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Abstract

This is an implementation note for developing a code of the hybrid Monte Carlo algo-
rithm for clover quark action.
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1 Clover fermion action

1.1 Fermion operator

In lattice QCD, the gauge field is represented with a link variable, which is a complex 3 x 3
matrix belonging to SU(3) group. The link variable on a site x is

Uu(x) ~ expliaA,(x + aji/2)] € SU(3) (1.1)

where [i is an unit vector in p-th direction. Throughout this note, we set a = 1. We do not
consider the case of anisotropic lattices in the following.

The clover fermion is an O(a)-improved version of the Wilson quark action. Let us start
with the quark action very close to the continuum action, in which the lattice constant a is
introduced to make the quantities dimensionless. In the path integral formalism, a field is an
integral veriable, and thus the physics is invariant with respect to the change of it. Starting
from the Wilson action, let us consider the transformation

v = [1=Tp-mo|v (12)

de = b[1-THp-md). (13)

Note that the fields ¢» and v are independent variables, and thus can be subject to different
transformations.

L =1 [,D—I—(mc—i-;amz) - % ,DQ} ). (1.4)
Since p? = D? + %UWFW, where 0, = _%['Y/u Y] and Fy,, =i[Dy, D,],
- 1
L=1 [,D+m—r2a(D2+2aWFW)} . (1.5)

The bare quark mass m = (m. + gamg) plays just an input parameter of the theory. The first
term of the O(a) term is the Wilson term, and the second term is called the clover term. Thus
discretizing the Eq. (1.5), one can eliminate the O(a) error brought by the Wilson term while
keeping the doublers diappear. The above equation is at the tree level, and the with interaction
the coefficient of the clover term is in general renormalized. Thus the clover coefficient, cgw,
is multiplied to the clover term.

in the above notation, o, and F},, are Hermitian. It is however convenient to use slightly
modified notations, where 6, = %[’yu,'yy] and FW = [D,,D,] so that o, F,, = 5WFW for
numeircal implementation. o,, and F),, are anti-hermitian.

With standard discretization, the clover quark action is written as [4]

1

So = 5.2 V@)D(,y)ey), (1.6)
z,y
D(w,y) = Gay— 5> {0 = 9)Uu(@)0isiy + (1 +3) UL — )0y }
—liCSW%Z(?WFW. (1.7)
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Figure 1: The clover construction of the field strength.

We employed the hopping parameter representation in which the hopping parameter, k =
1/2(4 4+ amy), is used as an input parameter instead of a bare quark mass my.
The field strength, F,, is represented as

Fu = {1 Fulol, (18)
Fu(@) = Uu@)Uy(z+ U}z + )V} (x)
— Uu(@)US(z + o — ) U} (z — 0)U, (x — D)
+ Ul,(x)U;E(x — i+ D)Ui(x = m)Upu(x — 1)
—Ul(@ = 0)Uf(z — fp = D)U, (& — p = 2)Up(x — o) (1.9)
where [...]4 means the anti-hermitian operation!, i.e., [F]4 = (F — F')/2. This construction

is represented as Figure 1.
Since the anticommuting Grassmann fields are difficult to treat numerically, first one inte-
grates out them explicitly:

/ DDy exp(—yD[U]) = det D[U]. (1.10)
Due to so-called ys-hermiticity, DI = ~5Dvs, det D is real. For x < 1/8, det D > 0 is also

proved. Then
det D[U] = /det Q[U], (1.11)

Q=D'D = H? (1.12)

where

is hermitian and positive definite. H = 5D is hermitian: H' = H.
Let us consider the case with two degenerate flavors. Introducing a bosonic field ¢ (called
pseudofermion field),

det[DT(m)D(m)] = / D¢ D¢ / D¢D¢ exp|—Spr], (1.13)

1We have decided not to enforce the field strength traceless, while it is a property of the adjoint representation.
This is for simplifying HMC force construction.



