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Abstract 
The analysis on excitation of beam motion by noise of 

transverse feedback systems is performed. The result 

shows that high resolution beam position monitors of 

micro meter resolution for a single passage of bunches is 

required to reduce the amplitude of this motion to 

acceptable level, sub-micro meters for recent high 

brightness storage rings. 

INTRODUCTION 

Bunch-by-bunch feedback systems are widely used at 

storage rings to suppress beam instabilities. The most of 

recent systems employ digital feedback processors and 

the schematic diagram of the digital transverse bunch-by-

bunch feedback system at the SPring-8 storage ring  [1,2] 

is shown in Fig. 1. The positions of bunches are detected 

by a beam position monitor (BPM), and turn-by-turn and 

bunch-by-bunch position data are stored and processed by 

a digital feedback processor [3] to produce kick to damp 

betatron oscillation of bunches. For bunch-by-bunch 

feedback systems, the required bandwidth is more than 

one half of the bunch rate. In SPring-8 case, the bunch 

rate is 508.6MHz and the bandwidth of the feedback is 

more than 254MHz and noise caused by such wide 

bandwidth degrade the position resolution of BPMs. In 

the following, we analyze of the effect of this finite 

resolution of BPMs on the feedback. 

 

 

Figure 1: Schematic diagram of a bunch-by-bunch 

feedback system. Bunch rate and bunch spacing of the 

SPring-8 storage ring are 508MHz and 2ns. The bunch-

by-bunch, turn-by-turn position data are stored and 

processed by a signal processor to produce a signal for 

kicker. The noise at a beam position monitor excites a 

feedback system and produce unwanted kick on a beam. 

BUNCH-BY-BUNCH FEEDBACK 

The required kick at n-th turn to damp the oscillation is 
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where T0 and !FB  are the revolution period of a ring and 

the feedback damping time, and 
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 is the angle of the 

beam at n-th turn. To produce 
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 from turn-by-turn 

position data of bunches, 
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x
n"k (k=1,2,...), FIR filters are 

used in digital feedback processors. 

FIR filter 

A FIR filter is a one of digital filters and has the form of 
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where xn are the data of n-th sampling and yn is the n-th 

output of the filter, and M is the number of taps. 

 

 
 

Figure 2:  Turn-by-turn bunch positions (solid line) for 

the input data to FIR filter and required output of FIR 

filter (dashed line) to damp betatron oscillation shown in 

Eq. 3. 

 

As shown in Fig.2, the required FIR filter for feedback 

systems is  
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where " is the beta function at the BPM and used for the 

normalization of the FIR filter. As shown in Fig. 2, the 

frequency dependence of the FIR filter should be  
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to fulfill the requirement of Eq. 3 where # is the target 

betatron phase advance per turn. From Eq. 1 and Eq. 3, 

the kick can be expressed as 
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In this paper, we do not show the detail of methods to 

make such filters that fulfill Eq. 3. One of methods is 

shown in Ref. [1,2]. 

Position Error by Noise 

   To analyze the effect of the noise, we will apply similar 

discussion on radiation excitation. 

We assume that the position error by noise, 
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random: 
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Using the position data with noise, 
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k
, the kick by 

feedback shown by Eq. 5, is  
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where we set 
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We assume that the angle of a beam has a format the 

neighbourhood of (n-N)-th turn: 
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This evolves to n-th turn with the kick in Eq. 7 as 
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This can also be expressed as 
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where $k is the stochastic, and !A and % are the functions 

of $k , so that those are also stochastic. Using Eq.  7 for $k, 

the second term of the r.h.s.  of Eq. 10 is 
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We assume that the evolution of the amplitude is small 

during one period of betatron oscillation and we can use 

the approximation of 

! 

" x k( ) # A cos k$  in r.h.s. of Eq. 12 

and we have 
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where we also used the approximation: 
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assuming that N is much larger than the fractional tune of 

the betatron oscillation. 

Then from Eq. 10 and Eq. 13, we have 
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The first term of r.h.s. of Eq. 14 shows the damping and 

second term shows the effect of the noise. 

Taking the ensemble average of
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Using Eq. 11, we have 
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We take a time average for several oscillation period 

and we have 



! 

1

2
A + "A( )

2
=
1

2
A
2
1#

T
0

$
FB

N

% 

& 
' 

( 

) 
* 

2

+
2T

0

$
FB

% 

& 
' 

( 

) 
* 

2

1

2+ 2
N , 2

        

! 

"
1

2
A
2 #
1

2
A
2 2T0

$
FB

N +
2T

0

$
FB

% 

& 
' 

( 

) 
* 

2

1

+ 2
1

2
N , 2  (21) 

with the assumption, 
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Then the evolution of the amplitude of the betatron 

oscillation is  
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If we include radiation damping or growth by 

instabilities, the equation is  
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where ! is the total damping time with feedback, radiation 

damping and growth by instabilities.  We treat A as 

definite value at n-N turn. However, as we see, the value 

A evolves stochastically with !A and become stochastic 

after many damping time. At the equilibrium, the value of 

Eq. 23 should be 0 and we have expectation value: 
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for r.m.s. of divergence of the beam at the feedback and 
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for r.m.s. of beam size where 

! 

"# = # 2  is the 

resolution of the BPM in r.m.s. 

SPring-8 CASE 

We will apply the result to the SPring-8 storage ring. 

The parameters of the SPring-8 storage ring are listed in 

Table 1. 

Table 1: Parameters of the SPring-8 storage ring 

parameter symbol value unit 

Revolution Period T0 4.79  µs 

Bunch rate / RF acc. freq fRF 508.58 MHz 

Beam size at feedback "H/"V 301 / 6 µm 

Average Current I 100 mA 

 

From Eq. 26, we have to reduce total damping time, !, 

by feedback to be much faster than growth time of 

instabilities to keep &x small, and we set !FB ~ 0.5ms. 

With this damping time, Eq. 26 shows 

! 

"
x

= 0.1"# . A 

Monte-Carlo simulation confirms this relation. 

The residual amplitude of the betatron oscillation 

should be reduced to one tenth of the beam size. The 

beam size at the feedback is 6µm hence required 

resolution of a BPM, &', is 6µm.  

The button type BPM of SPring-8 for correction of 

slow beam motion is 0.5µm with bandwidth ~1kHz. 

Scaling of the resolution to bandwidth, B is 

! 

B  and the 

expected resolution at B ~ 250MHz that required for the 

feedback is 250µm. This value is 50 times larger than 

required. 

We developed a new shorted-stripline type BPM for the 

SPring-8 feedback [4] that produces tens times higher 

signal than button types, and its position resolution is 5µs 

r.m.s. for a single passage of a bunch with 0.24nC charge. 

Also we use 12-bit ADCs for the front-end of our 

feedback processor to achieve sub mm resolution with 

dynamic range of 0.5mm that is required to control the 

turbulence on the stored beam produced at injection. 

CONCLUSION 

We derived a formula for the amplitude of residual 

motion excited by a feedback driven by a noise at beam 

position detection. The result shows that the special high-

resolution beam position monitors are required to 

suppress the amplitude of these motions to nano meter 

region. 
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