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Q2 evolution equations are important not only for describing hadron reactions in accel-
erator experiments but also for investigating ultrahigh-energy cosmic rays. The standard
ones are called DGLAP evolution equations, which are integrodifferential equations. There
are methods for solving the Q2 evolution equations for parton-distribution and fragmenta-
tion functions. Because the equations cannot be solved analytically, various methods have
been developed for the numerical solution. We compare brute-force, Laguerre-polynomial,
and Mellin-transformation methods particularly by focusing on the numerical accuracy
and computational efficiency. An efficient solution could be used, for example, in the
studies of a top-down scenario for the ultrahigh-energy cosmic rays.

1. Introduction

High-energy hadron reactions are described in terms of parton-distribution functions
(PDFs) and fragmentation functions (FFs). There are parametrizations for the PDFs [1]
and FFs [2]. Using these functions, cross sections of high-energy hadron reactions are
evaluated. Precise calculations of these cross sections are important for finding any new
physics beyond the current theoretical framework.

The PDFs depend on two kinematical variables x and Q2. They are defined by Q2 = −q2

and x = Q2/(2p · q) in lepton scattering with the momentum transfer q and the hadron
momentum p. The FFs depend on Q2 and another variable x = 2Eh/

√
s, where Eh is the

hadron energy and
√

s is the center-of-mass energy. Their Q2 dependence is called scaling
violation, which is calculated by the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)
evolution equations [3] in the perturbative QCD region.

The Q2 evolution equations are frequently used in describing high-energy hadron reac-
tions. Because the PDFs and FFs vary significantly in the current accelerator-reaction
range, Q2=1 GeV2 to 105 GeV2, the Q2 dependence should be calculated accurately. Fur-
thermore, it is known that high-energy cosmic rays have energies much more than the
TeV scale. Analytical forms of current PDFs and FFs are supplied typically in the GeV
region, so that they have to be evolved to the scale which could be more than TeV in
order to use them for investigating the cosmic rays [4,5].

A useful evolution code was developed in Ref. [4] for the cosmic ray studies. The
Laguerre-polynomial method was used for solving the evolution equations. Splitting func-
tions, PDFs, and FFs are expanded in terms of the Laguerre polynomials, and then the
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evolution is described by a simple summation of their expansion coefficients. In fact, the
method is very efficient for solving the equations in comparison, for example, with a direct
integration method [6,7]. However, because the Laguerre polynomials Ln(− ln x) go to
infinity in the limit x → 0, it could have an accuracy problem in the small x region where
high-energy reactions are sensitive. In this paper, we discuss evolution results by the
Laguerre method [4,8] in comparison with the ones by other solution methods, “brute-
force” [6] and Mellin-transformation [9] methods. In particular, evolution accuracy and
computation time are compared. It is the purpose of this paper to clarify the advan-
tages and disadvantages of these numerical solution methods for a better description of
high-energy hadron reactions including the high-energy cosmic rays. In particular, the
FF evolution could be used for studying a top-down scenario in order to determine the
origin of ultrahigh-energy cosmic rays, namely from a decay of a superheavy particle [5].

This paper consists of the following. The DGLAP evolution equations are introduced
in Sec. 2, and numerical solution methods are explained in Sec. 3. Evolution results and
their comparisons are discussed in Sec. 4. The results are summarized in Sec. 5.

2. Q2 evolution equations

From the cross-section measurements of high-energy lepton-hadron, hadron-hadron,
and lepton-annihilation reactions, the PDFs and FFs are extracted. The PDFs and FFs
are expressed in terms of the two kinematical variables x and Q2. A PDF or a FF is
expressed f(x,Q2) in the following. We investigate the standard Q2 evolution equations,
which are called the DGLAP evolution equations [3]. The flavor nonsinglet equation is
written as

∂

∂ ln Q2
f

NS
(x,Q2) =

αs(Q
2)

