Phenomenology of Doubly Charged Higgs Bosons at Hadron Colliders

Andrew Akeroyd

NExT Institute, SHEP, University of Southampton, UK

- Higgs Triplet Model (HTM) and doubly charged scalars $(H^{\pm\pm})$
- Leptonic decay channels $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$
- Production of $H^{\pm\pm}$ at hadron colliders
- Searches for $H^{\pm\pm}$ at the Large Hadron Collider

Collaborators: Mayumi Aoki (Kanazawa, Japan), Hiroaki Sugiyama (Ritsumeikan, Japan),

Cheng-Wei Chiang (Nat.Cent.Univ, Taiwan), Naveen Gaur (Delhi, India), Stefano Moretti (Soton, UK)

POwLHC, KEK, 18 February 2012 (based on work from $2005 \rightarrow 2012$)

The Higgs boson of the Standard Model is a spinless, neutral particle with a vacuum expectation value ($v = 246 \text{ GeV}, m_f = h_f v$) Still undiscovered If exists, how many Higgs bosons? Classify Higgs bosons by their electric charge

- Neutral: h^0 (SM 1967), H^0 , A^0 (2HDM 1973, MSSM 1980...)
- Singly Charged: H^{\pm} (2HDM, MSSM..)
- Doubly Charged: $H^{\pm\pm}$ (this talk, twice the charge of e^{\pm})

These three types have received considerable theoretical/experimental attention

(Order of priority: neutral > singly charged > doubly charged)

Models with Doubly Charged Higgs Bosons, $H^{\pm\pm}$

Motivation \rightarrow neutrino mass generation

Scalar triplets (isospin I = 1) and scalar singlets (I = 0)

- Higgs Triplet Model: I = 1, Y = 2 (tree-level mass for ν)
- LR Symmetric Model: I = 1, Y = 2 (tree-level mass for ν)
- Zee-Babu Model: I = 0, Y = 4 (radiative mass for ν)

All of these models are in textbooks ("classic models")

I will discuss the Higgs Triplet Model

Konetschny/Kummer 77, Schechter/Valle 80, Cheng/Li 80 (recently I = 3/2 and I = 1/2 studied)

Higgs Triplet Model (HTM)

SM Lagrangian with one $SU(2)_L$ I = 1, Y = 2 Higgs triplet

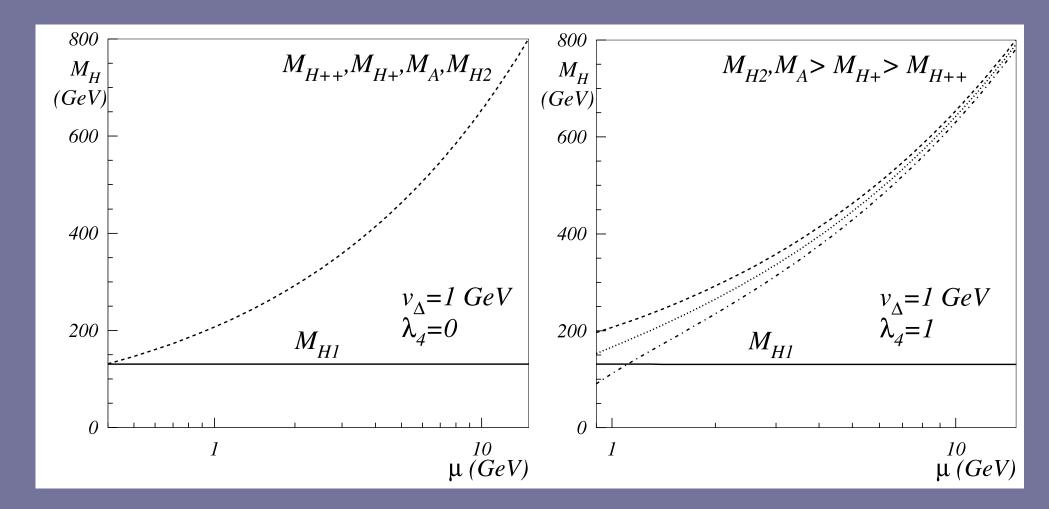
$$\Delta = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix}$$

Higgs potential invariant under $SU(2)_L \otimes U(1)_Y$: $m^2 < 0$, $M^2_\Delta > 0$

$$V = m^{2}(\Phi^{\dagger}\Phi) + \lambda_{1}(\Phi^{\dagger}\Phi)^{2} + M_{\Delta}^{2}\mathrm{Tr}(\Delta^{\dagger}\Delta)$$

$$+\lambda_i (\text{quartic terms}) + \frac{1}{\sqrt{2}} \mu (\Phi^T i \tau_2 \Delta^{\dagger} \Phi) + h.c$$

