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Preface

The various Planck scales proposed by Planck at the end of the 19th century

are fundamental units that characterize a tiny world where quantization of

gravity is necessary. The Planck length lpl = 1.616 × 10−35m is known as

the smallest unit of length. Many physicists believe that there is no world

shorter than it, or that the world is governed by a physical law different

from diffeomorphism invariance. Putting a cutoff in the Planck length and

thinking of it as an entity of quantized spacetime shows that. However,

this way of thinking is exactly the cause of many problems in the theory of

gravity. It is simply to escape from the problem of spacetime singularity.

Essential problems such as renormalizability, unitarity, origin of primordial

fluctuations, time, and so on ultimately come down to the problem of how

to describe the trans-Planckian world as a continuum quantum field theory.

The root of the problem lies in the basic idea that gravity is distortion

of spacetime caused by the presence of matter. The Einstein equation is a

concrete expression of that. It is a fundamental equation of the universe

that holds in a very wide range from a macroscopic scale beyond the Hubble

distance, which is the largest known scale in the universe, to the vicinity of

the Planck length. No other equation has such a wide range of applications.

Despite being such an excellent equation, the existence of spacetime singu-

larities cannot be denied, and the laws of physics break down there. The

cause is not in diffeomorphism invariance introduced as a guiding principle,

but in the Einstein equation. The reason why we have to introduce a wall

at the Planck scale is that the theory has not been formulated properly so

that diffeomorphism invariance holds in the world beyond the Planck scale.

In order to resolve the problem of singularities, it is necessary to recon-

sider the relationship between matter and gravity. They are not standing on

the same ground. That is, to reconfirm that matter is defined in spacetime,

whereas gravity defines spacetime itself. Matter is normally described as a

particle that propagates in space, and gravity is also described as a particle,
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graviton, if its fluctuation is small. However, if the fluctuation becomes so

large that time and distance become uncertain, the particle picture prop-

agating in space is no longer justified. As we approach the Planck scale,

you will encounter such a world in which the substance of time and space is

lost. The words such as “background-metric independence”, “background

independence”, or “background freedom” often used in the field of quan-

tum gravity research represent such a state. Including this quantum state,

an equation describing gravitational states in general is what is called the

Hamiltonian constraint, representing that whole Hamiltonian vanishes as a

consequence of diffeomorphism invariance.

Overcoming the Planck scale wall requires a quantization method of

gravity that is not only renormalizable, but also achieves the background-

metric independence. It can never be realized in ordinary quantum gravity

theories in which graviton is considered as a basic element. Therefore, it is

necessary to introduce some non-perturbative field theory method. One of

the topics of this book is to introduce a method of describing the background-

free world with a special conformal field theory (CFT) in which conformal

invariance arises as a quantum symmetry of diffeomorphism invariance. In

this theory, the roles of gravity and matter are no longer equal, and there is

a purely gravitational excited state, which can act as a source of everything.

Quantum spacetime with background freedom is far from the spacetime

you usually imagine. This implies that if such a quantum spacetime exists,

then there has to be a transition from such a spacetime to the present clas-

sical spacetime. The moment is called the “spacetime phase transition”.

A renormalizable quantum field theory of gravity discussed in this book

indicates the existence of a physical energy scale where such a phase transi-

tion occurs. In the higher energy region than that, a background-free world

expressed by the CFT will be realized, while below that, will settle to a clas-

sical spacetime described by Einstein’s theory of gravity in which conformal

invariance is completely broken. I argue that the moment of this change,

which must have occurred in the early universe, is the true picture of the Big

Bang. The continuum quantum field theory with these properties is called

“asymptotically background-free quantum gravity”.
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This book is an easy-to-understand summary of the achievements in

quantum gravity research based on field theory for half a century. Why

quantization of gravity is necessary and what physical phenomena have to

be explained? Why is there a non-trivial state, or entropy, even though the

Hamiltonian has zero eigenvalue? Including these descriptions, I tried to

explain the theory in plain language without using mathematical formulas

other than symbolic ones as much as possible. Fortunately, there are so

many descriptions about gravity that resistance to words may be less than

in other research fields. The words themselves can be easily understood by

searching online, but here I am aiming to help you understand the meaning

behind the words. I would like to clarify the essence of the problem by

stepping into the area of physics that has been avoided. If you want to

know mathematical details of the contents, please refer to my professional

book below and research papers listed at the end. This book is written for

the general public, but is also a unique specialized book that discuss the

world of the Planck scale. There are some technical and difficult parts, but

it is written so that you can understand the whole picture even if you skip

them.

Tsukuba, Japan

December, 2022

The Author’s Book

Quantum Gravity and Cosmology Based on Conformal Field Theory

Cambridge Scholar Publishing, Newcastle, 2018





Chapter 1

What is The Planck Scale?

Every physical phenomenon has an inherent scale that describes its dynam-

ics. First of all, let us briefly summarize the largest to smallest scales that

exist in the universe.

The largest scale you can know is the Hubble distance, which is about

4000 Megaparsecs (Mpc). 1 parsec (pc) is 3.26 light-years and Mega (M)

is a Million (106) times. Since one light-year is 9.5 × 1015m, the Hubble

distance is about 1026m. This corresponds to the size of the universe that

can be observed today, and the existence of a scale larger than this cannot

be confirmed.

Figure 1-1: Various scales that exist in the universe from maximum to minimum.

The next largest scale is the size of a cluster of galaxies, which is 4 ∼
5Mpc. They form a further group called a super cluster of galaxies, which

is 10 ∼ 30Mpc. The size of the galaxy itself is about 100,000 light-years, or

1021m. Continuing further, the size of the solar system is 100 astronomical

units, or 1013m, the sun is 109m, the earth is 107m, a child is 1m, and

the size of a paramecium is 10−4m. In other words, the Hubble distance is

about 1030 times the size of a paramecium.

At shorter distances, familiar scales in particle physics appear. The size
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of a hydrogen atom is about 1 angstrom (1Å= 0.1 nm = 10−10m), and its

nucleus is about 1 femtometer (1 fm = 10−15m), and the size of a quark

that makes up the nucleus is estimated to be 10−18m. Quarks are one

of the smallest elementary particles introduced by Gell-Mann that make

up matter, and it is known that there are six types in total. No smaller

components are known so far.

What is known as a much smaller scale than these is the Planck length

lpl. It is a length scale composed of three fundamental constants as follows:

lpl =

√
ℏG
c3

= 1.616× 10−35m,

where G is the Newton constant that appears in Einstein’s theory of gravity,

which represents the strength of the gravitational interaction, ℏ is the Planck

constant, which appears when describing a quantum world, and c is the

speed of light, which is a fundamental constant of the theory of relativity.

The Planck length is thought to be a scale related to a quantum theory of

gravity, as can be inferred from the inclusion of ℏ in the definition.

A mass scale can also be obtained by changing the combination. It is

called the Planck mass, given by

mpl =

√
ℏc
G

= 2.176× 10−5 g.

Furthermore, multiplying the Planck mass by the square of the speed of

light gives the Planck scale with an energy dimension. Also, when describing

gravitational equations of motion, the reduced Planck length LP =
√
8π lpl =

0.81×10−34m and the reduced Planck mass MP = mpl/
√
8π = 4.3×10−6 g,

which differ only by a factor from the above, are often used.

