Staff: H. Nakao (PHS 4868)
Overview
Resonant X-ray scattering (RXS) is a powerful tool to reveal
element and orbital selective electronic states utilizing X-ray absorption edges.
However, we cannot select X-ray energy in RXS measurement,
since the absorption energy depends on the element and electron orbital.
Accordingly, observable elements and orbitals are limited
only in hard X-ray region (E>∼5keV).
For example, various interesting physical properties,
such as colossal magnetoresistance effect
and magneto-electric effect, were discovered in 3d transition metal oxides.
There the orbital, charge, and spin degrees of freedom of 3d electron
play important roles.
Therefore, the study of the 3d electronic states
is essential to understand the phenomena microscopically.
The spatial orderings of charge and orbital degrees of freedom
were observed by RXS at the K-edge.
However, the RXS signal at K-edge (1s→4p transition energy)
reflects the 4p electronic state and not the 3d electronic state.
On the other hand, the RXS at L2,3-edge (2p→3d
transition energy) can probes the 3d electronic state directly.
The signal of the resonant magnetic scattering is also strongly observed
at the L2,3-edge.
Hence, the RXS measurement in soft X-ray region (200 eV < E < 5000 eV)
is strongly desired to elucidate the element and orbital selective electronic states.
Consequently, we have developed the in-vacuum diffractometers
to perform resonant soft X-ray scattering (RSXS) measurements.
One is a conventional 2-circle diffractometer [1].
Second diffractometer is equipped with a superconducting magnet (< 7.5 T)
to investigate the magnetic field effect
in strongly correlated electron system [2].
Third one is specially designed for small angle diffraction
to detect spin textures (skyrmions, chiral soliton lattice, and so on)
and domain structures [3].
Now we are developing new diffractometer for coherent soft X-ray diffraction imaging.
Scientific activity
- Resonant soft X-ray scattering (200 eV < E < 1500 eV)
- Antiferromagnetic Order of the Co2+ High-Spin State
with a Large Orbital Angular Momentum in
La1.5Ca0.5CoO4,
J. Okamoto, H. Nakao, Y. Yamasaki, H. Wadati,
A. Tanaka, M. Kubota, K. Horigane, Y. Murakami and K. Yamada,
J. Phys. Soc. Jpn. 83 (2014) 044705:1-6.
- Magnetic and electronic states in
(LaMnO3)2(SrMnO3)2
superlattice exhibiting a large negative magnetoresistance,
H. Nakao, T. Sudayama, M. Kubota, J. Okamoto, Y. Yamasaki, Y. Murakami,
H. Yamada, A. Sawa, and K. Iwasa,
Phys. Rev. B 92 (2015) 245104:1-8.
- Surface Ordering of Orbitals at Higher Temperature in LaCoO3 Thin Film,
Y. Yamasaki, J. Fujioka, H. Nakao, J. Okamoto, T. Sudayama,
Y. Murakami, M. Nakamura, M. Kawasaki, T. Arima, and Y. Tokura,
J. Phys. Soc. Jpn. 85 (2016) 023704:1-4.
-
Thickness dependence and dimensionality effects on charge and magnetic
orderings in La1/3Sr2/3FeO3 thin films,
K. Yamamoto, Y. Hirata, M. Horio, Y. Yokoyama, K. Takubo, M. Minohara, H. Kumigashira,
Y. Yamasaki, H. Nakao, Y. Murakami, A. Fujimori, and H. Wadati,
Phys. Rev. B 97 (2018) 075134:1-6.
- Magnetic ordering in multiferroic SmMn2O5
and GdMn2O5 studied by resonant soft x-ray scattering,
Y. Ishii, S. Horio, H. Yamamoto, Y. Noda, H. Nakao, Y. Murakami, and H. Kimura,
Phys. Rev. B 98 (2018) 174428:1-7.
- Charge disproportionation of Mn 3d and O 2p electronic states
depending on strength of p-d hybridization in
(LaMnO3)2(SrMnO3)2 superlattices,
H. Nakao, C. Tabata, Y. Murakami, Y. Yamasaki, H. Yamada, S. Ishihara, and M. Kawasaki,
Phys. Rev. B 98 (2018) 245146:1-7.