Triplet vacuum expectation value: $|\langle \delta^0 \rangle = v_{\Delta} \sim \mu v^2 / M_{\Delta}^2$


 $(v_{\Delta} \lesssim 5 \text{ GeV to keep } \rho = (M_Z^2 \cos^2 \theta_W)/M_W^2 \sim 1); \Delta \text{ has } L \# = 2 \text{ and so } \mu(\Phi^T i \tau_2 \Delta^{\dagger} \Phi) \text{ violates lepton number}$

Higgs boson spectrum

The HTM has 7 Higgs bosons: $H^{\pm\pm}, H^{\pm}, H^{0}, A^{0}, h^{0}$

- $H^{\pm\pm}$ is purely triplet: $H^{\pm\pm} \equiv \delta^{\pm\pm}$
- $H^{\pm}, H^{0}, A^{0}, h^{0}$ are mixtures of doublet (ϕ) and triplet (δ) fields
- Mixing $\sim v_{\Delta}/v$ and small ($v_{\Delta}/v < 0.03$)
- h^0 plays role of *SM Higgs boson* (essentially I = 1/2 doublet)
- H^{\pm}, H^{0}, A^{0} are *dominantly* composed of triplet fields
- Masses of $H^{\pm\pm}, H^{\pm}, H^0, A^0$ close to degenerate $\sim M_{\Delta}$
- For $H^{\pm\pm}$, H^{\pm} in range at LHC require $M_{\Delta} < 1$ TeV

Masses of the Higgs bosons in the HTM as a function of $\mu ~(\sim v_{\Delta} M_{\Delta}^2/v^2)$

The triplet scalars tend to be degenerate, and $H^{\pm\pm}$ is the lightest for $\lambda_4 > 0$ AGA/Chiang 10

Neutrino mass in Higgs Triplet Model (HTM)

No additional (heavy) neutrinos: $\mathcal{L} = h_{ij}\psi_{iL}^T Ci\tau_2 \Delta \psi_{jL} + h.c$ $\psi_{iL}^T = (\nu_i, \ell_i); i = e, \mu, \tau$

Neutrino mass from triplet Yukawa coupling, h_{ij} (complex and symmetric):

$$h_{ij}\left[\sqrt{2}\,\bar{\ell}_i^c P_L \ell_j \delta^{++} + (\bar{\ell}_i^c P_L \nu_j + \bar{\ell}_j^c P_L \nu_i)\delta^{+} - \sqrt{2}\,\bar{\nu}_i^c P_L \nu_j \delta^{0}\right] + h.c$$

Light neutrinos receive a Majorana mass: $\mathcal{M}_{ij}^{
u} \sim v_{\Delta} h_{ij}$

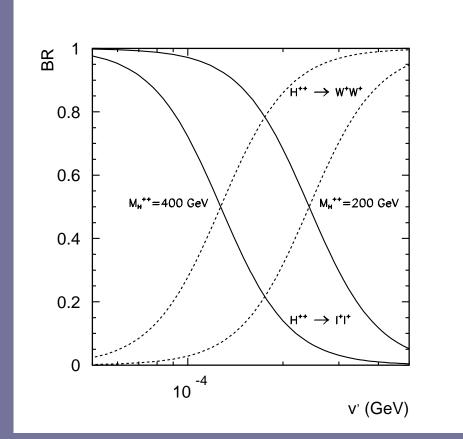
$$h_{ij} = \frac{1}{\sqrt{2}v_{\Delta}} V_{\text{PMNS}} diag(m_1, m_2, m_3) V_{\text{PMNS}}^T$$

 $(m_i = \text{neutrino masses}; V_{\text{PMNS}} = V_{\ell}^{\dagger} V_{\nu}; \text{ take } V_{\ell} = I \text{ and } V_{\nu} = V_{\text{PMNS}})$

Decay channels for $H^{\pm\pm}$ and H^{\pm}

Decays of $H^{\pm\pm}$:

- In HTM: $h_{ij}v_{\Delta} \sim \mathcal{M}_{ij}^{\nu}$ (neutrino mass matrix)
- $\Gamma(H^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \sim |h_{ij}|^2 \sim 1/v_{\Delta}^2; \ \Gamma(H^{\pm\pm} \to W^{\pm} W^{\pm}) \sim v_{\Delta}^2$
- $\Gamma(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) > \Gamma(H^{\pm\pm} \rightarrow W^{\pm}W^{\pm})$ for $v_{\Delta} < 10^{-4} \text{ GeV}$


Tevatron/LHC Searches have only been performed for $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$

Decays of H^{\pm} :

• $\Gamma(H^{\pm} \rightarrow \ell_i^{\pm} \nu) > \Gamma(H^{\pm} \rightarrow W^{\pm} Z, tb)$ for $v_{\Delta} < 10^{-4}$ GeV