The size of matter is, in general, inversely proportional to its inherent

mass, though it depends on whether the matter itself is a fundamental el-

ement or has an internal structure. It can be easily understood from the

fact that according to Einstein’s famous formula E = mc2, mass m is equiv-

alent to energy E, and multiplying the reciprocal of energy by ℏ gives the

dimension of length. That is, the higher the energy, the smaller the scale

appears.
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For example, it is known that there are two important energy scales that

govern microscopic worlds where quarks appear. One is the scale of elec-

troweak theory proposed by Glashow, Weinberg, and Salam independently

that describes weak and electromagnetic interactions in a unified manner,

and the other is of quantum chromodynamics (QCD) that describe strong in-

teractions. The former is about 100GeV, where 1 eV is energy gained when

an electron is accelerated by 1V, and G (Giga) is a symbol that denotes 1

billion (109) times. The length given by the reciprocal of this scale is on

the order of quark size 10−18m. The QCD energy scale is about 200MeV,

and the corresponding length is about 1 fm, which represents the size of the

nucleus.

The Planck energy that characterizes a quantum gravity world is approx-

imately 1019GeV. This is a tremendous number of 1017 times the energy you

can see quarks. Particle physicists call this 17-digit energy region where the

existence of a special scale is unknown, “the desert.” Of course, it is up to

researchers whether or not the existence of such an area seems unnatural. A

widely known candidate for a scale located in the desert is the grand unified

theory (GUT) energy scale, which is thought to exist near 1016GeV if the

theory is established. Apart from that, it is indicated that quantum gravity

also has a new dynamical energy scale different from the Planck scale in the

desert area, which will be clarified step by step in later chapters.

There is a difference of about 1030 between the Planck length and the size

of a paramecium, where the reduced one is used to get a nice digit. There

is also a difference of about 1030 between a paramecium and the Hubble

distance that is the largest scale in the universe. From these comparisons,

you can see that the Planck length is tremendously small. And, this indicates

that there is a difference of about 1060 between the maximum and minimum

scales in the universe as follows:

Hubble distance c/H0

Planck length LP
≃ 1060, (1-1)

whose number of digits is called “Nayuta”. One of the purposes of this book

is to connect these two extreme scales with the theory of gravity, including

quantum gravity.
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Now, let us consider the main subject, what happens when quantizing

gravity. It is well known that when quantization is performed, discrete

structures appear as energy levels and so on. In the case of quantum gravity,

some researchers think that spacetime may become discrete in units of the

Planck length, and others think that quantum excitations of gravity appear

discretely in units of the Planck mass. However, such a simple view has

serious problems. If spacetime is discontinuous, diffeomorphism invariance,

which is the guiding principle that defines the theory of gravity, is broken.

Also, as explained in the next chapter, if there is an elementary excitation

with mass exceeding the Planck mass, it is nothing but a black hole in

Einstein’s theory of gravity.

Ignoring these difficulties for the time being, let us see what happens

when trying to quantize Einstein’s theory of gravity. Since quantization

methods for ordinary quantum field theory are defined in flat spacetime with

the Minkowski metric, first consider a small fluctuation of the gravitational

field around flat spacetime, that is, a gravitational wave, and quantize it.

The quantized fluctuation is regarded as one of elementary particles and is

called a “graviton”. However, a new problem arises here, which is that in

order for physical quantities to be calculated as finite quantities, quantum

field theories must be renormalizable, but this theory is not so. In other

words, when quantum corrections are calculated, new types of ultraviolet

divergences appear one after another and cannot be systematically removed,

so it is not possible to derive physical quantities that are meaningful as

quantum theory.

In the quantization employing such weak-field approximation, an ultra-

violet cutoff is introduced to impose a restriction so as not to enter a high

energy region above the Planck energy and to make the theory finite. That

is, introduce a discrete structure that there is no distance shorter than the

Planck length, and think that such a structure is an entity of quantum space-

time. However, the weak-field approximation cannot deal with the essential

problems of gravity, and one of which is manifested as unrenormalizability.

This is not the only incompatibility between Einstein’s theory of gravity

and quantum theory. The fact that the Einstein-Hilbert action defined using
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the scalar curvature is not positive-definite is also a problem. If you are

thinking of small fluctuations around flat spacetime, that is not a problem,

but as gravitational fluctuations increase, instability comes out. Moreover,

as long as using this action, the problem of spacetime singularity can never

be solved even when going to quantum theory. The reason will be explained

in detail in Chapter 3.

Only this theoretical aspect is not the difficulty in quantizing gravity.

Complicated calculations are also a factor in the difficulty. Einstein’s the-

ory of gravity is a beautiful theory, but since the gravitational field is a

tensor field, it is much more difficult to handle than vector fields or scalar

fields. Furthermore, while known matter fields have momentum dimensions,

the gravitational field is basically a dimensionless field. Therefore, renor-

malizable interactions of matter fields are represented by at most up to

four-point functions of the field, whereas the gravitational interactions ob-

tained by expanding in the weak-field approximation become multi-point

functions that lasts infinitely. In the old days, many researchers were buried

in calculations, exhausted, and often ended up just doing calculations. No

way to solve the problems was found, and then the quantum field theory

method became obsolete.

First of all, it is important to construct a systematically computable

quantum theory of gravity. Most of the proposed quantum gravity theories

are based on the thinking that it is sufficient only to discuss the outside

avoiding invisible or difficult-to-see places. It is a way of thinking like the

scattering matrix theory that was popular in the 1960s, which is an algebraic

method in order to understand strong interactions using scattering matrices

and current algebras without describing the inside of hadrons. The scatter-

ing matrix theory is still useful and mathematically beautiful theory using

complex analysis, and attracts many researchers. However, in the end, it

was replaced by QCD, in which fields are introduced and the structure of

hadrons is directly revealed.

The subject of this book is to present a new method of introducing

“fields” into the world beyond the Planck scale in order to overcome the

problems with quantization of gravity. Here, the essence of the theory is
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diffeomorphism invariance, and the most important is to preserve this in-

variance to the last. For this purpose, it is necessary to perform quantization

while maintaining continuity, or at least to be able to restore the continuity

in an appropriate ultraviolet limit. It implies thinking of a renormalizable

theory. As a result, the theory undergoes major modifications near the

Planck scale. In the sequent chapters, the problems with singularity, renor-

malizability, unitarity, excitation, inflation, cosmological constant, etc. will

be reconsidered in the modified theory, and how they are solved will be

shown.

From the next chapter, scales will be expressed in natural units normal-

ized as c = ℏ = 1. Using this unit system, mass and energy are expressed

in the same unit, as can be seen by setting c = 1 in Einstein’s famous

equation E = mc2. Also, length and time are in the same unit, which is

the reciprocal of energy. Hereafter, the magnitude of mass and energy will

be expressed mainly using GeV. In Appendix A, various fundamental con-

stants are summarized and useful constants for converting to natural units

are presented.
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Why Quantum Gravity is Necessary?

One of places where quantum gravity theory is needed is near the center

of black holes. It is believed that quantization of gravity is necessary to

solve the singularity problem. The beginning of the universe is also so. The

universe is not stationary and is thought to have been expanding since its

inception. In other words, going back to the past, it is inferred that the

universe is in a state of high temperature and high density, and eventually

reaches the region where quantum gravity is required. Here, theoretical and

phenomenological reasons why quantum gravity is required in these regions

will be explained more specifically.

𝑚 > 𝑚𝑝𝑙  𝑚 < 𝑚𝑝𝑙  

ℎ𝑔 

λ 

Figure 2-1: The Compton wavelength of a particle with mass m is given by λ ∼
1/m. On the other hand, the horizon size (dotted line) of the particle is given by

hg ∼ m/m2
pl. If m > mpl, as shown on the right, λ < hg, thus information of the

particle is trapped inside the horizon and lost. In this way, in a world beyond the

Planck scale, the normal particle picture collapses.

First of all, it should be pointed out that the elementary particle picture
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represented by an ideal point without spread is a concept that contradicts

Einstein’s theory of gravity (see Fig. 2-1). It is because such an object

is a black hole in the standpoint of this theory. However, if mass of a

particle is smaller than the Planck mass mpl (= 1/
√
G) = 1.221× 1019GeV,

the Compton wavelength (inverse of mass), which is a measure of position

uncertainty, is longer than the horizon size created by the mass itself, hence

it can be regarded as a particle approximately. On the other hand, if there

is a particle with mass exceeding the Planck mass, the horizon size exceeds

the Compton wavelength, and information of the particle cannot be seen

from the outside. It is nothing but a black hole.