- Field-induced spin reorientation in an antiferromagnetic Dirac material
EuMnBi2 revealed by neutron and resonant x-ray diffraction,
H. Masuda, H. Sakai, H. Takahashi, Y. Yamasaki, A. Nakao, T. Moyoshi,
H. Nakao, Y. Murakami, T. Arima, S. Ishiwata,
Phys. Rev. B 101 (2020) 174411:1-6.
- Electronic charge transfer driven by spin cycloidal structure,
Y. Ishii , S. Horio, Y. Noda, M. Hiraishi, H. Okabe, M. Miyazaki, S. Takeshita, A. Koda,
K. M. Kojima, R. Kadono, H. Sagayama, H. Nakao, Y. Murakami, and H. Kimura,
Phys. Rev. B 101 (2020) 224436:1-7 (Editors' Suggestion).
- Resonant soft X-ray scattering (1500 eV < E < 5000 eV)
- Observation of all-in type tetrahedral displacements in nonmagnetic
pyrochlore niobates,
S. Torigoe, Y. Ishimoto, Y. Aoishi, H. Murakawa, D. Matsumura,
K. Yoshii, Y. Yoneda, Y. Nishihata, K. Kodama, K. Tomiyasu, K. Ikeda,
H. Nakao, Y. Nogami, N. Ikeda, T. Otomo, and N. Hanasaki,
Phys. Rev. B 93 (2016) 085109:1-5.
- Resonant x-ray scattering study on electronic hybridization
in unconventional ordered phase of PrRu4P12,
H. Nakao, C. Tabata, and K. Iwasa,
J. Phys.: Conf. Ser. 969 (2018) 012118:1-5.
- Direct Observation of Modulation of p-f Hybridization in Unconventional Ordered Phase
of PrRu4P12,
H. Nakao, and K. Iwasa,
J. Phys. Soc. Jpn. 89 (2020) 063703:1-4.
- Magnetic Field experiments with 7.5 T superconducting magnet
- Isotropic magnetoelectric effect in
Tb1-xGdxMn2O5
studied by resonant x-ray scattering,
Y. Ishii, Y. Murakoshi, N. Sato, Y. Noda, T. Honda, H. Nakao,
Y. Murakami, and H. Kimura,
Phys. Rev. B 100 (2019) 104416:1-7.
- Isotropic parallel antiferromagnetism in the magnetic-field-induced
charge-ordered state of SmRu4P12 caused by p-f hybridization,
T. Matsumura, S. Michimura, T. Inami, C. H. Lee, M. Matsuda,
H. Nakao, M. Mizumaki, N. Kawamura, M. Tsukagoshi, S. Tsutsui, H. Sugawara,
K. Fushiya, T. D. Matsuda, R. Higashinaka, and Y. Aoki,
Phys. Rev. B 102 (2020) 214444:1-11.
- Small angle resonant soft X-ray scattering
- Dynamical process of skyrmion-helical magnetic transformation of
the chiral-lattice magnet FeGe
probed by small-angle resonant soft x-ray scattering,
Y. Yamasaki, D. Morikawa, T. Honda, H. Nakao, Y. Murakami, N. Kanazawa,
M. Kawasaki, T. Arima, and Y. Tokura,
Phys. Rev. B 92 (2015) 220421(R):1-5.
- Directional electric-field induced transformation from skyrmion lattice to
distinct helices in multiferroic Cu2OSeO3,
Y. Okamura, Y. Yamasaki, D. Morikawa, T. Honda, V. Ukleev, H. Nakao,
Y. Murakami, K. Shibata, F. Kagawa, S. Seki, T. Arima, and Y. Tokura,
Phys. Rev. B 95 (2017) 184411:1-6.
- Emergence and magnetic-field variation of chiral-soliton lattice and
skyrmion lattice in the strained helimagnet Cu2OSeO3,
Y. Okamura, Y. Yamasaki, D. Morikawa, T. Honda, V. Ukleev, H. Nakao,
Y. Murakami, K. Shibata, F. Kagawa, S. Seki, T. Arima, and Y. Tokura,
Phys. Rev. B 96 (2017) 174417:1-7.
- Topological metastability supported by thermal fluctuation
upon formation of chiral soliton lattice in CrNb3S6,
T. Honda, Y. Yamasaki, H. Nakao, Y. Murakami, T. Ogura,
Y. Kousaka, and J. Akimitsu,
Sci. Rep. 10 (2020) 18596:1-12.