Spr = ¢'[D(m)D(m)] ™' ¢. (1.14)
This is a starting point action in constructing the HMC algorithm. In the above equations,
the bare quark mass (or equivalently the hopping parameter) is exhibited as a preparation to
the multi-mass preconditioning mentioned below.
The Hasenbusch acceleration (multi-mass preconditioning) is applied by introducing a pre-
conditioning field with heavier quark mass,

det[DY(m)D(m)] = det[D'(m/)D(m")]det[D(m/) 1D (m)D(m)D(m’)~'] (1.15)
= /D€519¢1D$29¢26XP [—51(3127_51(321)7}7 (1.16)

gy = olD ) D)1, (1.17)

Spr = L {D)D(m)! Dm) 7D ()} 6. (1.18)

where m’ is a mass of the preconditioner. Here we restrict ourselves to the case of single
preconditioner.

1.2 HMC force

By differentiating the Hamiltonian H by simulation time 7,

1 dP, () ‘
— =>» T ey P, 1.1
b = ST TR BRG] (119)
where the force R, () satisfying
dsS ,
== > Tr[iPu(z) Ry(x)] (1.20)

is anti-hermitian and traceless. The evolution of P,(x) is
iP(x) — iP,(z)+ ATR,(x),
Uu(xz) — exp[AT-iP,(x)]Uu(x). (1.21)

We consider the Hasenbusch preconditioned version, Eq.(1.16), since the unpreconditioned
action is the same as the first term of the preconditioned one, Eq.(1.17). Let us start with the
preconditioner,

SU = oD (m)D(m)]"'¢ = ¢1Q(m) "¢ (1.22)
Since d%;l = —Q_I%Q—H
L6t~ oyt L (Dt my D)y
dr-FPF dr
= —yt [H(m)H(m) + H (m)H(m)| ¥,
=~ {[HmMW Hm) + he.}, (1.23)

where 1) = Q(m) L.
Since the clover operator is composed of the Wilson kernel (Dyy) and the clover term
(DsW), R, (x) has two parts:

Ru(z) = R)Y (z) + R}V (). (1.24)
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Figure 2: Contribution to the force from the clover term to update the link variable U, (x).
The crosses represent the pseudofermion field.

Force of the Wilson kernel:
The derivative of hermitian Wilson kernel is calculated as follows. For general vectors ¢ and 7,

W) = k@) Y (0= i Pul) Uil + )

z,p

CT

—95(1+ 1) Uf (& = @)iPu(e — )z — i)}
= —r Y iPu(@)a {¢ @51 = v Uul@)n(e + i)a

~ [ (1 + ) Un(@)C (@ + D0 ()]}
= =k Y iPu(@)a { @[ Teun(@)]a — [T1,C@)]In()a } (1.25)

where in the last line we defined T4 ,n(z) = v5(1 — v,)Uu(z)n(z + f1) and lem(q:) = v5(1 +
Yu)Upu(z)n(z + f1). Thus let us define

RY ¢ m(@)ay = = [¢H@)plTrun(@))a = [T, @) (@)l - (1.26)
From Eq. (1.23), setting n = ¢ and { = H(m)1,
R (@)ay = =R} [Cnl(@)ab = By [0, (@) (1.27)
Force of the clover term:
The clover term contributtion is also written as
ROV (2)ap = =RV (¢l (@) — B [0, C)(2)ab (1.28)



with n = v and ¢ = H(m)v, and

RIVIC () = -5 i RMO@) (1.29)

where taking 7 = 755 ,,1(), each contribution depicted in Figure 2 is written as?
RV (@)ap = Y [T @)s[Un(2) V] 4, (@)7(2)]a, (1.30)
RV @) = >[N + 2)UN @) [Vi (@) + )], (1.31)

14

RV (@) = Y (M@ + i+ 0)Ul(x + 0)US @) [Up (@)U, (x + @)7(z + i+ 9)]a, (1.32)

14

RV (@) = Y[ (@ + )V (@)U (@)0( + 2)]a, (1.33)
RIVO (@) = —VZ @) [Un @)V, (@)()]a, (1.34)
RO (2)ey = — Z (@ = 2)U (@ = D)oV, (= 2)i( = )], (1.35)
RV D (@) = — Z M@ =& + @)Ul = 2)Us(z = D))y

RV (@) = =3 (Mo + @)V, (@)U @)z + 1)]a. (1.37)

Force of preconditioned clover kernel:
For the preconditioned dynamical fermion, Eq. (1.18), the force is similarly obtained.