Since all known elementary particle masses are sufficiently smaller than

the Planck mass, it is not necessary to consider quantum effects of gravity.

However, quantum gravity is thought to cause an excitation in units of the

Planck mass. How will it be described? This is not only an elementary

excitation problem, but also a black hole problem.

The basic equation that defines Einstein’s theory of gravity is the Ein-

stein equation. Let the gravitational field, or the metric tensor field, be

gµν , the Ricci tensor be Rµν , the scalar curvature be R, and the energy-

momentum tensor of matter parts be TM
µν , then it is usually expressed as

Rµν −
1

2
gµνR = 8πGTM

µν . (2-1)

This equation expresses that the presence of matter causes spacetime dis-

tortion. Conversely, it is just saying that in order to eliminate singularities

where curvature becomes infinite, the matter itself has to disappear.

Turning to the early universe, this fact also affects a question of how

the present matter universe was created. It is believed that matters that

make up the universe were produced when the Big Bang occurred. At that

time, something to be a source of matters is needed. Within the framework

of Einstein’s theory of gravity, it also has to be a matter. In other words,

an unknown matter field that creates everything has to be introduced. Al-

though the Einstein equation is an excellent equation that describes spectac-

ular time evolution of the universe spanning tens of digits from the moment

of the Big Bang to the present, it also shows limits of Einstein’s gravity
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theory.

A deeper look into the early universe reveals needs for quantum gravity

theory more realistically. Major progresses in cosmology today are due to

the fact that fluctuations (anisotropies) of the cosmic microwave background

(CMB) radiation can be measured with high accuracy by astronomical satel-

lites, the Cosmic Background Explorer (COBE) launched from NASA’s

Kennedy Space Center in 1989, the Wilkinson Microwave Anisotropies Probe

(WMAP) launched as its successor in 2001, and more recently the Planck

satellite launched by the European Space Agency (ESA) in 2009. From

these experimental results, parameters of standard cosmology have been de-

termined with high precision, and inflation theory proposed by Guth, Sato,

and Starobinsky independently, which claims that there was a period of ex-

ponentially rapid expansion of space before the Big Bang, has come to be

strongly supported.

The idea of inflation was introduced primarily to solve the “horizon

problem” of why long-distance correlations much longer than the horizon

size exist in the early universe immediately after the Big Bang and the

“flatness problem” of why curvature of space is so small. If this idea is

interpreted naturally, then the universe has expanded approximately 1060

times from its birth to the present. It implies that the Hubble distance,

which is the largest scale in the universe, and the Planck length, which

is the smallest scale, are connected, as shown in (1-1). From this, it is

expected that traces of quantum fluctuations of gravity at the beginning of

the universe are recorded in the observed fluctuation spectra of CMB.

Only by this fact, however, it cannot be believed that the trace of quan-

tum gravity remains. Rather, you might think that much of information in

the early universe has been lost in the process of the long-term evolution,

let alone the trace of quantum gravity effects. Contrary to your intuition, it

does remain actually. If you go back in time to the history of the universe,

you can get answer to the question why the trace remains. To show that, you

first need to have a good understanding of the Friedmann solution, which is

the basis of standard cosmology.

The Friedmann solution is a dynamical solution of the Einstein equation
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Figure 2-2: Observation results of galaxy distribution in the whole sky by SDSS

[https://www.sdss.org]. Each point represents a galaxy. The part without data is

the galactic plane.

solved presuming homogeneity and isotropy. It should be emphasized here

that this solution is unstable. Normally, such a solution is not chosen as

physics, because if you give a small fluctuation (perturbation) around this

solution, it will grow with time and deviate significantly from the solution.

Nevertheless, the universe can still be well approximated by the Friedmann

solution. The Sloan Digital Sky Survey (SDSS) observations of galaxy distri-

bution over a wide area where galaxies can be seen as mass points (Fig.2-2)

show this fact brilliantly. The fact that the unstable Friedmann universe

has lasted for more than 10 billion years means that initial amplitudes of

fluctuations were unnaturally small.

After the Big Bang, the small fluctuations grow and structures such

as stars, galaxies, and clusters of galaxies are formated. Although simple

perturbation theory cannot be applied to these structure formation due to

nonlinear effects, the fluctuations until the universe is neutralized are still

small and so perturbation theory is applicable. The study of describing
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the evolution of the universe in perturbation theory based on this fact is

called cosmological perturbation theory. This will be explained in Chapter

9. After neutralization, light becomes free (decoupling) from interactions

with matters, so its fluctuation does not grow. Therefore, if spectra of the

fluctuation at the time of decoupling are known, the current fluctuation

spectra of CMB can be roughly known.

Figure 2-3: All-sky CMB temperature fluctuation distribution by WMAP

[https://map.gsfc.nasa.gov].

The CMB temperature T discovered by Penzias and Wilson in 1964 has

a Planck distribution of 3 degrees K. The COBE astronomical satellite was

the first to observe that the temperature fluctuation amplitude δT/T rep-

resenting the magnitude of deviation from the distribution is on the order

of 10−5. For this discovery, Mather and Smoot, who led the experiment,

were awarded the Nobel Prize in 2006. The more detailed temperature fluc-

tuation distribution of CMB obtained by the successor WMAP is shown in

Fig.2-3, and the temperature fluctuation spectrum obtained by statistically

processing it is shown in Fig.2-4.

This spectrum mainly records history of the universe from the radiation-

dominated era to the present. It is believed that the spectrum in the early

universe was an almost featureless scale-invariant form. That is called the

Harrison-Zel’dovich spectrum, which is, when writing it in Fig.2-4, given

by a horizontal straight line that passes through the bottom of the recess

in the area where the multipole moment l is small. In other words, the
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Figure 2-4: WMAP CMB temperature fluctuation spectrum [C. Bennett, et.al.,

Astrophys. J. Suppl. 208 (2013) 20].

deformation from the straight line represents dynamics that the fluctuations

received during the evolution of the universe.

Most of these deformations occur during the period changing from the

radiation-dominated to matter-dominated universe and then until neutral-

ization. Prior to that, since the almost scale-invariant spectrum is main-

tained, you can go back indefinitely as long as the era of radiation-dominated

universe continues. When the size of the fluctuation is larger than the hori-

zon size, the spectrum hardly changes. In particular, the CMB multipole

component of l < 30 is a large-size fluctuation component that has entered

the inside of the horizon after the neutralization of the universe, or has not

yet entered, and retains the primordial spectrum immediately after the Big

Bang as it is. Therefore, as long as Einstein’s theory of gravity is correct, it

is possible to extract information of primordial spectra generated after the

Big Bang from the current CMB spectra.

The facts that the standard cosmology brings seem to contradict our

intuition, because it is natural to think that the early universe was a melting

pot of high energy reactions and the fluctuation was so large. From this,

rather than thinking that a small value was selected as the initial value, it
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Figure 2-5: Sketch of the evolution of the universe drawn by WMAP

[https://map.gsfc.nasa.gov].

is easier to accept as a scenario to think that there was some mechanism to

reduce the fluctuation at the beginning at least for the fluctuation involved

in the structure formation of the universe. Clarifying this thing is one of the

major issues in the theory of early universe.

I believe inflation theory is the key to solving this problem. It makes

sense to capture inflation as a mechanism that gives the very small fluc-

tuations required for the Friedmann universe to continue for more than 10

billion years. It makes the story clearer to think that the force to ignite

inflation is given by quantum gravity effects, and the fluctuation reduces

during that period.