2π

∫ 1

x

dy

y
P

NS
(x/y) f

NS
(y, Q2), (1)

where f
NS

(x,Q2) is a nonsinglet (NS) function, P
NS

(x) is a nonsinglet splitting function,
and αs(Q

2) is the running coupling constant. The splitting functions for parton distribu-
tions and fragmentation functions are identical in the leading order (LO) of αs; however,
they differ if higher order corrections are included [10]. In order to make the evolution
equation slightly simpler, the variable t is used instead of Q2:

t ≡ − 2

β0

ln

[
αs(Q

2)

αs(Q2
0)

]
, (2)

where the running coupling constant in the leading order (LO) is given by αs(Q
2) =

4π/[β0 ln(Q2/Λ2)] with the QCD scale parameter Λ. The constant β0 is expressed as
β0 = 11CG/3 − 4TRNf/3 with CG = Nc and TR = 1/2. Here, Nc is the number of color
(Nc=3) and Nf is the number of flavor. The Q2

0 in Eq. (2) indicates the initial Q2 where
the evolved function is provided. Using this variable t in Eq. (1), we obtain

∂

∂t
f

NS
(x, t) =

∫ 1

x

dy

y
P

NS
(x/y) f

NS
(y, t), (3)

for the nonsinglet evolution.
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In the flavor singlet case, the evolution is described by two coupled integrodifferential
equations:

∂

∂t
f(x, t) =

∫ 1

x

dy

y
P(x/y) f(y, t), (4)

where the matrices f and P are defined by

f(x, t) =

(
f

S
(x, t)

fg(x, t)

)
, P(x) =

(
Pqq(x) 2NfPij(x)
Pji(x) Pgg(x)

)
. (5)

The indices i and j indicate ij = qg for the PDFs and ij = gq for the FFs. The functions
Pqq, Pqg, Pgq, and Pgg are splitting functions. The function Pij determines the probability
of the splitting process that a parton j with the momentum fraction y splits into a parton
i with the momentum fraction x and another parton and the j-parton momentum is
reduced by the fraction z. In the LO, the splitting functions are expressed as

Pqq(x) =P
NS

(x) = CF

[
1 + x2

(1− x)+

+
3

2
δ(1− x)

]
,

Pqg(x) =TR

[
x2 + (1− x)2

]
,

Pgq(x) =CF
1 + (1− x)2

x
, (6)

Pgg(x) =2 CG

[
x

(1− x)+

+
1− x

x
+ x(1− x) +

(
11

12
− 1

3

NfTR

CG

)
δ(1− x)

]
,

where CF is given by CF = (N2
c − 1)/(2Nc) and 1/(1− x)+ is defined by

∫ 1

0
dx g(x)/(1−

x)+ =
∫ 1

0
dx [g(x)− g(1)]/(1− x) with an arbitrary function g(x).

We need to solve the nonsinglet and singlet evolution equations in Eqs. (3) and (4).
These are not simple integrodifferential equations, so that an efficient numerical method
should be investigated. In the next section, three popular numerical methods are ex-
plained.

3. Numerical Methods for solving Q2 evolution equations

There are various ways for solving the DGLAP equations. In this section, we explain
three popular methods, brute-force, Laguerre-polynomial, and Mellin-transformation meth-
ods. In the following subsections, only the nonsinglet evolution is explained because the
singlet evolution can be solved in the same way.

3.1. Brute-force method
The simplest way is possibly to use the brute-force method [6,7]. It may seem to

be too simple, but it is especially suitable for solving more complicated equations with
higher-twist terms [11]. These equations could not be easily handled by the orthogonal-
polynomial methods such as the Laguerre-polynomial one in Sec. 3.2 and by the Mellin-
transformation method in Sec. 3.3. Furthermore, a computer code is so simple that the
possibility of a program mistake is small, which means the code could be used for checking
other numerical methods. These are the reasons why it was investigated in Ref. [7].
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In the brute-force method, the two variables t and x are divided into small steps, and
then the differentiation and integration are defined by

∂f(x, t)

∂t
⇒ f(xi, tj+1)− f(xi, tj)