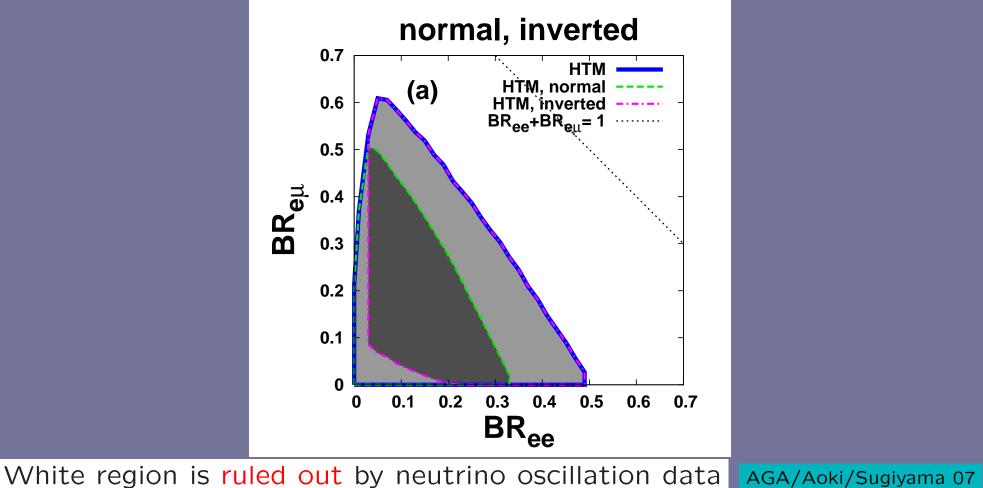
Notably, if $h_{ij} > h_{electron}$ then necessarily $v_{\Delta} < 10^{-4} \text{ GeV}$ \rightarrow leptonic decays $H^{\pm\pm} \rightarrow \ell_i^{\pm} \ell_j^{\pm}$ and $H^{\pm} \rightarrow \ell_i^{\pm} \nu$ dominate

$\mathsf{BR}(H^{\pm\pm} \to W^{\pm}W^{\pm})$ and $\sum \mathsf{BR}(H^{\pm\pm} \to \ell_i^{\pm}\ell_j^{\pm})$ against triplet vev Han 07, Asaka/Hikasa 94

I will only discuss the phenomenology of $H^{\pm\pm} \rightarrow \ell_i^{\pm} \ell_j^{\pm}$ (not $H^{\pm\pm} \rightarrow W^{\pm} W^{\pm}$), assuming $v_{\Delta} < 10^{-4} \text{ GeV}$

Branching ratios of $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$

 $\mathsf{BR}(H^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \text{ determined by } h_{ij} \text{ (six decays } ee, e\mu, \mu\mu, e\tau, \mu\tau, \tau\tau) }$ $\Gamma(H^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \sim \frac{m_{H^{\pm\pm}}}{8\pi} |h_{ij}|^2$


In HTM h_{ij} is directly related to the neutrino mass matrix

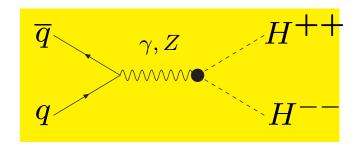
$$h_{ij} = \frac{1}{\sqrt{2}v_{\Delta}} V_{\text{PMNS}} diag(m_1, m_2, m_3) V_{\text{PMNS}}^T$$

Prediction for BR $(H^{\pm\pm} \rightarrow \ell_i^{\pm} \ell_j^{\pm})$ determined by: Chun, Lee, Park 03

- Neutrino mass matrix parameters (masses, angles, phases)
- Neutrino mass hierarchy: normal $(m_3 > m_2 > m_1)$ or inverted

HTM prediction in the plane $[BR(H^{\pm\pm} \rightarrow e^{\pm}e^{\pm}), BR(H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm})]$

Limits on h_{ij}

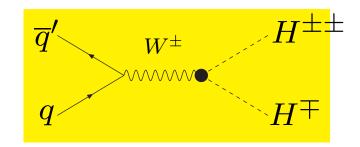

Presence of $H^{\pm\pm}$ would lead to lepton-flavour-violating decays Many limits exist for h_{ij} (assuming $m_{H^{\pm\pm}} < 1 \text{ TeV}$): Cuypers/Davidson 98 • BR($\mu \rightarrow eee$) $< 10^{-12} \rightarrow |h_{\mu e}h_{ee}| < 10^{-7}$ 1988; no forthcoming experiment • BR($\tau \rightarrow \ell_i \ell_j \ell_k$) $< 10^{-8} \rightarrow |h_{\tau i} h_{jk}| < 10^{-4}$ Limits from ongoing B factories • BR($\mu \rightarrow e\gamma$) $< 10^{-11} \rightarrow \sum_i |h_{\mu i} h_{ei}| < 10^{-6}$ sensitivity to BR~ 10⁻¹³ from 2012 All constraints can be respected with $|h_{ij}| < 10^{-2}$ or 10^{-3} These decays provide valuable probes of virtual effects of $H^{\pm\pm}$