L5 = o} {Dm)Qm) ™D (') ~ D(am')Q(m) ™" D (m) D(m)Q(m)~ D (") + h.c.} 6

dr
= {bD(m Wiz — [D(m)a] D(m)os + huc. (1.38)
where 15 = Q(m) 1D (m/)¢o, and hence setting n = 19 and ¢ = 2x'D(m)1s — 2kp2, the same
formulae (1.27) and (1.28) apply.

1.3 Even-odd preconditioning

Since the quark solver is most time consuming part of the simulations, it is quite important
to improved the solver algorithm. In the case of clover quark operator, the even-odd precondi-
tioning efficiently works. By decomposing the lattice sites into even and odd sites, the clover
quark operator is expressed as

D.. D 1—foe M
D= ee eo _ ee eo 1.39
( Doe Doo ) ( Moe 1- foo ) ( )

2The above expressions, RSW(Q), REW(S), REW(6), and RSWW)

the stout smearing recursion formula.

were modified from the ver.1.1, to adjust to



where M., and M,, are composed of only the nearest neighbor interaction, and D.. and D,,
are without inter-site interaction in which f.. and f,, concern the clover term. The linear

equation to be solved is
Dee Deo Te N be
< Doe  Doo > ( Lo ) N ( bo > ' (140)

This leads to the equation for the even part,

(Dee — MooD, Mye) = b, = be — deo D, b, (1.41)

e

Once this equation is solved, the odd part of the solution is easily obtained as
To = D, (by — Doette). (1.42)

Eq. (1.41) works as an incomplete LU precondioner, leading to better convergence than the
original equation. In addition, the size of operation vectors is halved.

However, in the case of clover quark operator, the clover term makes the D! operation
much involved compared to the Wilson operator.



2 Stout smearing

In this section, we describe implementation of the stout smearing [11]. While the following
construction mainly based on APE-type smearing, only small change is needed for fat link [12]
and HYP smearing [13].

In the following, notation follows Ref. [11] as much as possible.

2.1 Smeared link
Cu@) = 3 ppw [Un@)Up (2 + DU (@ + ) + U (2 = ) Ul = D)V (@ = 0 + )] (2.1)

v
Qulr) = =i 19,() ap = 5OL(0) — V@) — SO ~ Ou()], (22)
Qu(z) = Cu(2)Ul (x) (10 summation over ) (2.3)
U (@) = exp |iQF (2)| U1 (a) (2.4)
U=u® L p® L u® .yt = (2.5)

In practical code, it is convenient to treat iQ,(z) as a variable.

2.2 Representation for SU(3)

exp(iQ), where @ is hermitian and traceless matrix. Cayley-Hamiltonian theorem:

Q° —c1Q — eI =0, (2.6)
where
co = detQ= %Tr(Q3) = %Tr[(z'Q)i‘}, (2.7)
a = STH@) =~ QY] > 0. (2.8)
(2.9)

The Hermiticity of @) requires 2703 —4c1 <0.

3/2
s g, ger=2(%) (2.10)

c1 is also restricted as 0 < ¢]"** due to the definition of @ (see the paper [11]).

exp(iQ) = fol + /1Q + f2Q° = fol —if1(iQ) — f2(iQ)*. (2.11)

Three complex valued scalar coefficients f; = fj(co,c1) are basis independent. f; are repre-
sented as follows (for derivation see Ref. [11]).

fi=o5t—s (2.12)



ho = (u® —w?)e*™ 4+ e ™[8u? cos(w) + 2iu(3u’ + w?)&), (2.13)