∆tj
,

∫
dxf(x, t) ⇒

Nx∑

k=1

∆xkf(xk, tj), (7)

where ∆tj and ∆xk are the steps at the positions j and k, and they are given by ∆tj =
tj+1 − tj and ∆xk = xk − xk−1. The numbers of t and x steps are denoted Nt and Nx,
respectively. Applying these equations to Eq. (3), we write the nonsinglet evolution from
tj to tj+1 as

q
NS

(xi, tj+1) = q
NS

(xi, tj) + ∆tj

Nx∑

k=i

∆xk

xk

Pqq(xi/xk)qNS
(xk, tj). (8)

If the distribution q
NS

is supplied at t1 = 0, the next one q
NS

(x, t2) can be calculated by
the above equation. Repeating this step Nt − 1 times, we obtain the final distribution at
tNt . However, it is obvious that the step numbers Nt and Nx should be large enough to
obtain an accurate evolution result.

3.2. Laguerre polynomial method
The evolution equations could be solved by expanding the distribution and splitting

functions in terms of orthogonal polynomials. A popular method of this type is to use
the Laguerre polynomials [4,8]. They are defined in the region from 0 to ∞, so that the
variable x should be transformed to x′ by the relation x′ = − ln x.

The nonsinglet evolution is discussed in the following. The evolution function E
NS

(x, t),
which describes the distribution evolution from t = 0 to t, is defined by

f
NS

(x, t) =

∫ 1

x

dy

y
E

NS
(x/y, t) f

NS
(y, t = 0). (9)

Then, it satisfies

∂

∂t
E

NS
(x, t) =

∫ 1

x

dy

y
P

NS
(x/y) E

NS
(y, t). (10)

Because this is the same integrodifferential equation as the original DGLAP equation,
one may wonder why such a function should be introduced. There is an advantage that
the evolution function should be the delta function at t = 0: E

NS
(x, t = 0) = δ(1 − x)

because of its definition in Eq. (9). It makes the following analysis simpler. The functions
are expanded in terms of the polynomials: P

NS
(e−x′) =

∑
n P n

NS
Ln(x′) and E

NS
(e−x′ , t) =∑

n En
NS

(t)Ln(x′), where P n
NS

and En
NS

(t) are the expansion coefficients. The coefficient

F n for a function F (x) is given by F n =
∫ 1

0
dxLn(x′) F (x), and it could be calculated

analytically for a simple function. If the two functions on the right-hand side of Eq. (10)
are expanded, it becomes an integration of two Laguerre polynomials. Using the formula∫ x′

0
dy′Ln(x′ − y′)Lm(y′) = Ln+m(x′)− Ln+m+1(x

′) for this integration, we obtain

d

dt
En

NS
(t) =

n∑
m=0

(P n−m
NS

− P n−m−1
NS

) Em(t). (11)
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Because the evolution function is a delta function at t = 0, all the expansion coefficients
are one. Therefore, this equation is easily solved to give a summation form:

Em
NS

(t) = eP 0
NS

t
m∑

k=0

tk

k!
Bk

m, Bk+1
m =

m−1∑

i=k

(Pm−i
NS

− Pm−i−1
NS

)Bk
i . (12)

This recursion relation is calculated with the relations B0
i = 1, B1

i =
∑i

j=1(P
j
NS
− P j−1

NS
),

and Bk
0 = Bk

1 = · · · = Bk
k−1 = 0. After all, the evolution is calculated by the simple

summation:

f
NS

(x, t) =

NLag∑
n=0

n∑
m=0

[En−m(t)− En−m−1(t)] Ln(− ln x)f m
NS

(t = 0). (13)

In this way, the integrodifferential equation becomes a simple summation of Laguerre-
expansion coefficients, so that this method is considered to be a very efficient numerical
method for the solution.

3.3. Mellin transformation method
The Mellin transformation method is one of the popular evolution methods [9]. It

is used because the Mellin transformation of the right-hand side of Eq. (3) becomes a
simple multiplication of two moments, namely the moments of the splitting function and
the distribution function. The moments of the splitting functions (anomalous dimensions)
are well known, and a simple functional form is usually assumed for the distribution at
certain small Q2 so as to calculate its moments easily. Then, it is straightforward to
obtain the analytical solution in the moment space. Furthermore, the computation time
is fairly short. These are the reasons why this method has been used as a popular method.
For example, it is used for the χ2 analysis of experimental data for obtaining polarized
PDFs [12], whereas the brute-force method is employed in Ref. [13].

