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Introduction




Why we need Background Free Nature

First of all, particle picture conflicts with Einstein gravity,
because it is a black hole beyond Planck scale

Compton wave length , & Horizon size ~ m/mp]
= typical size of partlcle/\/ LN )
~ 1/m \

m < mey m > mey Particle information is lost
In order to solve this information loss problem,
| consider fully fluctuated spacetime such that
the concept of distance itself is lost beyond Planck scale
=» Background-metric independence

Such a spacetime has no scale and no singularity



‘ How to realize it

If conformal invariance is a “gauge symmetry”, it implies that
all spacetime connected by conformal transformations
are gauge-equivalent !!

ds® = )2ds?
BRST Conformal Symmetry

¢ This is an algebraic representation of the
background-metric independence

¢ | will show that such a symmetry is included in
diffeomorphism invariance




‘ Diffeomorphism Inv. in D Dimensions

6&.9,[51; — gmvyé}‘ + gu,x,Vﬂg}* g“ . gauge parameter

Metric field is now expanded as
2

— . . t
Juv = ejgﬂv Juv = (Q eth)#v — Gu (5);, + thly + —<h2)'lu + - - )

2
f f
Conformal factor Traceless tensor field
Exactly Perturbatively
Diffeomorphism is then decomposed as \

gauge-fixed later

0er = 0o+ BVNSA-.
Sehr = (Vi + 908 — 20V ) + OVl + 2hn (V.6 — 6,
Npy = + ,ugu + ug,u D.gpu AS _|_£ My + 9 75 ug gv
1 A .
—I_.-_h'v)t (vp,gh — vh‘fp,) + D(t)
2 two modes completely decoupled!
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BRST Conf. Inv. Arise As A Part of Diff. Inv.

Consider gauge parameter satisfying conformal Killing vectors

.~ S 2, &
V,u-gu + valu — EQH-VVE(JA =0

Gauge transformations with (* att =0 (UV limit) become
characteristic of diff.

i A R v
0P = oo + BV;‘C““. dimensionless scalar with shift term

i - | A A 1 . .
aCh;w — C}Lv)\h;w + ahp}'\ (VHC}L _ VACL*) + ihvh (v“(;/‘\ _ VAQ;)

_ dimensionless tensor
In the following

Traceless tensor fields are gauge-fixed properly such that
gauge d.o.f. reduce to conformal Killing vectors

Changing (" with ghost /', we obtain BRST conformal symmetry




‘ Plan of This Talk

| will present two models with BRST conformal symmetry,
and only these two are known at present

1. Brief Summary of 2D Quantum Gravity on RxS"1
2. 4D Quantum Gravity on R x S*3

3. Conclusion

and also, at last, discuss how this conformal symmetry
IS breaking by the coupling t at low energies




Note:

m Due to BRST conformal invariance, we can choose any background
as far as it is conformally flat

m Here, the cylindrical background RxS*{D-1} is used because we
can define primary states in Lorentzian CFT on it, unlike on M4

Of course, we can also choose Minkowski background M™4
K.H., Phys. Rev. D85 (2012)024028




Brief Summary of 2D Quantum
Gravity on RxS*1

To remember Kato-Ogawa-type BRST symmetry

This is the simplest example of BRST conforml symmetry, which is
known as the reparametrization inv. in world-sheet theory of string



‘ The Action of 2D Quantum Gravity

Incorporating a contribution from the path integral measure,

guantum gravity can be described as ~ JacoPian to ensure diff. inv.
=Wess-Zumino action

7 = / dgdf],e9) = f [dodhdf] ;e 9+ T9)

In 2 dimensions, we can take conformal gauge
f, =0
=» residual gauge symmetry = BRST conformal symmetry

2D quantum gravity action is Sapqa = St + In + Ign

25 — oy
L= d2 ‘*”)tv)i,v Ro _ M
i [ o SRR

This WZ action is called generate shift term in central charge
Liouville action diffeomorphism 0¢¢ of matter field
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Virasoro Algebra and BRST Operator
Virasoro generator (= generator of conformal transformation)
Lj: _ LLi + LI\-‘H: + Lghj:

\

Left and right movers on S*1

satisfy Virasoro algebra

[Lf Li] = (n — -rT?T-)Lier + = = [ [L: L';l] =0

C

12
with vanishing central charge such as
c=1+06b, +cyy —26 =0

Nilpotent BRST operator Is constructed as

QprsTt = Q7 +Q~ bczyhost modes

QF = Z = (Lii + Lﬁ{i) — ; Z (n—m):c= ¢ b e

ne’ n,mez

conformally invariant
at the quantum level
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'BRST Algebra and Physical Fields

BRST conformal transformations (= diff. in 2D) are
, | 1 | B
E[QBRST: (.D] — Cﬁaﬁt@ T 50,%"3’& ﬁ{QBRST: C“} = "0,

The simplest gravitationally-dressed operator corresponding

tov—gPa is

r . 5 I.f i Ly e el LV
matter field / VA =:we’dp: w=c"c (= €' /2)
BRST invariance determines the (Liouville) charge 7 as
| LA -
I@prsr, Val = 2 (’f 2y, +24 - 2) Va =10 quantum corrections
4—. 2(A —1)?
w—2@(1—¢1—4 4A)—2—2A+ ( S
bL /I\ bL

classical value of v—g®a
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‘ P hyS|Ca| States X There are many physical states with

derivatives called “discreet states”

BRST invariance condition is BMP, Comm. Math. Phys. 145 (1992)541

(prst|y) =0
Gravitationally dressed state Is given by  conformally inv. vacuum

7)) = 7)1 @ |A) @ ¢ ep [0) LEE )y, =0 (n > —1)

State-operator correspondence are given by
[v) = lim Va(n, o)1 @ [0)m & [0)gn

>

Physical states are given by “primary real scalars” in terms of CFT

Since Virasoro generators are BRST trivial like{Qgrst. by} = L
decendant states generated by ijn_ become BRST trivial
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General Comments on Theoretical Structure

of BRST Conformal Symmetry

First, the kinetic (UV) terms of both matter and gravitational fields

must have “classical conformal invariance”.

When only matter fields are quantized (= curved space theory),
conformal invariance is always violated through Wess-Zumino
actions associated with conformal anomalies.

However
When gravity is quantized further incorporating Wess-Zumino action

properly, conformal invariance recovers exactly at the quantum level.

Thus, “conformal anomalies” are now necessary elements to
preserve exact conformal invariance, namely diffeomorphism inv.

In order to construct the BRST operator at the quantum level,

classical conformal invariance of the kinetic terms are necessary.
=» This symmetry exists only in even dimensions, but not in odd

]
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4D Quantum Gravity
on RxXS"3

| will show that the similar structure mentioned before
appears in this case




‘ The Action of 4D Quantum Gravity

Wess-Zumino actions

/
4 = /[dgdf]geﬂ(ﬁgj = /[dg?f)df?.df]g,ei‘g(’i”gj+ﬂ(f‘-9)

The path integral measure can be written as

denotes later

A
The traceless tensor fields are gauge-fixed in radiation+ gauge

=» residual gauge sym. reduces to BRST conformal sym.

Quantum gravity system in the UV limit (t=0) is then described as

Sipqc = Srwz + Lwli—o + “finite” gauge ghosts (+ matters)

= __/d4h/ 9C% e Weyl action (kinetic term only at t=0)

4 / tey/=g [zmj[o + ((;4 _ gsz) @}

—_—

S RWZ —

Riegert-Wess-Zumino action G = (G + thyy + )
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‘ Gauge-Fixed Action of 4DQG

Let us take radiation gauge oo = Vihg; = V'Ai; = 0 »
|:|3 — VZV%'

Then, the action on R x $"3 (radius=1) is given by -~

20
Sipc = /dr]/ ng{ _1;2(:) (04 — 2D‘302 = IZI + 402)

—EhTT (95 — 2050, + OF + 89, — 404 + 4) hily
AT (O +2) (<02 + 0, - 2) h*"T}
T
Furthermore, we remove the mode satisfying (0, +2)hi, =0 <& "

| — O
1
J=3

= radiation+ gauge = residual gauge d.o.f. reduces conformal Killing vectors

The coeff. of RWZ action is positive and more than 4: om0 L _" /o
1 P R /QU + 87/20
by = —— (Ng + 11Np + 62N 4) + (> 4) (Riegert + Weyl)

~ 360 180
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\ Mode Expansion and Quantization

Scalar harmonics on S*"3 € (J,J) rep. of SO(4)=SU(2)xSU(2) isometry

2J +1 | ,
OsYjm = —QJ(QJ + Q)YJM, Yiu = + - ot M = (m,m")