Production of $H^{\pm\pm}$ at Hadron Colliders (Tevatron and LHC)

Pair production of $H^{\pm\pm}$ at Hadron Colliders

First searches at a hadron collider in 2003 Tevatron: CDF,D0

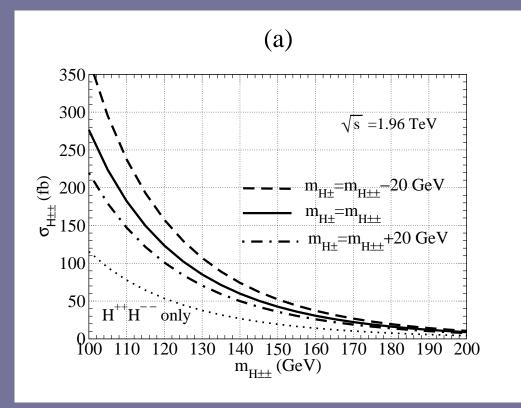
$$\mathcal{L} = i \left[\left(\partial^{\mu} H^{--} \right) H^{++} \right] \left(g W_{3\mu} + g' B_{\mu} \right) + h.c$$



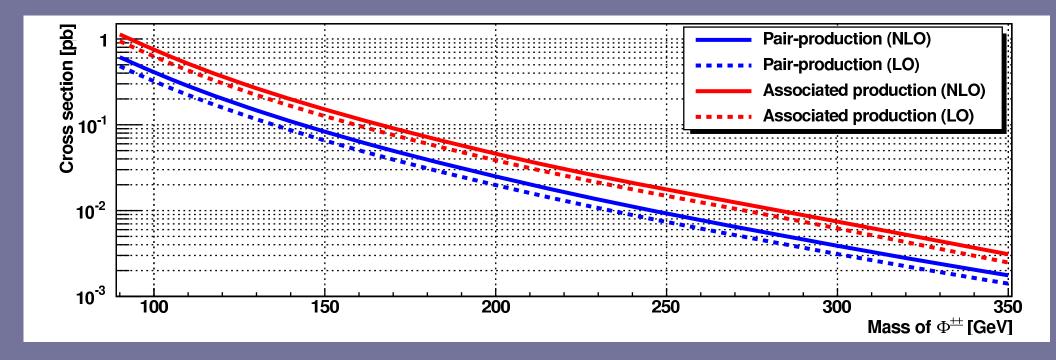
- $\sigma_{H^{++}H^{--}}$ is a simple function of $m_{H^{\pm\pm}}$ Barger 82, Gunion 89, Raidal 96
- $\sigma_{H^{++}H^{--}}$ has no dependence on h_{ij}

Single $H^{\pm\pm}$ production via $q'\overline{q} \rightarrow H^{\pm\pm}H^{\mp}$

A mechanism not included in the Tevatron searches


$$\mathcal{L} = ig\left[\left(\partial^{\mu}H^{+}\right)H^{--} - \left(\partial^{\mu}H^{--}\right)H^{+}\right]W^{+}_{\mu} + h.c..$$

- $\sigma_{H^{\pm\pm}H^{\mp}}$ is a function of $m_{H^{\pm\pm}}$ and $m_{H^{\pm}}$ Barger 82, Dion 98
- Similar magnitude to $\sigma(p\overline{p} \to H^{++}H^{--})$ for $m_{H^{\pm\pm}} \sim m_{H^{\pm}}$


Inclusive single $H^{\pm\pm}$ production at Tevatron AGA, Aoki 05

Experimental search was sensitive to $\sigma_{H^{\pm\pm}} = \sigma(p\overline{p} \to H^{++}H^{--}) + 2\sigma(p\overline{p} \to H^{++}H^{-})$

Mass limit $m_{H^{\pm\pm}} > 150$ GeV at Tevatron would strengthen to $m_{H^{\pm\pm}} > 180$ GeV