The Mellin transformation and inversion are defined by

f̂(s, t) =

∫ 1

0

dx xs−1 f(x, t), f(x, t) =
1

2πi

∫ c+i∞

c−i∞
ds x−s f̂(s, t). (14)

Here, the upper limit of the x integration is taken one because the distribution f(x)
vanishes in the region x ≥ 1. The Mellin inversion is a complex integral with an arbitrary
real constant c, which should be taken so that the integral

∫ 1

0
dxf(x)xc−1 is absolutely

convergent. If this transformation is used, the integrodifferential equations become very
simple. For example, the nonsinglet evolution equation becomes

∂

∂t
f̂

NS
(s, t) = P̂

NS
(s) f̂

NS
(s, t). (15)

Its solution is simply given by

f̂
NS

(s, t) = eP̂
NS

(s) t f̂
NS

(s, t = 0). (16)
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Re (s)

Im (s)

c

�

s = c + z ei�

Figure 1: Integration contour.

Because the moments P̂
NS

(s) are well known
quantities and the moments of the initial func-
tion f̂

NS
(s, t = 0) could be evaluated, it is

straightforward to calculate the evolution in
Eq. (16) in the moment space. However,
the numerical integration is needed for the
Mellin inversion in Eq. (14) for transforming
the moments into a corresponding x distribu-
tion. Practically, the Mellin inversion is cal-
culated along the integration contour in Fig.
1. Changing the complex integration variable
s for the real one z by s = c+zeiφ in Eq. (14),
we have

f
NS

(x, t) =
1

π

∫ ∞

0

dz Im
[
eiφ x−c−zeiφ

f̂
NS

(s = c + zeiφ, t)
]
. (17)

The constant c and the angle φ are shown in Fig. 1. Using the Gauss-Legendre quadrature
for this integration, we obtain the evolved distribution in the x space.

4. Comparison of evolution results

In comparing evolution results of three methods, we take the evolved distribution of
the brute-force (BF) method with Nt=200 and Nx=4000 as a standard for assessing other
evolution accuracy. It is shown in Ref. [7] that the evolution accuracy is better than 2%
if Nt=200 and Nx=1000 are taken. This is the reason why it is taken as the standard.
Because the details are discussed in Ref. [7] for the evolution accuracy of the BF method,
we discuss only the comparison with the results of the Laguerre-polynomial and Mellin-
transformation methods.

4.1. Parton distribution functions
In order to show the Q2 evolution of the PDFs, we use the MRST02 distributions [14]

which are provided analytically at Q2=1 GeV2. The distributions are evolved to Q2=100
GeV2 with the MRST02 scale parameter by three evolution methods. Then, the ratio of
the evolved distribution to the one by the brute-force method with Nt=200 and Nx=4000
is shown for finding the numerical accuracy.

First, the evolution results of the nonsinglet distribution x(uv + dv) are shown in
Fig. 2 for the Laguerre method. The number of the Laguerre polynomials NLag is
taken as NLag=5, 10, 20, and 30, and each distribution ratio x(uv + dv)Laguerre/x(uv +
dv)BF (Nt=200,Nx=4000) is shown. It is obvious that accurate evolution cannot be obtained
if the number NLag is small in the small- and large-x regions. In particular, the ratio
shows oscillatory behavior at small x, which results from the functional behavior of the
Laguerre polynomials. The Laguerre polynomials Ln(− ln x) are shown as a function of
x in Fig. 3. We find that the oscillatory functional form at small x gives rise to the
oscillatory behavior in Fig. 2. Therefore, one should be careful in the Laguerre method
that a large number of polynomials should be taken to obtain an accurate evolution at
small x. Furthermore, one should be also careful in the very-large-x region.
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Figure 2. Evolved nonsinglet distribution ra-
tios x(uv + dv)Laguerre/x(uv + dv)BF are shown
for NLag=5, 10, 20, and 30 in the Laguerre-
polynomial method.
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Figure 3. Laguerre polynomials Ln(− lnx).