hi = 2ue™ — e ™ [2ucos(w) — i(3u? — w?)&), (2.14)
hy = ¥ — e "[cos(w) + iuky), (2.15)
where
u = 4/c1/3-cos(6/3), (2.16)
w = /c1-sin(0/3), (2.17)
6 = arccos(co/cy™”) (2.18)
sin w
fw) = ——. (2.19)
Stable evaluation of &y requires some care.
2.3 HMC force
In HMC evolution, the following Hamiltonian is conserved:
1
H= 3T |Pu()?] + S[U, ¢). (2.20)
By differentiating with respect to ficticious time,
d, , dP,(x) d
TH=Th { L Pu(a;)} +25[0,9), (2.21)
d dU 9S[U,¢]  dUT® 9S[U, ¢ )
— = = 2ReTr i P, ¥ 2.22
dTS[U7 ¢] dr aUab + dr 8UTab Re r[Z u(.’L')U“(fL') H(x)]’ ( )
where oS[U. 4
Eu(@)ab = 5 (2.23)
Defining the force field R, (x) with
d .
ES[U’ o] = ;Tr [iP,(x)R,(z)], (2.24)
Ry (x) = 2[U(2) X ()] ar,s (2.25)
Hamilton equation reads
d . d .
EZP"(@ =R, (z), %UM(JZ) =P, (x)Uu(x). (2.26)
For the stout smearing, HMC force can be calculated recursively.
d (k) i~ d
%sgtgmm =3 2ReTr {zﬂﬂ (2) U (x)} : (2.27)
T, p
d d [ ;0D
ZUR () = — |9 (@) . k=1
TUW @) = - |69 y() (2.28)



Since the right hand side of Eq. (2.28) is expressed in terms of Uy

d

ReTr (2P (a:)EU/(ﬁ) (g;)]

(k)

_ d _
ReTr {Eg“ 1)(33)EU£'g 1>($)} - ...

ReTr {E(O) (z:)diU@) (a:)] = ReTr [iP,(2)Up(2)%

© 3

T

, recursion formula

O ()(2-29)

In the following, variables with (k) and (k—1) are denoted with and without ’, respectively.

d d
2 iQulx)  _ E(fg—l—f1Q+f2Q2>

dr
_dfo | dfi | dfo d@Q d@Q dQ
= vt T4 +f1d7_ +f2d7-Q+f2Qd7-
fj depends on 7 via v and w,
df; _ Ofjdu  0f;dw
dr  Oudr Owdr’
and u and w via ¢y and ¢ as
du _ Qudey | Oude, — dw _ Owdey | Owde
dr  Oco dr = Ocy dr’ dr  Oco dr = Ocy dT’

Then using the expressions for ¢

and ¢; with @ lead to

@ _ %7 - T il
dr 3dr H(@) r(Q dr )’
dey  1d_ ., dQ)
dr 2 dTTr(Q =T (Q dr )’
By explicit calculation,
oo _ o
oo 2(9u2 —w?)’ Oc1  (9u? —w?)’
ow —3u w  3u? —w?
dcg 2w(9u? — w?)’ ocr 2w(9u? —w?)’

and then df;/dr is expressed as

df; dq) 2dQ>
Yi_pT i T il
dr bijTr (Q dT) 0oy Tr (Q dr
by defining
(1) 2 2y,.(2) 2 A
b — 2ur;” + (3u® —w?)r;” — 2(15u° + w?) f;
J 2(9u? — w?)? ’
b — rj(-l) — 3ur](~2) — 24u f;
S 2(9u? —w?)2 7’
where
L0k @ 10k
J ou’ J w Ow

10

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



are explicitly read as

r(()l) = 2u+i(u? — w?))e*™
+2e " {4u(2 — iu) cos(w) + [u(3u® + w?) + i(9u? + w?))&o(w)}, (2.39)
rgl) = 2(1 + 2iu)e®™ 4 e " {—2(1 — iu) cos(w) + (3u? — w? + 6iu)éo(w)},  (2.40)
rgl) = 2ie?™ 4 je""™{cos(w) — 3(1 — iu)é&(w)}, (2.41)
1"(()2) = —2e?™ 4 2jue”"{cos(w) + (1 + 4iu)éo(w) + 3u?&; (w)}, (2.42)
rP = e {cos(w) + (1 + 2iu)é(w) — 3ué (w)}, (2.43)
= e g (w) - Biugi(w)}, (2.44)
b n(w) (w) _ sinu)
sin(w cos(w)  sin(w
£O(w) = w gl(w) = w2 - w3 (245)
Defining
B; = bip + bi1Q + b2Q, (2.46)
au’ 0dU d d
— =P {Tr [QQ} By + Tr {QQ Q] By + fl—Q + fa QQ + f2Q Q} . (247)
dr dr dr
s auv’ du a2
ReTr (2’ ) = ReTr (z’eiQ> — ReTr <ZA ) (2.48)
dr dr dr
1
A= [y = (0 + I — (T +TT), (2.49)
I =Tr(UY'B))Q + Tr(UYB:)Q* + /LUY + fLQUY + fLUYQ. (2.50)
For numerical implementation, instead of A, iA = [i['|47 is a convenient variable. Final

expression of 3, (x) is obtained by refering to an explicit form of the smearing scheme. For the
APE type smearing,