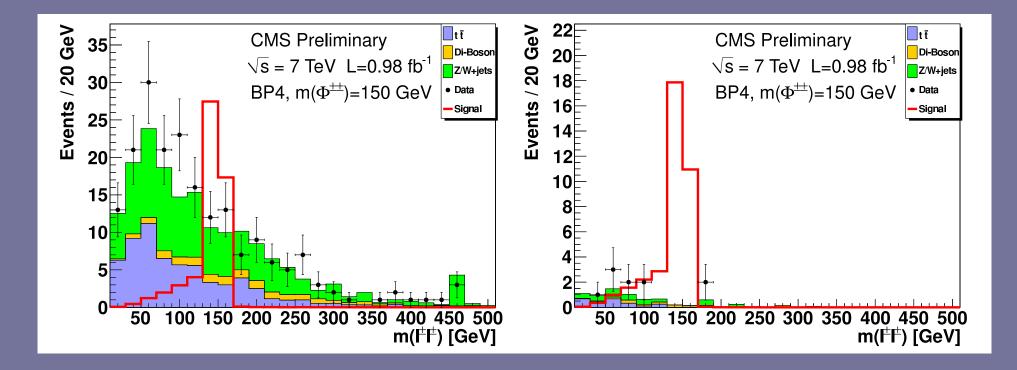
LHC cross sections at $\sqrt{s} = 7$ TeV for $q\overline{q} \to H^{++}H^{--}$ and $q\overline{q}' \to H^{\pm\pm}H^{\mp}$

 $\sigma(q\overline{q}' \to H^{\pm\pm}H^{\mp}) > \sigma(q\overline{q} \to H^{++}H^{--})$ for $m_{H^{\pm}} = m_{H^{\pm\pm}}$ and so should be included in searches

Importance of $q\overline{q}' \rightarrow H^{\pm\pm}H^{\mp}$

- $\sigma(q\overline{q}' \to H^{\pm\pm}H^{\mp})$ can be as large as $\sigma(q\overline{q} \to H^{++}H^{--})$
- Increases the sensitivity to $m_{H^{\pm\pm}}$ in 2ℓ and 3ℓ search channels, thus enhancing the discovery potential for $H^{\pm\pm}$ AGA, AOKI 05
- Received almost no theoretical attention from 1982 to 2005
- Not included in event generator Pythia, unlike $q\overline{q} \rightarrow H^{++}H^{--}$
- In AGA/Chiang/Gaur 10 we created a CalcHEP file to generate events for $q\overline{q}' \rightarrow H^{\pm\pm}H^{\mp}$, which can then be used as input for Pythia • This enabled the CMS collaboration to carry out a
- search for $q\overline{q}' \rightarrow H^{\pm\pm}H^{\mp}$

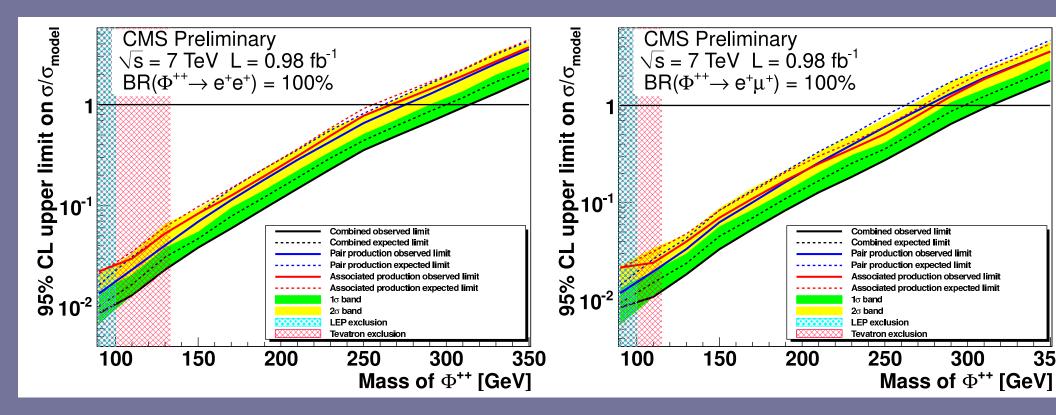
Strategy of search for $H^{\pm\pm}$ by CMS collaboration (LHC)


- $H^{\pm\pm}$ decays via h_{ij} to same charge $ee, \mu\mu, \tau\tau, e\mu, e\tau, \mu\tau$
- In the HTM, $\mathsf{BR}(H^{\pm\pm} \to \ell^{\pm}\ell^{\pm})$ depends mainly on
- i) neutrino mass m_1 and ii) Majorana phases ϕ_1 and ϕ_2
- Define four benchmark points for $BR(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm})$