Next, the evolution results are shown in Fig. 4 for the Mellin-transformation method.
The Mellin inversion of Eq. (17) is numerically calculated by the Gauss-Legendre quadra-
ture with the number of points NGL, which is taken as NGL=6, 10, 20, and 50 in Fig.
4. The integration contour of Fig. 1 is used with the constants c=1.1 and φ=135◦ as
suggested in Ref. [9]. In order to use the Gauss-Legendre quadrature, the upper limit of
the integration of Eq. (17) should be assigned. We decided to take zmax = 16.5x + 3.5 so
that the integrand is small enough at z = zmax for the x region 10−5 < x < 0.99. If the
number NGL is small, the evolved nonsinglet distribution is not accurate enough in the
small and large x regions as shown in Fig. 4.
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Figure 4. Evolved nonsinglet distribution ra-
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transformation method.
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The inaccuracy in the small and large x regions for NGL=6 and 10 is understood in
the following way. We show the integrand of Eq. (17) in Fig. 5 by taking x=10−5, 10−3,
10−1, and 0.9. It is clear that the integrand oscillates at small x so that a certain number
of Gauss-Legendre points is needed for getting an accurate evolution. On the other hand,
the integrand does not decrease rapidly at large z for the large-x case (x=0.9), so that
large zmax should be taken for the integration. In addition, the positive contribution at
z ∼ 1 and the negative one at z ∼ 2.5 almost cancel each other, which is another source
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of numerical inaccuracy.
The evolution results of the singlet distribution are shown in Figs. 6 and 7 for the

Laguerre and Mellin methods, respectively. We notice in Fig. 6 that the accuracy of the
singlet evolution is much better than the nonsinglet one in the Laguerre method. It comes
simply from the functional difference between the nonsinglet and singlet distributions. The
Laguerre method can be used as an accurate evolution method for the singlet evolution.
The singlet evolution accuracy for the Mellin method is similar to its nonsinglet ones. If
the point number NGL is large enough, the evolution becomes accurate.
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Figure 6. Evolved singlet distribution ratios
xqLaguerre

s /xqBF
s are shown for NLag=5, 10, 20,

and 30 in the Laguerre-polynomial method.
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s /xqBF
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and 50 in the Mellin-transformation method.

The gluon evolution results are shown in Figs. 8 and 9 for the Laguerre and Mellin
methods. The Laguerre evolution becomes much more accurate than its singlet-quark
evolution; however, the Mellin evolution becomes slightly inaccurate at large x.
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Figure 8. Evolved gluon distribution ratios
xgLaguerre/xgBF are shown for NLag=5, 10, 20,
and 30 in the Laguerre-polynomial method.
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xgMellin/xgBF are shown for NGL=6, 10, 20,
and 50 in the Mellin-transformation method.

4.2. Fragmentation functions
The fragmentation functions (FFs) are essential for understanding hadron productions

in high-energy reactions. In addition, they are important for describing ultrahigh-energy
cosmic rays in the top-down scenario [4,5]. In comparison with the situation of the PDFs,
their determination is still premature in the sense that experimental data are not still
enough to determine them accurately. However, there are available e+e− annihilation
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data, which could be used for a global analysis of the FFs. The current status of such
analyses is summarized in Ref. [2]. We use the KKP parametrization [15] at Q2=2 GeV2

as the initial functions, and then they are evolved to Q2=100 GeV2 with the KKP scale
parameter for testing three evolution methods.

The brute-force evolution with Nt=200 and Nx=4000 is taken as the standard for
showing other evolution results as it was done in the previous subsection. In Fig. 10,
the Laguerre-method results for the singlet fragmentation function into the proton and
antiproton, Dp+p̄

qs
=

∑
i(D

p+p̄
qi

+ Dp+p̄
q̄i

), are shown. The Mellin method results are shown
in Fig. 11. The small-x region is shown in these figures for comparing the results with
the PDF accuracy in Sec. 4.1, although it is outside the range of current accelerator
experiments. As it was found in the PDF evolution, the Laguerre method is not excellent
in the small- and large-x regions unless a large number of polynomials is taken. The ratios
in Figs. 10 and 11 show a similar tendency to the ratios of the PDF singlet evolution
results in Figs. 6 and 7, respectively.
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The gluon FF evolution results are shown in Figs. 12 and 13 for the Laguerre and
Mellin methods. The gluon FF evolution by the Laguerre method is accurate in the
most-x region except for the large-x part. The Mellin method is also accurate except for
the large-x region.