Su@) = T@) [fol + 1Qu(@) + HQA®)] +iCl(x)Au(x)
+i > {=punl(@ + U} (x + YU (2) A ()

vER
+pupho (@ + @)U (x + DUz + 2)U}(2)
pu Uy (z + /l)Uu(x + ) Au(z + ﬁ)UJ(x)
—puw Ul (@ = 0+ Ul (x — 9)Ay(z — 0)U, (z — D)

2.4 Smeared clover fermion force

The force of the clover fermions, Egs. (1.27) (1.28) must be changed in accord with the recursion
formula (2.29). This is most simply done by multiplying U, ;(x) to REV () and REW (x) without
taking antihermitian-traceless operation®.

3This is temporary setting. For performance reason, the formulae should be changed in accord with the
recursion formula in near future.
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3 HYP smearing

3.1 General form of HYP smearing

The HYP smearing was introduced in Ref. [13]. It was applied to HMC update algorithm in
Ref. [14], in the form of normalized-HYP defined in the following. BMW collaboration has
used the stout-HYP smearing and call it HEX smearing [15].

The HYP smearing is composed of consecutive smearing and projection as

C@) = Y Us@)Uula+6)U( + i) (3.1)
toFp,v.p
V() = P[as;cﬁp< ), Un(2)] (3.2)
C@) = 2 3 v, @V (@ +pVdiE+ ) (3.3)
ip#u,
V() = PlayC3 (), Uu(z)] (3.4)
@ = T 3 VE@VEe+ Vit (3.5)
iwéu
V(@) = Plai;CP(x),U,(x)] (3.6)

where the indices after semicolon is the excluded directions. P [o; C, U] represents a projection
of C' to SU(N). The following three kinds of projection operators are frequently used.

Maximum SU(N) projection:

() = (1 - )Uu(a) + Cu(a), (3.7)
Pla; Cu(zx), Uy(x)] = Vergl%)((N) ReTr(VQT). (3.8)

Unitary normalization (how is it called?):
vV =Q(0fQ)"1/? (3.9)
Stout projection:
P [a; Cu(x), Up(2)] = exp ([Cu(@) U (2)] ar ) Up(=). (3.10)
Using the same notation as the last section,

P0; (@), Up(a)] = exp[iQu ()] Un(a), (3.11)
iQux) = [Qu@ar. Q) =C@TUjx)  (312)

HYP smearing with these projections are sometimes called projected-HYP, normalized-HYP,
and stout-HYP, respectively.

3.2 HMUC force of stout-HYP smearing

The force of stout-HYP smeared fermion operator can be obtained recursively just as same as
the stout-APE smearing derived in the last section.

12



3rd to 2nd level recursion:

Valw) = oxp [iQF (@)] Up(), (3.13)
QP @) = [cP@U@)] (3.14)
[0
@) = &2 [ VE@VD@+ Vi@ +p)
vEp
+ V@ — )V (@ - )V (@ — o+ ) (3.15)
where oy = a3/6. The recursion formula reads
, =) (g (@) ) (Vi ()
ZR Tr (z ) ZR Tr (u T () — (3.16)
vEp
=(3 _ QP (x 3 A (3
ED(x) = B (2)e% @ 4+ P (2)iAP(2) (3.17)
e’ N
D) = ig (VR +pVDi@+ U )AD (@)
V(@ — o+ W)U} (2 — 0)AD (z — )V, (& — 0)
2 ~ ~ 2 3 ~
4—VV(;M)T x—v+ ,u)V(V)T(:L‘ — A (& — DU, (z — D)
+AP (@ + U (2 + D)V (2 + 0) V) (2)

_|_
p z+ 0)AP (2 + )V, 2 ()
~Ul(x — 0+ AP (z — 0+ ,u)V(2)T(m — I/)Vy(i) (x — 19)} (3.18)

where zAi(m) is determined from ¥, S’), and U, using formulae Egs. (2.49) and (2.50) in the
previous section.