One of the goals of quantum gravity theory is to clarify such inflation

dynamics, and to derive the primordial spectrum that gives the initial con-

dition of the Friedmann universe. The observations indicate that it should

be a nearly scale-invariant and scalar-like spectrum with very small ampli-

tudes. How does inflation occur? Why does a scalar mode dominate and is

it scale-invariant in the early universe, even though the gravitational field

is a tensor field? How is the process of reducing the fluctuation described?

The scenario of the evolution of the universe from a trans-Planckian world

to the present, including answers to these problems in quantum gravity, will
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be explained mainly in the latter half of this book.



Chapter 3

Early Attempts and Setback

One of the earliest approaches combining quantum field theory and grav-

ity was the study by Uchiyama and DeWitt in 1962 on renormalization

of quantized matter fields in curved spacetime. Uchiyama is famous for

completing research that links non-Abelian gauge field theory and gravity,

independently of Yang and Mills, and announced the results at a conference

at Kyoto University in 1954. Unfortunately, the reaction there was so neg-

ative that he hesitated to write his treatise and the publication was delayed

in 1956.

In the late 1960s, DeWitt began a real attempt to quantize Einstein’s

theory of gravity. In those days, it was an age when only the electromagnetic

field and the gravitational field were recognized as fields that mediate forces.

Since the former was completed as quantum electrodynamics (QED), it is no

wonder that the next step was quantizing the gravitational field. In order to

construct a unified theory that Einstein dreamed of, that is, to formulate all

fields in a unified manner under one theoretical system, it would have been

necessary to put the gravitational field on the same quantum-mechanical

ground as other fields. At the same time, it was expected to be able to solve

the problem of spacetime singularities.

In the 1970s, ´t Hooft, Veltman, Deser, Nieuwenhuizen, and others began

research on renormalization of gravity. At first, it was attempted to quantize

the gravitational field by assuming that it is weak. That is, considering a

small fluctuation (perturbation) from a certain classical background space-

time, the fluctuation is quantized. Usually, in this case, the gravitational

field is expanded as

gµν = ηµν + κHµν , (3-1)

adopting flat spacetime as a background to consider a situation that the
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fluctuation Hµν propagates in vacuum, where ηµν is the Minkowski metric.

Of course, you can choose a curved background spacetime according to your

purpose. The expansion parameter κ is called coupling constant, which

represents the strength of gravitational interactions, and has a dimension of

the square root of the Newton constant G, that is, the Planck length lpl.

The fluctuations of the gravitational field propagating in vacuum in this way

are called gravitational waves. In particle physics, gravitational waves are

often called “gravitons”, just as electromagnetic waves are called photons.

Interactions involving gravitons are represented by Feynman diagrams such

as Fig.3-1 and Fig.3-2.

p1

p′1

p2

p′2

Figure 3-1: Scattering process between scalar particles (solid) exchanging a gravi-

ton (dotted). This interaction generates the Newton potential.

p

p′

k

k′

Figure 3-2: Compton scattering between gravitons and scalar particles.

However, there are many problems in formulating quantum gravity by

such weak-field approximation. This approach, in the first place, cannot

answer anything about singularities, which is the biggest problem of Ein-

stein’s theory of gravity. Even so, in those days, there was no other concrete

method for calculating quantum corrections, so research on quantum gravity
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began from such an easy setting.

For the time being, let us put aside the problem of singularities and move

on. Then another major problem of ultraviolet divergences arises. In quan-

tum field theories, Feynman diagrams involving loops appear as quantum

corrections, and when they are calculated, the results become infinite. Most

of known quantum field theories are renormalizable and such divergences

can be eliminated systematically, whereas Einstein’s theory of gravity be-

comes unrenormalizable. The reason is that in renormalizable quantum field

theories, coupling constants representing the strength of interactions are di-

mensionless, whereas the gravitational coupling constant κ has dimensions.

Why only the coupling constant of the gravitational field has dimensions.

That is easy to see from the fact that the action must be dimensionless.

Ordinary gauge fields and fermion fields have dimensions as inherent prop-

erties, and their actions, including derivatives in coordinate space, become

dimensionless without introducing extra scales, thus the coupling constant

also becomes dimensionless. On the other hand, the gravitational field gµν

is a completely dimensionless field essentially. Therefore, a quantity given

by a four-dimensional volume integral of the scalar curvature R with two

derivatives, which constitutes the action of Einstein’s theory of gravity, has

a dimension of the square of the length. In order to make it dimensionless,

it is necessary to introduce a scale to make up for the lack of dimensions,

that is, the Newton constant G. The action obtained in this way is called

the Einstein-Hilbert action.

The fact that the gravitational field is a strictly dimensionless field is

important in the following discussions. In the expansion (3-1), the field is

redefined so that Hµν has the same dimensions as ordinary gauge fields,

but it is for convenience, and unlike gauge fields, interaction terms resulting

from this expansion become multipoint functions that last infinitely.1 Also,

when discussing scale-invariant dynamics of the gravitational field in later

1 According to the convention in this research field, (3-1) is stopped at the first order

of Hµν , but the inverse of the metric tensor defined by gµλgλν = δµν is expanded by the

multiple product of the field the lasts infinitely like gµν = ηµν − κHµν + κ2Hµ
λH

λν + · · · .
And also,

√
−g and R are expanded in the same way.
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chapters, the fact that it is dimensionless is essential.

In general, unrenormalizable quantum field theory requires an upper

limit on energy to handle divergences. In other words, some kind of ultra-

violet cutoff is provided so that it cannot go beyond that. It implies that

it is considered as a theory that is effective only in an energy region below

the cutoff. In Einstein’s theory of gravity, the cutoff is usually put at the

Planck energy.

However, theories with such a limitation are inappropriate as fundamen-

tal theories that describe high energy physics. In order to discuss issues such

as singularities, an infinitely small area has to be able to be handled. There-

fore, renormalizability is a necessary condition to describe a world beyond

the Planck scale.

Early attempts to modify Einstein gravity

The problem with Einstein’s theory of gravity lies in its action called the

Einstein-Hilbert action. One of the characteristics that actions of renormal-

izable theories have is that the highest derivative kinetic terms of fields do

not have a scale. Therefore, as energy is higher, the kinetic term becomes

dominant, and terms with a dimensionful parameter such as mass terms

can be ignored. In contrast, the Einstein-Hilbert action which is the highest

derivative term in the theory, has a scale, namely, the Newton constant, thus

it is not possible to consider a high energy limit in which the scale can be

ignored. This indicates that the theory cannot describe a world without the

scale and hence there is an upper limit on energy. The problem mentioned

at the beginning of the previous chapter also arise from this.

Since the late 1970s, attempts have been made to modify Einstein’s

theory of gravity in order to solve the problem of renormalization and enter

a trans-Planckian region. The principle that underpins Einstein’s gravity

theory is diffeomorphism invariance, and the so-called Einstein equation

is one of equations derived from it. Modifications should only be made

while preserving diffeomorphism invariance. One of them is a method of

introducing dimensionless gravitational actions including fourth derivatives
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by Stelle, Tomboulis, Fradkin and Tseytlin and so on.

The four-derivative gravitational action is constructed as follows. First,

three important quantities that characterize gravity are introduced, which

are the scalar curvature R adopted as the Einstein-Hilbert action, the Ricci

tensor Rµν describing the Einstein equation, and the Riemann curvature

tensor Rµνλσ representing the degree of spacetime distortion. Then con-

sider three functions obtained by squaring them and contracting spacetime

indices using the metric tensor as R2, RµνR
µν , and RµνλσR

µνλσ. Since

these are scalar functions with fourth derivatives, their integrals over a four-

dimensional spacetime volume are dimensionless. Therefore, quantum grav-

ity theories employing them as actions have dimensionless coupling constants

and are candidates for renormalizable theories.