Vs i’ : multiplicity index
Mode expansion

Wigner D-function
y = ~ {2(‘“+p-;-)y
@ SNON q 1) Y00

+ Z Z (ﬂ-JJ‘HE_E‘QJ??YJﬂf + a-LﬂfEiEJﬂY;ﬂf)
=1\ T(2T +1)
+ byre " BITATY +'5 eIy }
;%:\/ J+1}(2J+1)( )
Commutation relations negative-metric
G,0] =i, [anan, aan] = 0nndanam,  [Bran,byan] = —050m00Ms

Later, | will show that all these modes are not gauge-inv. alone
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FTT spherical tensor harmonics € (J +¢<,,J —<,) rep. of SU(2)xSU(2)
O3Yjihiey = (2727 +2) +n]Y3i0n T >n/2 M = (m.m)

Mode expansions £, = =n /2 : polarization index
ij —i2Jnv 1] 12J 1j%
hry = _;% \/ (27 + 1){CJ(MI)€ "Y; J(Mz) T CJ{M:rje ﬂYJ{J‘Hx}}
1
+ d e Y
;11; JT 12T+ 1){ J(Mz)
+di{ﬂf:r}e @I Y}f;fm}} T =gy ==l
y |
s

J:=-1M’y \/ 2J —1)(2J +1)(2J + 3)

radiation+ —_f_ i ; p y=¢e3 ==£1/2
e1y) 0 X {EJ(JW-y]e (QJ-I-U'"?YJ(ﬂfy e:l_-,r(fp{'y} (EJ-I-I}?}Y {J”y}}
Commutation relations
[CJI(MTU*ET&{M;?IE}] - _[dJlfﬂflil}?di{fﬂﬂfzIﬂ] = 0.7,.70M, M3 Oy 25

: _
€1 (M1y1) s € (Mys)) = 0172000, My Oy

| will show that all these modes are also not gauge-inv. alone
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15 Conformal Killing Vectors on RxS”3

1 Time translation: (5 = (1.0,0,0) (= dilatation on RxS"3) <—

6 Rotations on S”3: CE! = (0, wafm')
- V3 (e & P
Cun = %E {Y%MVJY%N - Y%NVJY%M}
4 Special conformal:  Ch = (¢4, ¢4;) with
\ \EW ] -V Vv inv7i v *
Cj?,f — TBﬁngﬂ.fa Cﬂf — _3736 nvjylﬂ,f

4 Translations: C&i = CET (= hermite conjugate of special conf.)

characteristic features of conf. algebra on RxS”"3
(not on M™4)

Radius of S*3 =1, the volumeis V, = 272

Indices M, N without J denote 4-vectors of SO(4) with J=1/2
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'Conformal Algebra on RxS"3

Generators of conformal transformations Riegert j Weyl
Qe = / dQsCH - fug : 6CF — i[QC? F] 7 2 034[)@@
S3 pr ~
\ - V Og,{w
conformal Killing vectors
S(4,2) conformal algebra 15 generators
a— -
[QM,QH — 20y nH + 2Ry, € feature of RxS”3 H : Hamiltonian
H,Qu] = —Qu, [H,Run]=0, y Rarn : 6 S”3 rotation
Qu,Qn] = 0, [Qum, Rni] = 0mrLQn — enerdn NG 1, Q4 special conf.
[RMN:RLK: = Oy By —emend_nxRp_m

L wa . 4 translation
—OnLBRyi + emend_ymrB_Ni.
In CFT,
H Run Qu define primary states, while Q}, generates descendant states

— _ T _
Ryn = —emenR_n_pr, Ryn = Rnum
21



‘ Generators for Riegert sector - diagonal form

1.
H = §p2 +b+ ) Z{QJ(ITJMGJM — (2] + 2)bl b}
T J=0 M

Casimir effect on R x S"3 off-diagonal form

v

. imMm
Qu = (V2b1 — ip) agy, + ;M;u C2, reian (V2T (2T + 2erna) 1,050,
cal 17 .4¥i2

— /(27 + 1)(2] + 3)ear,bl_y, byiing T szﬂ-LL%_MEbJMl}

The () rgauge transformation mixes positive- and negative-metriclmodes
=» Each mode is not gauge invariant !