2nd to 1st level recursion:

D) = exp [iIQR) ()] Un(w), (3.19)
QA=) = [CR@UL@)] (3.20)
a ~
CA@) = 23 [VEL@VY,+p)V e+
pFHY
+ Vi@ = PV, (e = VI — o+ )] (3.:21)

The recursion formula reads

avd (z) AU, (z) AV, (z)
3 KV _ =(2 2 wvp
S Relr (EW”dT = Y kel (2@ |y w (o W)

T, VFE

13



22 (2) = £0)(2)e @0 4 CQF ()iAD)(2) (3.23)
SE@) = i 2 {-Vi@+ VOl +pUl AR @)

~Vi @ = p+ U (@ — p)AZ(z — HV), (@ — p)

+VI @ — b+ VI (@ = pAZL(x — p)U,(z — p)

+AD) (x + p)Uy(x + )V (@ + p)V ()

V(@ + Uz + )ALz + p)Vi ()

~Ul(z = p+ AR — p+ VDI - VD —p)} (3:24)

where ZA/(EZ,(:L') is determined from E,(E;)V, Q,(f?,, and U, using formulae Egs. (2.49) and (2.50) in
the previous section. Note that while Vu(;lu)p Vu(lp)y holds, ZLQ;,),,) # Z,(E;L,, because of A,(E,), and
AEJ?Z in the above equation.

1st level recursion:

Vi) = exp Q) (2)] Uu(), (3.25)
Q@) = [Ch,@Ui@)] (3.26)
(0%}
Cillp@) = 50X | Us(@)Uu(e + 6)UL(x + )
oFUVp
+ Ul (@ = 8)Uu(@ — 6)Us(w — & + 1) (3.27)
The recursion formula reads
(1)
Z ReTr (EEL ’)jp(x)dVW,p(x)>
dr
T VFE s PV
_ dU,(x dU,(x
= > Relr :L{Lp(x)ﬂ + 3 20 (@) u(®) (3.28)
dr dr
T, VA PF Y oFpurp
ED@) = T, + cl@)irl), @) (3.29)
Oé
Shpe(@) = i {~Uslw + WU o+ PUH )AL, ()
~Ul(z — 6+ U (x — 6)AL) (2 — 6)Us(z — 6)
+Ul(w =6 + ULz — 6)AL) ,(x — 6)Uy (2 — 6)
+AL) (@ + )Us (2 + U (z + p)UL ()
~Uy(z + U (x + 6)AL),,(z + 6) UM (2)
~Ul(w — 6+ )AL, (x = 6 + WUf(z — )Us(x — 5)}  (3.30)

where ZA,(}Z/p($) is determined from E,(f;)yp, Q,(};)Vp, and U, using formulae Egs. (2.49) and (2.50)

in the previous section. Note that A,(};B,p # A,(};Z),, because of ZLQ;,),p # EL%,)DV.

14



All level recursion formula Now combining all the three levels of recursion together, we

e st ;Reﬂ (E;(@W) = ;ReTr (EH(IL’)W> , (3.31)

Su(z) =@ @)+ > |2
vF#ER

+ 2 ( + D2 B (@) )] (3.32)

pFpv oFuVp

15



A Notation of y-matrices
We use the hermitian representation of the Euclidean « matrices which satisfy
{'7#7'71/} = 20, 'YL = Vs (1.1)

V5 = —V1727374- (1.2)

The tensor components are defined as
i
Ouv = _5['7;“'7V]~ (1'3)
Dirac representation:
_ 0 —ioj (I 0 (0 I
73_(2’0]- 0 )774_<O _I>7’Y5—<I O>7 (14)
where o; are 2 x 2 Pauli matrices and I is the unit matrix.

Chiral representation:

(0 —ig; (0 —I (1 0
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