The Riemann curvature tensor, which expresses whether spacetime is

curved, is particularly important, and it can be thought of as a quantity

corresponding to a field strength Fµν of a gauge field such as a photon.

In fact, in mathematics, Fµν is called the curvature. The problem with

the Einstein equation is that it does not contain the Riemann curvature

tensor corresponding to the strength of the gravitational field. This is in

contrast to the fact that equations of motion for gauge fields contain the field

strengths, such as ∇µF
µν = Jν , where Jµ is a source current. Therefore,

it seems reasonable to include the square of the Riemann curvature tensor

in a quantum gravity action. However, unfortunately, not everything works

well even if such actions are adopted.

First of all, various good points of the above actions are summarized

here. They have the following properties:

1. The theory becomes renormalizable.

2. The action is bounded below.

3. There are no spacetime singularities.

As already mentioned, the property 1 comes from the fact that gravitational

coupling constants used for perturbation become dimensionless.
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The property 2 is guaranteed by considering the square of the curvature.2

This is extremely important from the standpoint of stability. In contrast,

the Einstein-Hilbert action defined by the first power of the scalar curvature

R, which takes values from −∞ to ∞, is not bounded below and has no

bottom of energy. It suggests that a quantum system where fluctuations of

the gravitational field are so large becomes unstable, even though it may not

be a problem as long as considering small perturbations around a regular

spacetime. Hence, adding a gravitational action consisting of the curvature

squared as main part leads to removing the instability in Einstein’s theory

of gravity.

The property 3 is one of the most expected properties in quantum grav-

ity. The Schwarzschild black hole, which is a representative of solutions of

the Einstein equation with singularities, is a Ricci flat solution in which Rµν

and also R disappear. On the other hand, the Riemann curvature tensor

Rµνλσ has a value and diverges at the center. A singularity is exactly the

point where the Riemann curvature tensor diverges. This says that an action

composed of the Riemann curvature tensor squared diverges for a solution

with such a singularity.3 In general, a field configuration in which an action

diverges is excluded as unphysical. At that time, it is also an important

condition that its action is positive-definite, because it means that the ex-

istence probability of such a field configuration in which an action diverges

becomes zero. It can be understood statistical mechanically by using the

path integral quantization method, which will be discussed again in Chapter

6.

These arguments reveal the problems of Einstein’s theory of gravity. In

general, physical objects are ones that an action becomes finite when they are

assigned, as mentioned above. Solitons and instantons in gauge theories are

2 Strictly speaking, this is listed as a property that Euclidean quantum field theory

actions obtained by applying the Wick rotation should satisfy. See Chapter 6 for details.

3 The square of the Riemann curvature tensor is often removed from the action using the

Euler (Gauss-Bonnet) combination, but it can only be done when there is no singularity

manifestly in spacetime, such as when considering perturbation theory around a regular

spacetime. Here is discussing the general case without such a premise.
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typical examples. On the other hand, not only the Einstein-Hilbert action is

indefinite but also disappears for the Schwarzschild solution with vanishing

scalar curvature, so that black hole singularities can exist physically. This

is a big problem in Einstein’s theory of gravity.

At present, there are still many attempts to formulate quantum theories

of gravity based on Einstein’s theory of gravity. One of the reasons for doing

so is that you do not have to worry about unitarity problems. However,

this is wrong, because the Einstein-Hilbert action cannot remove spacetime

singularities. It should be considered that the unitarity of these theories is

guaranteed only in the case of the weak-field approximation in which the

scattering matrix can be defined.

What have been described above are the good points of the fourth-

derivative gravitational action that the Einstein-Hilbert action does not

have. Writing this way, everything seems to work, but actually the story

is not so simple. First, the action cannot be uniquely determined only by

the discussion so far. The square of the Riemann curvature tensor should

be included to eliminate singularities, but diffeomorphism invariance alone

still leaves some arbitrariness. Even more problematic is the method of

quantization. Needless to say, the first attempt was carried out in a weak

gravitational field approximation, that is, in a graviton picture employing

a method of perturbation expansion around flat spacetime as shown in (3-

1). At that time, instead of κ, a dimensionless coupling constant is newly

introduced as an expansion parameter. The reason why this approach was

adopted is, of course, that it was only the method that concrete calculations

could be performed in the 1970s.

Quantization in the weak-field approximation is still problematic even in

this case. What looking for is a theory that describes a small world that is

shorter than Planck length, that is an ultra-high energy world. The weak-

field approximation is based on a strange assumption that the gravitational

field becomes weak near the center of the black hole and flat spacetime

appears there. This says that as approaching the center, a calm world that

is not much different from environment on the earth will appear, even though

it is believed that everything would be crushed by gravity. Looking at the
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early universe, it is also believed that it is a world where all matter would

be crushed by gravity, but the weak-field approximation assumes that it is

not so.

As a historical background, the success of QCD, which was introduced

as a theory of strong interactions that describes physics of hadrons, would

have influenced the adoption of the weak-field approximation. The property

“asymptotic freedom” this theory indicates is that the interaction is weak-

ened at short distances, that is, at the high energy limit, and quarks and

gluons that are constituents of hadrons behave like free particles. The early

study on renormalizable quantum gravity theory was carried out under the

assumption that it also has such a property, as a kind of gauge field theory.

Putting aside the physical strangeness of the setting for a while, let us see

what happens as theoretical problems when the gravitational field is quan-

tized with the weak-field approximation. The perturbation theory itself can

be defined without any problem, and it becomes renormalizable. However,

a big problem arises in physical quantities. That is the so-called “ghost

problem”. Ghost is a term that refers to being unphysical, meaning that its

action has the opposite to a normal particle so that it is not bounded below.

Hence, ghosts are particles that should not be observed, because unitarity is

broken when they contributes to scattering as physically existing particles.

In general, free field theories with fourth derivative have twice as many de-

grees of freedom as normal second-derivative field theories. The problem is

that if one of them is physical, the other always becomes unphysical.

On the other hand, there is a work by Lee and Wick, who have sug-

gested that ghosts do not appear due to quantum corrections in the theory

with interactions that show the asymptotic freedom. The fourth derivative

quantum gravity theory in the 1970s was studied based on this idea. It says

that ghosts do not appear in the real world at low energy, but when the

interaction disappears at high energy, it eventually becomes a world where

ghost particles are actually propagating. Hence, a simple perturbation the-

ory by the weak-field approximation did not lead to an essential solution to

the problem.

This ghost problem in higher-derivative field theories is a highly special-
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ized problem that is not found in general quantum field theory textbooks,

and many researchers take it as it is as a No-Go theorem. Most of who stick

to Einstein’s theory of gravity seem to think so. To overcome the Planck

scale wall, it is necessary to find answer to this question. The original cause

of the ghost problem in fourth-derivative field theories is that a field can be

decomposed into physical and unphysical modes. The problem with adopt-

ing the weak-field approximation is that these modes behave as independent

degrees of freedom at the zeroth order of perturbations in which only kinetic

terms remain. The essence of Lee and Wick’s work is to connect these two

modes through interactions so that they are not independent of one another.

Their work gives a hint for solving the problem. The story of unitarity

changes if there is a gauge symmetry that connects the two modes in the

ultraviolet limit. The appearance of a ghost mode in the real world means

that the mode is gauge invariant by itself. If such a gauge symmetry exists,

however, it can be made gauge variant, namely unphysical. As a matter of

course, such a situation cannot be realized in a perturbation theory with

simple weak-field approximation, which is because in the ultraviolet limit

where interactions disappear, even if there is a gauge symmetry, the gauge

transformation works mode-by-mode and does not mix with each other.

Something is missing to overcome the physical and theoretical problems

with quantization of gravity. An image of spacetime where gravity is quan-

tized is that it is in a state in which time and distance fluctuate greatly so

that they do not make sense. By going back to the origin, it is necessary to

construct a theory that expresses such a quantum state correctly.