We have compared three evolution methods; however, there are other methods [16].
Because the numerical solution of the DGLAP equations is very important for describing
high-energy hadron reactions, an efficient and accurate method should be investigated
further.

4.3. Computation time
We show typical computation time for each evolution method. However, we should

aware that it depends much on the numbers, Nt and Nx in the brute-force method, NLag

in the Laguerre method, and NGL in the Mellin method. Therefore, we list CPU time for
different parameter values for Nt, Nx, NLag, and NGL in Table 1 by running the codes for
the nonsinglet PDF. In the singlet evolution, the time becomes longer but the tendency of
three evolution methods is the same. The used machine is DELL-Dimension-8800 with a
Pentiam-4 2.8G CPU. The operating system is Redhat-Linux 8.0 and the fortran complier
is g77.

Table 1
CPU time for calculating PDFs at 500 x-points by running each evolution code for the
nonsinglet distribution with the linux-g77 compiler on a Pentiam-4 machine with a 2.8G
CPU.

Method Condition CPU time (seconds)
for PDFs at 500 x-points

Brute-force Nt=50, Nx =1000 1.501
Nt=200, Nx =1000 5.986
Nt=200, Nx =4000 95.634

Laguerre NLag=5 0.005
NLag=10 0.011
NLag=20 0.025
NLag=30 0.044

Mellin NGL=6 0.154
NGL=10 0.244
NGL=20 0.464
NGL=50 1.128

Among the three methods, the brute-force method takes the longest time for the compu-
tation simply because the large numbers of steps are taken. Therefore, it typically takes a
few seconds for obtaining a reasonable accuracy for the nonsinglet evolution (Nt=50-200,
Nx=1000).

In the Laguerre method, the evolution is simply given by the summation of the La-
guerre coefficients which are calculated partially with the recursion relation. There is no
numerical integration involved in the evolution calculation, so that this method is by far
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the fastest among the studied methods. Even if NLag=30 is taken, it takes 0.044 seconds
for the nonsinglet evolution. It means that it is one hundred times faster than the brute-
force method. If one is interested in using it for the singlet evolution and if one does not
mind one or two percent error, it is certainly the best method.

In the Mellin method, accurate evolution results are obtained with NGL = 20. The
computation time is significantly shorter and it is several times faster than the brute-
force method. This is the reason why this method is popular among high-energy physics
researchers.

5. Summary

We have compared the evolution results of the parton distribution functions and the
fragmentation functions by using three evolution methods, brute-force, Laguerre-polynomial,
Mellin-transformation methods. The advantages and disadvantages of each method are
summarized in Table 2.

Table 2
Summary of advantages and disadvantages of each evolution method.

Method Advantage Disadvantage

Brute-force Simple code: The computer code is
very simple. More complicated evo-
lution equations with higher-twists
(e.g. in Ref. [11]) could be handled
easily. The evolution could be ac-
curate in the small- and large-x re-
gions.

Long computation time: In order to
obtain an accurate evolution, large
numbers of steps (Nt and Nx) are
needed. If one uses the code for
many evolution calculations, it takes
a significant amount of time.

Laguerre Very fast: It takes less than a second
by an ordinary desktop computer.
As long as one does not mind the
very small- and large-x regions, it is
a good method for repeated evolu-
tion calculations.

Accuracy at small and large x: De-
pending on the initial functional
form, the results do not converge
at small x unless a large number of
polynomials are used. It is also diffi-
cult to obtain accurate evolution at
large x.

Mellin Fast: By choosing an appropriate
zmax and NGL in each x region, the
code becomes much faster than the
brute-force computation. For re-
peated evolution calculations with
certain accuracy, this method is ap-
propriate.

Accuracy at small and large x: One
should be careful about the choices
of zmax and NGL. In particular, the
Mellin inversion should be carefully
done at very large x.
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