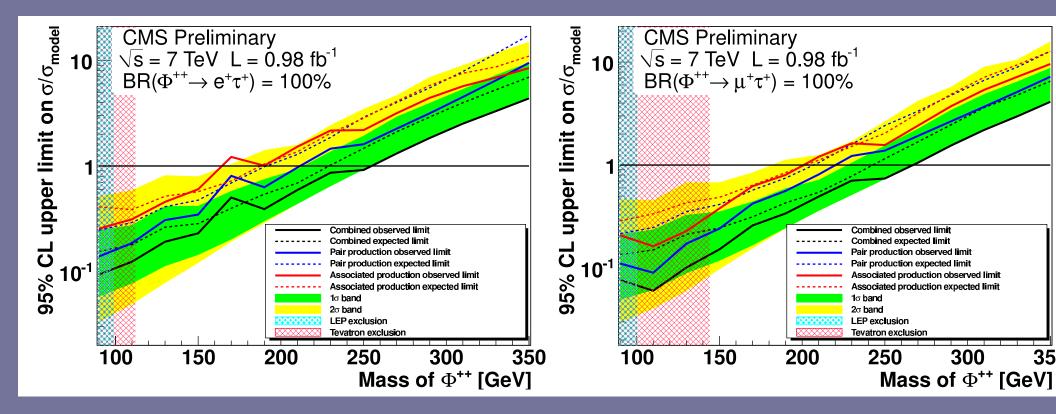
	ee	$e\mu$	$\mu\mu$	e au	μau	au au
BP1 (normal hierarchy)	0	0.01	0.3	0.01	0.38	0.3
BP2 (inverted hierarchy)	0.50	0	0.125	0	0.25	0.125
BP3 (degenerate neutrinos)	1/3	0	1/3	0	0	1/3
BP4 (equal branching ratios)	1/6	1/6	1/6	1/6	1/6	1/6

CMS search for $H^{\pm\pm}$ is the first one to include both production mechanisms $q\overline{q} \rightarrow H^{++}H^{--}$ and $qq' \rightarrow H^{\pm\pm}H^{\mp}$ (CMS PAS HIG-11-007) i) 4 ℓ signature ($\ell^+\ell^+\ell^-\ell^-$):

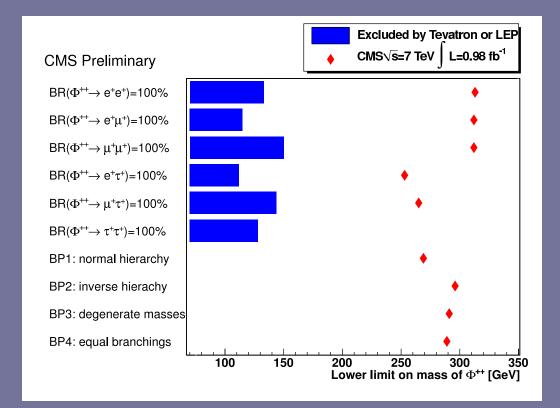
- Backgrounds are negligible after all selection cuts
- Only $H^{++}H^{--}$ contributes to the signal
- ii) 3ℓ signature $(\ell^{\pm}\ell^{\pm}\ell^{\mp})$:
- $H^{\pm\pm}H^{\mp}$ contributes to the signal (assume $m_{H^{\pm}} = m_{H^{\pm\pm}}$)
- $H^{++}H^{--}$ contributes if one lepton is missed


LHC (CMS collaboration) search for 3ℓ signature

After all selection cuts (signal for BP4)


After pre-selection cuts (signal for BP4)

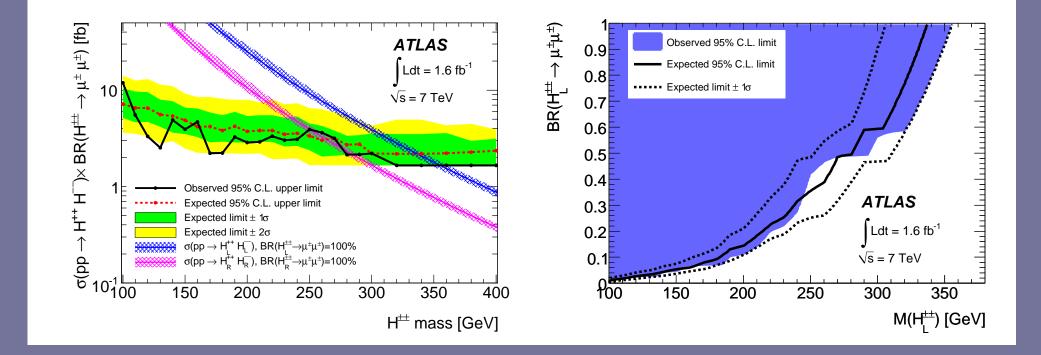
Excluded cross sections from 3ℓ and 4ℓ search: ee and $e\mu$ channels


 3ℓ (red) and 4ℓ (blue) have very similar sensitivity to $m_{H^{\pm\pm}}$. When combined, give stronger limit on $m_{H^{\pm\pm}}$.