The state in which the gravitational field fluctuates so much that time

and distance become uncertain means that even if a certain background

spacetime is specified, it itself no longer has physical meaning. Such a prop-

erty is called “background-metric independence” or “background freedom”.

That is also says that the conventional picture of particles propagating in a

specific background spacetime is not valid.

In order to express that, it is necessary to introduce some non-perturbative

method. The core part of a new formulation introduced in the next chapter

will be described by a special case of conformal field theory (CFT) that is
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a representative of non-perturbative field theories. It is a CFT in which

conformal invariance is realized as a gauge symmetry, unlike normal ones.

That is to say that all worlds with different scales connected to one another

by conformal transformations become gauge equivalent. In this way, the

background-metric independence is expressed algebraically, and this gauge

symmetry solves the ghost problem.

In the first place, the ghost problem is not limited to quantum theory.

Einstein’s theory of gravity has a ghost mode with negative metric that

causes the indefiniteness of the Einstein-Hilbert action. It can be locally

removed and the theory can be described only by physical gravitational

wave modes. However, the existence of a negative-metric mode plays an

important role when considering global structures of spacetime such as the

Friedmann universe. It shows that such a ghost mode is required to preserve

diffeomorphism invariant, that is, to make the whole Hamiltonian vanishing.

In the next few chapters, I will describe that ghosts play an important role

to preserve diffeomorphism invariance even in quantum gravity. It can be

found that ghost modes are indispensable elements for describing quantum

spacetime in which the Hamiltonian vanishes, but they never appear locally

as physical quantities.

On approaches without using fields

Since the 1980s when quantum field theory method was stalled, new meth-

ods that did not based on it became mainstream. String theory and loop

quantum gravity are typical examples. Before introducing a quantization

method of the gravitational field that realizes background-metric indepen-

dence, here is a brief summary of these methods that do not use the field.

String theory was originally proposed by Nambu to describe strong in-

teractions that governs hadron physics, and is a theory that is descended

from the scattering matrix theory developed in the 1960s. It is a formula-

tion in which scattering amplitudes for interactions between particles can

be calculated without accompanied ultraviolet divergences.

The essence of this theory is to consider stringy objects with one-dimensional
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spread rather than point-like objects as basic elements of matters. Such ob-

jects propagate in flat spacetime while repeating joining and separating. An

oscillation mode of the string corresponds to a particle, and eigenenergy of

the oscillation becomes its mass. The modes in which mass becomes zero

are particularly important, which become particles that make up a model

of elementary particles. Among them, not only scalar and vector modes,

but also graviton, which is a tensor mode, are include, and therefore string

theory has been studied as a candidate for unified theory. Moreover, su-

perstring theory with fermion degrees of freedom has come to be called the

theory of everything or the ultimate theory.

Another major feature of the theory is that spacetime must be 10 or 26

dimensions in order for Lorentz invariance to be preserved, and superstring

theory is defined in 10 dimensions. Therefore, in order to describe the

real world, which is 4 dimensions, it is necessary to round and reduce the

extra 6-dimensional space so that it cannot be observed, which is called

compactification.

String theory provides a theoretical system that can calculate scatter-

ing amplitudes based on a weak-field approximation, which is defined as

a perturbation expansion by the coupling constant α′ (the inverse of the

string tension) that has a dimension squared in length, corresponding to the

Newton constant. Therefore, an effective action of string theory configured

to reproduce the scattering amplitude has a form expanded in derivatives

expressed by powers of curvature whose lowest term is the Einstein-Hilbert

action. Another feature is that each term of it becomes a local action that

can be treated classically, unlike that in renomalizable quantum field theo-

ries.4

The only parameter of the theory is α′ with dimensions and it is a theory

4 The quadratic curvature term of the string effective action is only the Gauss-Bonnet

type, like the action of Lovelock’s theory of gravity. When the Gauss-Bonnet term is

expanded by (3-1), in any dimension, kinetic terms given by two-point functions of the

field vanish and only interaction terms of three or more points appear. All higher-derivative

terms also produce only interaction terms. That is, since the kinetic term is derived only

from the Einstein-Hilbert term, the only modes that freely propagate as asymptotic fields

are physical gravitons, thus the perturbative unitarity of the scattering matrix holds.
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in which there is nowhere this dimensionful scale can be ignored, like Ein-

stein’s theory of gravity. Therefore, the square root of its reciprocal becomes

an upper limit of energy and the perturbation expansion is effective only be-

low that. In any case, it would be difficult to break through the upper limit

as long as objects are described within the standpoint of propagating in a

specific background spacetime, whether it is point- or string-like.

In general, there is an inherent energy scale for each physical phenomenon.

In string theory, since the scale is originally only α′, scales for describing

phenomena that occur at lower energies than this scale are given by radii of

space rounded variously. There are innumerable ways to do this in principle,

but geometry of compactified space is usually determined so that required

symmetries remain. The problem with compactification is that it is basically

arbitrary.

Since the beginning of the 1990s, a high-dimensional object called D-

brane has appeared as a new degree of freedom. It was originally introduced

to describe a strong coupling state of string theory. It has been known that

there are two methods for describing it: one is to express it as a theory of

world volume (trajectory of motion of object) and the other is to express

it as a soliton solution of supergravity theory that appears as an effective

theory of string theory. From the relationship between them, the AdS/CFT

correspondence was proposed by Maldacena at the end of the last century,

which is a conjecture that a conformal field theory (CFT) will appear at

the boundary of the AdS (= Anti de Sitter) space. This idea , which was

born from string theory, is now also called the holographic principle and is

developing almost independently of string theory.

The research field where the AdS/CFT correspondence is utilized has ex-

tended to areas of QCD, quark-gluon plasma, and condensed matter physics,

which began when Witten applied it to analysis of spectra of gluon excited

states (glueballs). However, although gravitational words are used in these

studies, most of them are stories that are not directly related to dynamics

of gravity. The essence is to introduce a scale for describing dynamics while

maintaining gauge symmetry. By the way, it is well known that the method

of simply adding mass terms to gauge fields breaks gauge symmetry, while
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in renormalizable gauge theories, a mass scale is introduced through nonlo-

cal quantum corrections without breaking the symmetry. Here, such scale

introduction is done by curving a space. Furthermore, by intersecting sev-

eral D-branes in extra dimensions, it is possible to realize global symmetry

that research subjects should have. The equation of motion in curved space-

time derived in this way is a local field equation that is relatively easy to

solve. The success of this approach shows that gauge symmetry and global

symmetry determine most of physical phenomena.

It is argued that if CFT is examined inversely through this correspon-

dence, you should be able to describe quantum gravity in AdS, which is

called AdS quantum gravity. However, it is a story that depends on the

background spacetime, and it is essentially different from the method de-

scribed in the next chapter, in which CFT directly comes out as a field

theoretical representation of quantum gravity that shows background free-

dom.

String theory as a unified theory is in a situation that it includes every-

thing but cannot explain anything. However, knowledge of geometry and

group theory is required when rounding space, and many researchers are

fascinated by its mathematical beauty. It seems that there are more such

researchers nowadays. Although the interest in mathematical science seems

endless, you can hardly explain dynamics of gravity.

Another representative example, loop quantum gravity proposed by Rov-

elli and Smolin, is a theory that has gained support by emphasizing back-

ground freedom that string theory does not have. It is one of attempts to

realize background freedom by defining spacetime discretely and performing

a sum over all possible spacetime configurations. A state which satisfies what

is called the constraint conditions that energy-momentum tensor becomes

zero, that is, conditions that diffeomorphism invariance holds, is represented

by a graph consisting of points (nodes) and lines (links) connecting them.

It is called a spin network, while the one to which discrete time is added is

called a spin form.