- Metamagnetic transitions and magnetoelectric responses
in the chiral polar helimagnet Ni2InSbO6,
Y. Araki, T. Sato, Y. Fujima, N. Abe, M. Tokunaga, S. Kimura, D. Morikawa,
V. Ukleev, Y. Yamasaki, C. Tabata, H. Nakao, Y. Murakami, H. Sagayama,
K. Ohishi, Y. Tokunaga, and T. Arima,
Phys. Rev. B 102 (2020) 054409:1-8.
- "Metastable solitonic states in the strained itinerant helimagnet FeGe,
V. Ukleev, Y. Yamasaki, O. Utesov, K. Shibata, N. Kanazawa, N. Jaouen,
H. Nakao, Y. Tokura, and T. Arima,
Phys. Rev. B 102 (2020) 014416:1-10.
- Particle-size dependent structural transformation of skyrmion lattice,
R. Takagi, Y. Yamasaki, T. Yokouchi, V. Ukleev, Y. Yokoyama, H. Nakao,
T. Arima, Y. Tokura, and S. Seki,
Nat. Commun. 11 (2020) 5685:1-7.
- Coherent soft X-ray scattering
- Coherent Resonant Soft X-ray Scattering Study of Magnetic Textures in FeGe,
V. Ukleev, Y. Yamasaki, D. Morikawa, N. Kanazawa, Y. Okamura, H. Nakao,
Y. Tokura, and T. Arima,
Quantum Beam Sci. 2 (2018) 3:1-12.
- Element-specific soft x-ray spectroscopy, scattering, and imaging studies
of the skyrmion-hosting compound Co8Zn8Mn4,
V. Ukleev, Y. Yamasaki, D. Morikawa, K. Karube, K. Shibata, Y. Tokunaga, Y. Okamura,
K. Amemiya, M. Valvidares, H. Nakao, Y. Taguchi, Y. Tokura, and T. Arima,
Phys. Rev. B 99 (2019) 144408:1-13.
- Observation of Chiral Magnetic Soliton Lattice State in CrNb3S6
by Coherent Soft X-ray Diffraction Imaging,
C. Tabata, Y. Yamasaki, Y. Yokoyama, R. Takagi, T. Honda,
Y. Kousaka, J. Akimitsu, and H. Nakao,
JPS Conf. Proc. 30 (2020) 011194: 1-6.
- Soft-X-Ray Vortex Beam Detected by Inline Holography,
Y. Ishii, K. Yamamoto, Y. Yokoyama, M. Mizumaki, H. Nakao, T. Arima, and Y. Yamasaki,
Phys. Rev. Applied 14 (2020) 064069:1-9.
- Diffractometer and accessory
- [1] Development of an in-vacuum diffractometer
for resonant soft X-ray scattering,
H. Nakao, Y. Yamasaki, J. Okamoto, T. Sudayama, Y. Takahashi, K. Kobayashi,
R. Kumai, and Y. Murakami,
J. Phys.: Conf. Ser. 502 (2014) 012015:1-4.
- [2] Construction of a soft X-ray diffractometer with a 7.5-T
superconducting magnet,
Jun Okamoto, Hironori Nakao, Yuichi Yamasaki, Takaaki Sudayama, Kensuke Kobayashi,
Yukari Takahashi, Hiroyuki Yamada, Akihito Sawa, Masato Kubota, Reiji Kumai
and Youichi Murakami,
J. Phys.: Conf. Ser. 502 (2014) 012016:1-4.
- [3] Diffractometer for small angle resonant soft x-ray scattering under magnetic field,
Y. Yamasaki, T. Sudayama, J. Okamoto, H. Nakao, M. Kubota and Y. Murakami,
J. Phys.: Conf. Ser. 425 (2013) 132012:1-4.
- Resonant soft X-ray scattering study of the magnetic structures
in La1.5Ca0.5CoO4
using a high vacuum diffractometer with a 4-blade-slit detector system,
J. Okamoto, K. Horigane, H. Nakao, K. Amemiya, M. Kubota, Y. Murakami and K. Yamada,
J. Phys.: Conf. Ser. 425 (2013) 202003:1-4.
Equipments for diffractometer
- Silicon drift detector
- Multi-channel analyzer for detectors
- He flow type cryostat (10-320 K)
Memo