) - \nabla \cdot (\vec{V_c}(\vec{r}) f_{\bar{p}}) - 2h\delta(z)\Gamma_{\mathrm{ann}}f_{\bar{p}} + Q(T, \vec{r})$$

Model	δ	$K_0 (\mathrm{kpc}^2 / \mathrm{Myr})$	L(kpc)	$V_c (\rm km/s)$
MIN	0.85	0.0016	1	13.5
MED	0.70	0.0112	4	12
MAX	0.46	0.0765	15	5

- secondary \bar{p} flux from Donato, Maurin, Salati, Barrau, Boudoul, Taillet 01
- solar modulation in force field approximation $\phi_F = 500 MV$

Maximally allowed cross section (95% C.L.) from PAMELA \bar{p}/p measurement

MG, Ibarra, Vogl 11

Constraint on the BF in the milky way by imposing thermal relic density constraint $\Omega_{\chi}h^2 = 0.11$ in the $m_{DM} - \Delta m$ plane for MED propagation and NFW profile

Mathias Garny (DESY)

Constraint on the BF in the milky way for Doublet DM

Doublet DM pure gauge $\chi\chi \rightarrow WW/ZZ/WWZ/WW\gamma$ Doublet DM coupling to L_e

 $\begin{array}{l} \chi\chi \rightarrow {\it WW}/{\it ZZ}/{\it WWZ}/{\it WW}\gamma \\ \chi\chi \rightarrow {\it We}\bar\nu/{\it W}\bar{\it e}\nu/{\it Ze}\bar{\it e}/{\it Z}\nu\bar\nu \end{array}$

Mathias Garny (DESY)

Upper limits on the boost factor *BF* in the Milky Way obtained from the PAMELA \bar{p}/p data for several MSSM benchmark points at 95%C.L.

Model	m _{DM}	$BF(\bar{p}/p)$	$BF(\bar{p}/p)$
	[GeV]	2 ightarrow 2/3	2 ightarrow 3
BM2	453	< 5900	$< 1.3 \cdot 10^5$
BM3	234	< 1500	$< 1.3 \cdot 10^4$
BM <i>J</i> ′	316	< 330	$< 3.5 \cdot 10^4$
BM <i>I'</i>	141	< 11	< 6900

- in realistic models the upper bounds on the boost factor are at least one order of magnitude stronger than the conservative bounds
- BM3 has been discussed in as a possible explanation of the PAMELA positron excess, provided the boost factor in the Milky way is $\sim 3\times 10^4$ $_{Bergstrom,\ Bringmann,\ Edsjo\ 2008}$
- detection of a gamma-ray signal with a 5σ significance at MAGIC II or at the projected CTA with 30 hours of observation requires a boost factor in Draco larger than $\sim 10^4$ or $\sim 10^3$, respectively

Bringmann, Doro, Fornasa 2008

Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux

Conclusion

- For Majorana DM the annihilation channels into two fermions and one gauge boson can be important $\chi\chi \to f\bar{f}V$
- The 2 \rightarrow 3 channel is enhanced if the charged/colored scalar mediating the annihilation is nearly degenerate in mass with the DM \Rightarrow Complementarity of IDM/Collider searches
- Constraints from PAMELA \bar{p}/p data on the order of 10^{-25} cm³/sec for $\chi\chi \rightarrow We\nu$ and 10^{-26} cm³/sec for $\chi\chi \rightarrow gu\bar{u}$

Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux

Conclusion

- For Majorana DM the annihilation channels into two fermions and one gauge boson can be important $\chi\chi \to f\bar{f}V$
- The 2 \rightarrow 3 channel is enhanced if the charged/colored scalar mediating the annihilation is nearly degenerate in mass with the DM \Rightarrow Complementarity of IDM/Collider searches
- Constraints from PAMELA \bar{p}/p data on the order of 10^{-25} cm³/sec for $\chi\chi \rightarrow We\nu$ and 10^{-26} cm³/sec for $\chi\chi \rightarrow gu\bar{u}$

thank you!

MG, Alejandro Ibarra, Stefan Vogl arXiv:1112.5155, JCAP 1107 (2011) 028 (arXiv:1105.5367)

Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra

Density profile

Isothermal profile

$$\rho(r) = \frac{\rho_s}{1 + (r/r_s)^2} ,$$

Navarro-Frenk-White (NFW) profile

$$\rho(r) = \rho_s \frac{1}{r/r_s(1+r/r_s)^2} ,$$

Einasto profile

$$\rho(\mathbf{r}) = \rho_s \exp\left\{-\frac{2}{\alpha}\left[\left(\frac{\mathbf{r}}{\mathbf{r}_s}\right)^{\alpha} - 1\right]\right\}$$

Scale radius $r_s = 4.38$, 24.42, 28.44 kpc, respectively, $\alpha = 0.17$ for the Einasto profile. Besides, the parameter ρ_s is adjusted in order to yield a local dark matter density $\rho(r_{\odot}) = 0.39 \,\mathrm{GeV/cm^3}$ with $r_{\odot} = 8.5 \,\mathrm{kpc}$ being the distance of the Sun to the Galactic center and is given, respectively, by $\rho_s = 1.86$, 0.25 and 0.044 $\mathrm{GeV/cm^3}$.

Sommerfelfd enhancement for $SU(2)_L$ Doublet DM

Amplitude

$$\mathcal{A}_{\chi\chi\to SM} = s_0 \mathcal{A}^0_{\chi\chi\to SM} + s'_0 \mathcal{A}^0_{\chi'\chi'\to SM} + s_{\pm} \mathcal{A}^0_{\chi^+\chi^-\to SM}$$

Enhancement in the perturbative limit

$$s_0' \simeq rac{lpha_{em}}{\sqrt{2}s_{2W}^2} rac{m_{DM}}{M_Z + \sqrt{2m_{DM}\delta m_0}}, \ s_{\pm} \simeq rac{lpha_{em}}{2\sqrt{2}s_W^2} rac{m_{DM}}{M_W + \sqrt{2m_{DM}\delta m_{\pm}}}$$

Largest effect for $\chi\chi\to\chi^+\chi^-\to\gamma f\bar{f}$ due to 'ISR'

Mathias Garny (DESY)

(rough estimate)

- coloured scalar
 - $m_\eta > 875~{
 m GeV}$ for any $m_{
 m DM}$ (ATLAS dijet $95\% c.1~1.04 {
 m fb}^{-1}$)
 - 97 GeV $\leq m_\eta \leq$ 875 GeV, if $p_T, E_T^{miss} \lesssim$ 130 GeV
 - 33 44 ${
 m GeV} \le m_\eta \le$ 97 ${
 m GeV},$ if $m_\eta m_{
 m DM} \lesssim$ 10 ${
 m GeV}$ (L3)
- charged scalar
 - 60 GeV $\leq m_{\eta} \leq$ 94.4 97.5 GeV, if $m_{\eta} m_{\rm DM} \lesssim 10 15$ GeV (OPAL, L3, ALEPH)
 - 40 ${
 m GeV} \le m_\eta \le$ 60 ${
 m GeV}$, if $m_\eta m_{
 m DM} \lesssim$ 5 ${
 m GeV}$ (DELPHI)