Unlike lattice gauge theories, this theory does not take a continuum

limit. Rather, it is an idea that discretizing area and volume is quantiza-
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tion of gravity. Depending on the number of links that penetrate surface

and the number of nodes contained in space, area and volume of there are

given in units of the Planck scale. However, the discretization breaks dif-

feomorphism invariance that is a continuous symmetry, at that time. As for

spatial components, you may devise to satisfy the constraint condition by

introducing a variable like Wilson loops, but it cannot satisfy the Hamilto-

nian constraint condition related to time component. In the first place, it is

doubtful whether states that satisfy the constraint conditions derived from

the continuous symmetry can be expressed in terms of the spin network

without excess or deficiency.

This originally began with an attempt to canonically quantize Einstein’s

theory of gravity employing the Arnowitt-Deser-Misner (ADM) form, and

is related to an attempt to solve the Wheeler-DeWitt equation. In order to

construct a state that satisfies the constraint conditions, the gravitational

field is rewritten to Ashtekar’s new variable and the loop variable mentioned

above is introduced. At this point, it is still described as a classical theory

using the Poisson brackets. Replacing the Poisson brackets with commuta-

tors is a standard procedure to move to quantum theory, but problems arise

here, which will be touched upon in the next two chapters. Loop quantum

gravity says that quantization was performed by expressing the state with a

spin network without doing such a procedure. It should be considered that

this is a new approach that is different from normal methods such as the

path integral.
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How to Realize Background Freedom

In order to build a unified theory that includes gravity, the gravitational field

has to be treated like any other matter field. It may be said that the picture

of gravitons propagating in a specific spacetime is premised. However, such

a position will be not taken here. Because, matter fields are defined in the

presence of spacetime, but the gravitational field defines spacetime itself.

Unlike other fields, the gravitational field is essentially dimensionless and

is coupled to all fields directly. More attention should be paid to this fact.

The roles of the gravitational field and matter fields are naturally different,

and the difference becomes prominent in the world beyond the Planck scale.

Gravitational quantum fluctuations are so great there that the picture in

which particles propagate is no longer appropriate.

What can be said in the discussion so far is that, after all, perturbation

methods based on a simple weak-field approximation have to be given up.

In the first place, perturbing around flat spacetime where the Riemann cur-

vature tensor vanishes is inappropriate for describing strong gravitational

fields near the center of black holes. Even if black hole spacetime is adopted

as a background, it cannot be said that quantum gravity theory could be

constructed because the neighborhood of singularity cannot be treated at

all.

Then what should you do? First, in order to make singularities unphys-

ical, as mentioned in the previous chapter, a fourth-derivative gravitational

action containing the square of the Riemann curvature tensor should be em-

ployed. Moreover, some idea that does not rely on conventional weak-field

approximation is required. The property that determines quantum grav-

ity called “background-metric independence” or “background freedom” is

exactly diffeomorphism invariance, which is called by another name to em-

phasize that it is a new properties acquired by quantization. This word
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describes a state where spacetime is fluctuating so much that the concept

of distance and time is lost, and so says that classical spacetime becomes

unclear as a reference. That is, even if it is chosen as a reference, it no longer

makes sense because spacetime is fluctuating greatly around it. Hence, the

background-metric independence cannot be described at all within a weak-

field approximation which assumes that all perturbations around a specific

spacetime are small.

Some kind of nonperturbative treatment is required. A hint is in the

early universe. Results derived from CMB observations by the WMAP as-

tronomical satellite and others suggest that fluctuations in the early universe

were scale-invariant and scalar-like. It seems natural to find its origin in con-

formal invariance. If a phase transition in spacetime occurs near the center

of black holes and a conformally invariant world is realized, it also leads to

a solution of the singularity problem.

Now, as a renormalizable quantum field theory with such properties, I

present a quantum gravity theory in which the background-metric indepen-

dence is expressed as a special conformal invariance (see also Appendix B).

In this theory, as a quantity that expresses the field strength of gravity, not

the Riemann curvature tensor itself, but the Weyl tensor

Cµνλσ = Rµνλσ − 1

2

(
gµλRνσ − gµσRνλ − gνλRµσ + gνσRµλ

)
+
1

6

(
gµλgνσ − gµσgνλ

)
R (4-1)

plays an important role. In addition, the Euler density (Gauss-Bonnet com-

bination), G4 = RµνλσR
µνλσ − 4RµνR

µν + R2, is necessary, which becomes

topological when integrated in four-dimensional spacetime.

The action is composed mainly of the square of the Weyl tensor called

the Weyl action and the topological Euler term, which are conformally in-

variant fourth-derivative quantities. Furthermore, lower derivative terms

such as the Einstein-Hilbert action, the cosmological term, and matter field

actions are added to these. At high energies beyond the Planck scale, the

fourth-derivative terms predominate and conformal invariance appears. The

Einstein-Hilbert action becomes effective in lower energy regions than the
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Planck scale. In this way, you will be able to describe a trans-Planckian

world that can never be reached by Einstein’s theory of gravity.

Recall the discussion in the previous chapter here. It was stated that

quantization with a simple weak-field approximation such as (3-1) does not

work, because the setting not only is unnatural physically, but also causes the

problem of ghosts. Such a perturbation expansion corresponds to carrying

out around flat spacetime with Rµνλσ = 0. On the other hand, adopting

the Weyl action means perturbing around a conformally flat spacetime with

Cµνλσ = 0. This is also in line with inflation theory that many cosmologists

believe as an idea to solve the horizon and flatness problems.

The point of non-perturbative quantization, which is a main subject

here, is that when expanding the gravitational field, the conformal factor

which is the most important factor determining distance is specially treated

by extracting in an exponential form so as to be positive manifestly like

gµν = e2ϕḡµν . (4-2)

The scalar-like field ϕ is called the conformal-factor field. The remaining de-

grees of freedom of the gravitational field, which represent deviations from

the conformally flat spacetime, are expanded with a weak-field approxima-

tion as

ḡµν = ηµλ
(
eh
)λ

ν
= ηµλ

(
δλν + hλν +

1

2
hλσh

σ
ν + · · ·

)
, (4-3)

where hµν is a 9-component tensor field that satisfies the traceless condition

(hµµ = ηµνhµν = 0).

Of course, it is best to be able to handle all degrees of freedom non-

perturbatively, but that is never easy. Therefore, I have proposed a pertur-

bation theory that well captures the characteristics of the world beyond the

Planck scale. See Chapter 13 for a completely non-perturbative approach.

The coupling constant t is introduced as a dimensionless parameter that

controls the expansion (4-3). Since the field strength of the traceless tensor

field is given by the Weyl tensor, the perturbation theory is formulated by

introducing the reciprocal of t2 in front of the Weyl action defined by its
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square.1 When performing perturbation calculations concretely, it is usually

done after redefining the field like hµν → thµν . However, when describing its

dynamics, it is easier to understand if the coupling constant is left before

the Weyl action, so the discussion proceeds as it is without redefining it.

The conformal-factor field ϕ has to be handled exactly without intro-

ducing a coupling constant for it. Because, the fourth-derivative actions

are conformally invariant and thus they do not depend on the conformal-

factor field. Hence, this field will be completely fluctuating without being

controlled by their actions, that is, the conformal-factor field remains non-

perturbative. However, if the theory does not depend on it at all, its dy-

namics will be the same as if it does not exist, resulting in a theory that

lacks an important part of the gravitational field. Where the dynamics of

the conformal-factor field comes from and how it is treated, that is the key

of quantization described below.

Methods of quantization

As widely-known quantization methods, there are the canonical quantization

method and the path integral method. The issue of quantization in gravity

is to see whether the theory can be actually formulated according to these

quantization methods. Einstein’s theory of gravity could not do it because

of many problems mentioned before.