v
. 4 O g M 1 s M 1
[[QM.E’JNJ =/2J(2] +2) E :FJW'ZCJNI,J_%_NZ‘I’J_%NZ - E :FP"ZCJNI.JJF%:»"zaJJr%;‘v'J

4“';- 2 P"\'r 2

where SU(2)xSU(2) Clebsch-Gordan coeff. Is defined by

CH+ DA+
2J+1 Jymy Jamg

CJm"

! I
Jlml ?ng,z

JM _ * _
CJlfvchzfvfz — \/ﬁﬂ. «[93 dQSYJMYﬁMlYJzEfz -
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Generators for Weyl sector (#Qc¢, hu| = dchu )

H = J(;) ; {2765 pmyCaaray — (27 + 2)db g o) | SU(2)"2 CG coeff.
T : E: STT type
— Z Z(2J+ 1)6?}(ﬂ,fy)6u’(ﬂ'fy) H: STV type
J(>1) M.y
D: SVV type

Ly

_ f
QM - Z Z Z Ej(ﬁflzlj,J+%(¢fzzgj{\/QJ(Z’T'I'Z)EMch(—Mla:l}CH%{Mzzz}

J>1 My ,z1 Ma,xs

—\/(QJ +1)(2J + 3)EM1d5(—Mlzl)dJ+%(MzIz) + Eﬂ‘fzcz+%(—ﬁfz.r2]d‘r{:Mlzl)}

Lar i
—I_Z Z Z Hj’(ﬁhzﬂ;J{szﬂ{A('})Ef“fch{—Mprl}EJU“fzm}
J=1 My,x1 Mo,y2 S~
JFB(J)EMzETI(—szg}dJ(MlII}} “—

Lag .I.
‘|'Z Z Z Dj’[ﬂhyl),i+%{f'wfzyz)C(J)EIMIIEJ{—MIHI)EJ‘F%U'JQH‘E}
J>1 My 1 Mays

Cross terms

_ - 17 202742
The Qs gauge transformation 4 = \/(2;_1)(2“3)’ BU)J(QJI)(QJJFS)’

mixes all modes, except the ) - J(?Jl)(2J+1)(2J+2)(2J+4)
lowest of positive-metric C"J{(MI) 2J(27 +3)
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'BRST Operator ,\

( i|@prsT, 0] = 'V, 0 + i‘ﬁvm‘fu’ = dpd
BRST transf.: CA N ) 1| QprsT. M| = 0phy,

| i{Qprst. "'} = 'V,

Gauge ghost fields (15 Grassmannian modes)

d=cnt+ ) (CRICEI + cmCar ) + > cunCin
M M,N

N _ .
Cyyv — CNM CMN = —€EMENC_N—_M
We set commutation relations as
t t -
{b.*- C} =1, {bﬂfﬂ- CN} — {bﬂfﬂ- CN} = OMN,

Ibyw,crr} = 0mrOnk — €mrenO_nkO_NI

antighosts: b, bay, bar. bl

A satisfy the similar relations to Cpsn
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Nilpotent BRST operator

Qerst = cH+ Y cunRun —bM = bynYun +Q
M.N M.N

/ T f
M = 2 Z CpyCM Yun = cyen + Z CMLCLN,
M 3

,

Q = Z (CLQM + CMQRI)

M
Full generators of SO(4,2) including gauge ghost sector
H = H+ H&" 'RMN = Ruyn + R%?N,

Ou = Qu+ QM, QM + QghT

He = Y (C];,.fbM — CMbL) (see Ref. for R§jy Q51 )
M
Full generators become BRST trivial:

{QBRSTJ b} — H: {QBRST: bﬂrIN} — QRI':’INJ

Descendants are
{QprsT, b} = Qur, {QBRST; bL} = QL « o
. . . . BRST trivial
First three define primary states in CFT
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‘ Physical State Conditions

background charge

Fock vacuum with Riegert charge 7/ /
o Q) = E—zblén(ﬂ)m)
|’Y> = 7%l )|Q> & ]_gcﬂﬂo)gh Riegert vacuum annihilated

- V\, by all generators
Consider following states: ghost vacuum annihilated by c 7., bys

|\Ij> — A(ﬁ a"jrh‘uf: bbﬂf: n )h) [H* "4] — "IA

BRST invariance condition level of state (even integer)