Excluded cross sections from 3ℓ and 4ℓ search: $e\tau$ and $\mu\tau$ channels

4ℓ search (blue) has greater sensitivity to $m_{H^{\pm\pm}}$ than 3ℓ search

Mass limits on $m_{H^{\pm\pm}}$ from CMS search for $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$


Mass limit $m_{H^{\pm\pm}} > 300$ GeV for BR $(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) = 100\%$ for $\ell = e, \mu$

Recent ATLAS search for $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$ arXiv:1201.1091

ATLAS has performed three searches for $q\overline{q} \rightarrow H^{++}H^{--}$

- Search in arXiv:1201.1091 is only performed for $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$
- Uses 1.6 fb⁻¹ of integrated luminosity (CMS used 0.98 fb⁻¹)
- Signal is defined as two same-signed $(\mu^{\pm}\mu^{\pm})$
- Differs from CMS search strategy $(\ell^{\pm}\ell^{\pm}\ell^{\mp})$ and $\ell^{\pm}\ell^{\pm}\ell^{-}\ell^{-}$
- Number of signal events is linear (not quadratic) in $BR(H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}) \rightarrow$ can probe smaller values of BR
- Current search does not include $q\overline{q}' \rightarrow H^{\pm\pm}H^{\mp}$

ATLAS search for $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$ with 1.6 fb⁻¹ (CMS used 0.98 fb⁻¹)

Limit $m_{H^{\pm\pm}} > 355$ GeV; stronger than CMS bound for $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$ ($m_{H^{\pm\pm}} > 313$ GeV)

Status of searches for $H^{\pm\pm}$ at LHC

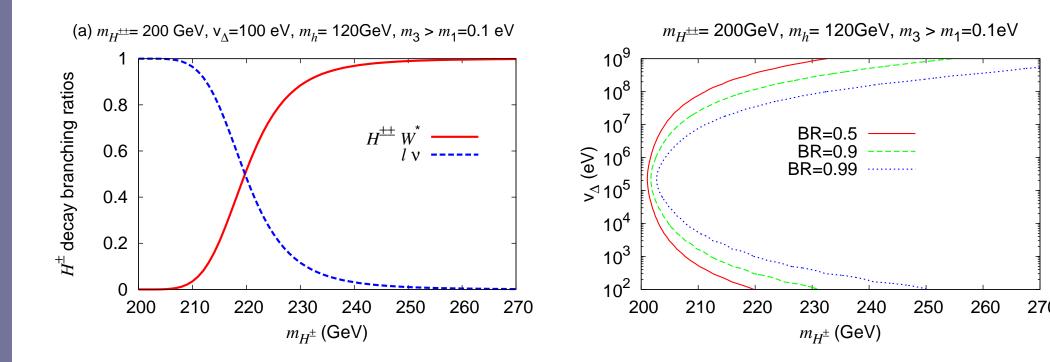
The CMS collboration has performed the first search (July 2011) for $H^{\pm\pm}$ at the LHC (CMS PAS HIG-11-007)

- Used 0.98 fb^{-1} at $\sqrt{s} = 7$ TeV
- Both 4ℓ and 3ℓ signatures studied
- All six decay channels investigated: $ee, e\mu, \mu\mu, e\tau, \mu\tau, \tau\tau$
- For the first time $\overline{q}q' \rightarrow H^{\pm\pm}H^{\mp}$ included in search for $H^{\pm\pm}$
- ATLAS (Aug/Oct/Nov 2011) have searched for 2ℓ , 3ℓ , 4ℓ
- Have not yet included $\overline{q}q' \rightarrow H^{\pm\pm}H^{\mp}$ in the 2ℓ and 3ℓ searches

Case of non-degeneracy of triplet scalars

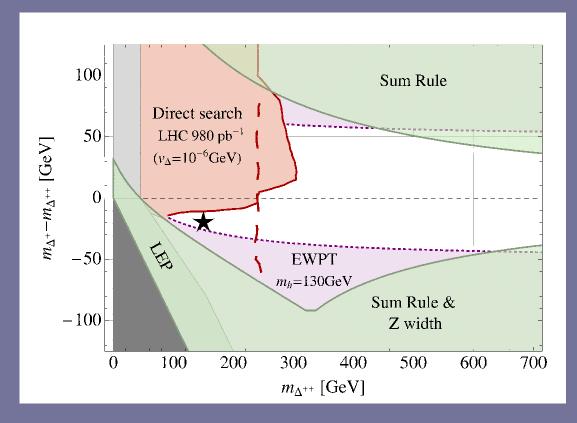
$m_{H^{\pm\pm}} < m_{H^\pm} < m_{H^0,A^0}$

Case of non-degeneracy of triplet scalars


The ongoing CMS searches assume $m_{H^{\pm\pm}} = m_{H^{\pm}} = m_{H^0,A^0}$ This is only true if $\lambda_4 = 0$ in scalar potential term $\lambda_4 H^{\dagger} \Delta \Delta^{\dagger} H$

- For $\lambda_4 > 0$ one has $m_{H^{\pm\pm}} < m_{H^\pm} < m_{H^0,A^0}$
- The decay $H^{\pm} \rightarrow H^{\pm\pm}W^*$ would be open, and can have a

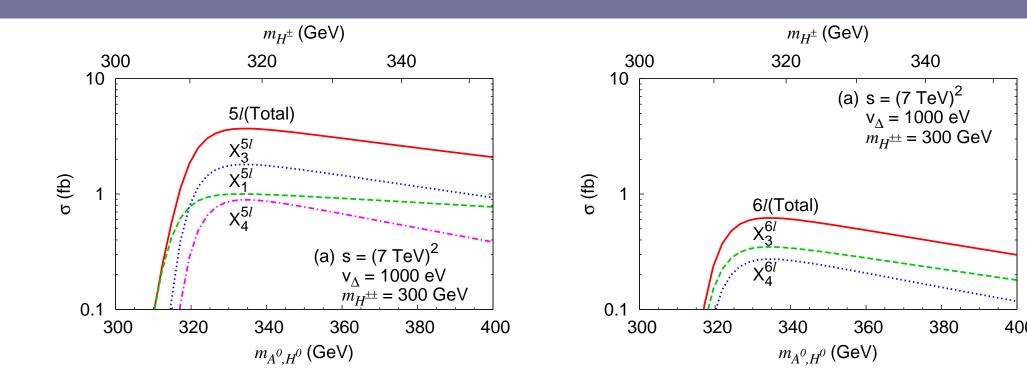
large branching ratio even for $m_{H^{\pm}} - m_{H^{\pm\pm}} << m_W$


- $q'\overline{q} \to W^* \to H^{\pm\pm}H^{\mp}$ then leads to $H^{++}H^{--}W^*$ AGA/Sugiyama 11
- \bullet Would increase sensitivity to $m_{H^{\pm\pm}}$ in 4ℓ searches

$BR(H^{\pm} \rightarrow H^{\pm\pm}W^*)$ as a function of $(m_{H^{\pm}} - m_{H^{\pm\pm}})$ and v_{Δ} AGA/Sugiyama 11

Large parameter space for $\mathsf{BR}(H^\pm \to H^{\pm\pm}W^*) > 50\%$

CMS sensitivity (with 0.98 fb⁻¹) to $m_{H^{\pm\pm}}$ in $\ell^+\ell^+\ell^-\ell^-$ channel as function of $m_{H^{\pm}} - m_{H^{\pm\pm}}$


 $\overline{q}q' \to H^{\pm\pm}H^{\mp}$ with $H^{\pm} \to H^{\pm\pm}W^*$ increases sensitivity to $m_{H^{\pm\pm}}$ by as much as 50 GeV Senjanovic et al 11

Five-lepton/six-lepton signals and detection of H^0 and A^0

Several cascade decays involving neutral triplet scalars

- BR($A^0 \rightarrow H^{\pm}W^*$) and BR($H^0 \rightarrow H^{\pm}W^*$) can also be ~ 100%
- $q'\overline{q} \to W^* \to H^{\pm}H^0, H^{\pm}A^0$ leads to $H^{++}H^{--}W^*W^*W^*$
- $q\overline{q} \rightarrow Z^* \rightarrow H^0 A^0$ leads to $H^{++}H^{--}W^*W^*W^*W^*$
- $W^* \rightarrow \ell \nu$ ($\ell = e, \mu$) of particular interest
- \bullet Leads to 5ℓ and 6ℓ signatures with negligible background
- Would enable detection of H^0 and A^0 AGA/Moretti/Sugiyama 12
- No search yet for 5ℓ and 6ℓ signatures

Cross sections for 5-lepton and 6-lepton signatures at LHC with $\sqrt{s} = 7$ TeV

Maximum of 4 fb for 5ℓ and 0.6 fb for 6ℓ AGA/Moretti/Sugiyama 12

Conclusions

- Doubly charged Higgs bosons appear in the Higgs Triplet Model of neutrino mass generation
- Neutrino mass generated at tree-level as $h_{ij}v_{\Delta}$
- $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ is a distinctive signal
- Multi-lepton signals $(2\ell \rightarrow 6\ell)$ from $q\overline{q} \rightarrow H^{++}H^{--} / q'\overline{q} \rightarrow H^{\pm\pm}H^{\mp}$
- \bullet Searches $_{(2\ell\,\rightarrow\,4\ell)}$ are ongoing, with sensitivity $m_{H^{\pm\pm}}<300$ GeV
- The HTM also predicts a SM-like Higgs boson in most of

the parameter space of the scalar potential

• A large parameter space of the model will be probed at the LHC