C [Qar, Al = [Ruv, Al = 0 (no Q1 condition)
Qprst|V) =0 ) < 2

-~

T +1—-4=0 ciassical value
\_ = 1
4 —1
> 7=n=2h (1\/1 3 ) =4 —1+0(1/by)
/I\
real due to b1 > 4
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‘ Solve the Condition [@x, Al =0

All creation modes a’,, b',, do not commute with Qs

—) A is given by bilinear forms,
which gives building blocks of physical states

L——
. _ U’_"\ T T
For L >1 S:’E-_-“J = x(p L) ﬂm + Z ZZ*T CrZ KMy KM UL — KM, VKM,
) =1 M, M
and integers K=z T 72
T “L—1N t ]
Span = bL v+ Z ZZ$ K)CiZ KMy KM L— KM, QK M,
_,F(:_ “Lfl "Lfg
1L—1N T T
+ Z Z K)CrZi 1111KUgbL—K—lMlaﬁ'Mg

K"_ 1 rIlij_ ﬂlfg
where

(_1)2}'{

2(LK) = J(Qﬂ)(sz) (LK) = 2L 3K~ 1L 3R
? \/(ZL._QI&’+1)(2K+1) 2K 2K —1 y(L,K)=—24/(2L — 2K — 1)(2L — 2K +

V(L) = V3201 —ip) /L —1)Q2L+1)  ¥(p) = —v2(y/2b1 — ip)

1)z(L, K)
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Classification of Physical States

traceless tensor field sector

Table of building blocks for gravitational sector /
rank of tensor 0 0 1 2 3 4
T f T f f T
operators SLN ALN BL—%(N-y} CI(NI} DL_%(Nz} EL(N-?_U}
SE—L-‘*J AE—IN 5}[_1{ij
V.-'Eightﬂ QL{EQ} QL{Eﬁ] QL(EE] 2 QL(EG} QL{EG]

The physical state is constructed by imposing [Ru~, A] = 0 further

[ = () 70) > V=0 o, (1 [ 461)
1

[ =2 H:Tmh'ﬂ} <:> V—gR =4 —1+o(1/by)

[ =4 Sgusgnh’aﬂa Z ENSI_NSIM’}’Q, Z ENCL_NI)CLNI}|";(4>

V—9R’ V=9(Ru — guwR/4)? V —gCﬁmg
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‘ Physical Field Operators

1
Physical fields [QprsT, wO~] =0 where w = 7€ N reateated
> |Qerst / dmoﬁr.] —0 and lim e *"0,|Q) = |O,)
— 100

EX. Quantum cosmological constant term(c« = 7y) | lim V, = /—g¢

b1 —oco

V, =" with h, =4

Quantum Ricci scalar curvature( 3 = 72 ) |, Ws = —V—gR/6

Wy = :e? (ﬁim hﬂﬁ‘@#qﬁﬁ“{;& — %) > with hg = 2

, ir hﬁ"’ =7~ L
{mfj) Jim e —MLQ) = fblsgo F90(0) Q)J 4,




Real Property of Fields and Positivity
Unitarity in CFT = Real property of fields

o positivity of 2-point function should be real

e positivity of squared OPE coefficients

In QG case =>» used in recent conformal bootstrap arguments

BRST conformal invariance makes all physical fields real
as well as all negative-metric modes unphysical

Since both Riegert and Weyl actions written in original gravitational
fields are positive-definite, the path integral is well-defined such that
real property of these fields are preserved

> If the action unbounded below, the path integral diverges so that
the real property of fields is sacrificed to regularize the divergence
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Conclusion




We find that

¢ Quantum gravity is formulated as a usual quantum field theory
on a background, and so we can quantize it easily

¢ BRST conformal symmetry arises as a part of diffeomorphism
Invariance when conformal-factor field is treated exactly

¢ This symmetry is nothing but an algebraic realization of
background-metric independence, and so can use any background

¢ BRST operators of this symmetry can be constructed in 2 and
4 dimensions, in which the Wess-Zumino actions of conformal
anomalies called Liouville and Riegert actions play a crucial role

+ All negative-metric modes in 4D gravity become unphysical
due to the presence of BRST conformal symmetry

¢ Physical states are given by real primary scalar states, and also
their decendant states become BRST trivial
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Renormalizable 4D quantum gravity can be formulated as

a perturbation from such BRST conformal field theory:
K. H. and M. Matsuda, arXiv:1511.09161

+ perturbation by the single coupling t

T g,u.v = t?fo)(gﬂ.v - I‘,hﬂv -+ .- )
Beta function is negative A |
@ non-perturbative

¢ BRST conformal symmetry is realized at the UV limit of t=0.

¢ There exists an IR dynamical scale x"\ﬁe

=> We propose that at the scale 10! GeV , spacetime transits
from background-free quantum gravity phase to ordinary
our universe where gravitons and elementary particles

are propagating K. H., S. Horata and T. Yukawa, PRD81(2010)083533
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Appendix




Wess-Zumino Condition and Background-
metric Independence

Integral representation of Riegert-Wess-Zumino action

4,,_ /di f dg/—gE; E, =Gy —2V*R/3

Wess-Zumino consistency condition

SEmz(U g

2w A

SR“_,-Z((;}FQ} = bR‘.,‘n. ( Q) + L’Rﬂf( — W, e g)

Proof of background-metric independence
Zlasy = [ldbdh]asy exp {iSva(0, %) +il(* )}
= / dodh); eg{mm (w,§) + iSrwz(0, €*q) + il (e g)}
_ / ddh); exp {iSwwz(w, §) + iSrwa(d — w,e*§) + il(g)

T g . . -
use Wess-Zumino consistency condition
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v = 1p w/o BG charge
9 < —tp‘Ozp> =1

Ad]O”Tt Of PhyS|Ca| State [cf string theory }

Remark: (O,|0O,) is unnormalizable!

Out-state (O, |satisfying (O,
due to duality h, = hyp,

) = 1 is defined by

Ex. <I~;‘ = lim ¥ (QWG — <Q‘€{4bl_&w”{m
n— —ioo
- 4b
1 _ _4din ) _ 1 e (4b1—03)do(0)
Wsl = tim Q)i = = = 7 i0el Soo
V, = eldhmald. g — __h g 401=0)¢ (\—z” 40 — j\_;xa\_“u _ T , ) :
—H)l — j

\ h‘,.'ﬂ
Normalization i

No classical limit

(Q]ett120(0)|)) = 1 (€ Riegert charge conservation)
WO Teh? [TearlO)en =1 9 =ic[leun

2 on (0 T1 c:L-z‘?

Adjoint of physical state is given by (O,
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WZ action and Euler density

2D quantum gravity 4D quantum gravity

modified

R Euler density E, =Gy — %VQH

V—gR =—7 (252@ i fz) relation V—9Es=\/—7 (4340 + 54)

2

2 Conformlly inv. A, =V*+2R"V,V, — . RV?2
Ay =V operator :
+;—T“R‘F“
3
f . @
- /(12 ./ dov—g Wz action _(;)1)2 /tfzz.*—/' don/—gE,
I ;
b 3 [ _ _
B _ﬁ / dzilf —9 (@&2¢ + RO) - (42)2 ‘/d'il:r' —J (2"5334(5:) + E_LO)
Liouville action Riegert-Wess-Zumino action
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‘ Physical Fields

Physical fields satisfy |@erst. [ d2:0| =0 (=) diff.inv.

: > am .
The simplest one: Va =: €™ = —: ¢" 1= "> e
n=0 ""°
; - MRe h’ﬂ’ ~ I
This transforms as ¢ |@srst, Vo] = ¢V, V4 + IV“‘C Va

o2
conf.weight ) = — —
spacetime dim. J la =@ 4by

~ r
For hﬂf — 4’ [QBRSTafdQﬂ’L] — /dQ-ﬂL@p.(C’“%) =0 guantum corrections

% a-:2bl(1 1i)_4+4 o

b1 by
The solution approaching canonical value 4 at large b_1 is selected

Vo with this Riegert charge =» cosmological constant term
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‘ Building Blocks of Physical States

rank of tensor index 0 rank of tensor mdex 0 1 2
creation op. (Dj{m creation op. Uin Q_T%(w ) Tj{am z)
level (L € Z>) 2L + 2 level (L € Z~») oOL+2 2 2L + 2
rank of tensor 0 0 1 2 3 4
operators SE"M AE"M Bl_%(\, ) 'fi(N;r} DL_%(\, ) EE[;‘M w)
SL—1in A,Ta—n EE—I{PWJ
ﬁ-’EightS QL{E).} QL{EB] QL{EE} 2 QL{EE} QL{EG]
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