Here, quantization of the above-mentioned gravity will be performed em-

ploying the path integral method that manifestly preserves diffeomorphism

invariance. It should be noted that the canonical quantization method, on

the other hand, premises that actions are defined in a specific background

spacetime, usually flat spacetime, and canonical commutation relations are

set in that spacetime. Since time is treated specially at that time, it is hard

to say that diffeomorphism invariance is manifestly maintained, which will

be revisited in the next chapter.

1 How to insert the coupling constant in this way is the same as in gauge field theory.

Letting g be a coupling constant, then introducing it as the reciprocal of g2 before an

action given by the square of the gauge field strength Fµν implies a perturbation expansion

around Fµν = 0.
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The path integral of the quantum gravity is defined by putting the ac-

tion, denoted as I, on the exponent of exponential function and performing

functional integrals over the gravitational field gµν . The partition function

is then symbolically written as

Z =

∫
[dg]g e

iI(g), (4-4)

where [dg]g denotes a path integral measure of gµν , and the subscript g

indicates that it is defined so as to be diffeomorphism invariant using gµν

itself which is a dynamical variable. Contributions from matter fields are

omitted here for simplicity.

A new obstacle on quantization arises here. This integral measure shows

that if you try to perform the integral with respect to gµν , you have also

to integrate the gµν-dependence involved in the measure. Hence, first of all,

this nested structure has to be resolved.

Usually, for practical reasons, the path integral is performed by replacing

the invariant measure with a measure defined in a specific spacetime. In flat

spacetime, it should be written as [dg]η with the subscript of ηµν that is

the Minkowski metric. The use of this measure may be justified if a weak-

field approximation such as (3-1) is applied, then you can perform the path

integral for the field Hµν according to the textbook. But, in general, this

simple replacement breaks diffeomorphism invariance.

In fact, when using the expansion (4-2), in order to resolve the nested

structure while preserving diffeomorphism invariance, it is necessary to rewrite

the path integral measure as

[dg]g = [dϕ]η[dh]η e
iS(ϕ,ḡ), (4-5)

where [dg]η is orthogonally decomposed and represented by the product of

[dϕ]η and [dh]η. The exponential part eiS represents a Jacobian needed to

ensure diffeomorphism invariance, and the function S of the conformal-factor

field ϕ in the exponent is a quantity satisfying the Wess-Zumino consistency

condition, called the Wess-Zumino action.2

2 If you consider a simultaneous change of ηµν → e2ωηµν and ϕ → ϕ−ω, then the measure
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The Wess-Zumino action that appears here is a quantity whose confor-

mal variation is called “conformal anomaly”, and has been systematically

well studied. Conformal anomaly is a term derived from the study of quan-

tum field theory in curved spacetime, and was investigated by Capper, Duff,

Deser, Isham and others in the 1970s. It says that even if you start with

a conformally invariant classical action, the invariance is broken when it is

quantized. Historically, the word anomaly has been used, but it is not phys-

ically anomalous. The conformal anomalies generally arise with the advent

of a new mass scale upon quantization, which are necessary for quantum

correction terms, containing the scale, to be diffeomorphism invariant.

Hence, the quantum gravity theory (4-4) under the expansion (4-2) can

be redefined as a quantum field theory in flat spacetime with an action

IQG(ϕ, ḡ) = S(ϕ, ḡ) + I(g) (4-6)

so that the partition function is expressed as

Z =

∫
[dϕ]η[dh]η e

iIQG(ϕ,ḡ). (4-7)

Once the Wess-Zumino action S is determined, it can be calculated using

normal quantum field theory methods.

This expression shows that although the action (4-6) has no longer a

diffeomorphism invariant form, the effective action that is given by the log-

arithm of the partition function involving quantum corrections becomes an

invariant form. Here, it should be noted again that the Minkowski metric

ηµν was introduced for convenience only, while the metric tensor with phys-

ical meaning is (4-2). The strategy adopted here is to first define the theory

(4-5) is invariant because gµν (4-2) is invariant under this change. On the other hand, the

right-hand side becomes [dϕ]e2ωη[dh]e2ωη e
S(ϕ−ω,e2ω ḡ) = [dϕ]η[dh]η e

iS(ω,ḡ) eS(ϕ−ω,e2ω ḡ),

where [dϕ]η is invariant under the shift of ϕ for any background because its integration

region is (−∞,∞). In order for this to return to the original form, it has to satisfy

S(ω, ḡ) + S(ϕ − ω, e2ω ḡ) = S(ϕ, ḡ). This is called the Wess-Zumino consistency condi-

tion. This condition was originally shown in curved spacetime. Quantizing gravity, the

above property of [dϕ]ĝ ultimately results in the background-metric independence for the

conformal change of ĝµν .
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in a specific regular background, here in flat one, and then show that it does

not depend on how to choose the background.

The Wess-Zumino action S, which arises to preserve diffeomorphism in-

variance, gives dynamics of the conformal-factor field, namely, kinetic and

interaction terms of ϕ in fourth derivative. In particular, S exists even in the

zeroth order of the coupling constant t, that is, the ultraviolet limit of t→ 0.

This S is called the Riegert action after the discoverer, and quantization of

this action was first performed by Antoniadis, Mazur, and Mottola.

Although above writing that the Wess-Zumino action occurs accompa-

nied with a mass scale, the Riegert action is special. The fact that it appears

at the zeroth order of t means that it does not involve the scale. This is an

essential point in constructing a particular conformal field theory without

the scale described below. Here, somewhat confusing is that even though

the Riegert action has originally been derived as a conformal anomaly, it

works to restore the conformal invariance exactly as a new appearance of

the background-metric independence when performing the path integral over

the conformal-factor field ϕ. This will become clearer in the next section.

Finally, so far proceeding without paying attention to ℏ, but here will

specify clearly where it appears when revived. Considering the action I

by dividing it into the fourth derivative gravitational part I(4) and a lower

derivative term IEG consisting of the Einstein-Hilbert action and matter

actions, the reciprocal of ℏ is entered only in front of IEG. Since the grav-

itational field is a dimensionless field essentially, I(4) is completely dimen-

sionless, thus it does not contain ℏ. Similarly, ℏ is not included in the

Wess-Zumino action S derived from the path integral measure. This means

that all fourth-derivative gravitational actions are quantities that describe

purely quantum dynamics, and the whole including them as weights, except

IEG, could be regarded as a whole measure of the path integral. Hence, the

path integral of quantum gravity is often symbolically expressed using only

IEG as
∫
Dgµν eiIEG/ℏ, but here it is shown that the measure is expressed

exactly as Dgµν = [dϕdh]η e
iS+iI(4) . This is also the reason why the Weyl

action and the Wess-Zumino action resulting from the measure are treated

on the same footing in the following discussion.
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From the consideration of ℏ, it turns out that the ghost mode is essen-

tially a quantum entity and does not appear as a classical one like a particle.

Moreover, as described below, it can be shown that the ghost mode is not

gauge invariant, namely unphysical.

Background freedom as conformal invariance

The key point of this quantum gravity theory is in a special property of the

core part of the perturbation theory realized at the zeroth order of the ex-

pansion by the coupling constant t. Normally in a weak-field approximation,

the zeroth order of perturbation is represented by free fields, or gravitons,

propagating in flat spacetime, and the perturbation theory describes how

they interact and scatter. On the other hand, in this theory, such free fields

do not appear. The core part is described by a special conformal field the-

ory, and the coupling constant t represents the degree of deviation from it.

Therefore, the scattering matrix, which is a physical quantity premised on

the existence of free fields asymptotically, is not defined.

Now, let us see what exactly the special conformal field theory is and

what its physical meaning is. The difference from normal conformal field

theories is that conformal invariance is a gauge symmetry or BRST symme-

try, that is part of diffeomorphism invariance.3 Hence, although normally

only vacuum is conformally invariant, physical quantities must also be con-

formally invariant in this conformal field theory. That is, all theories with

different backgrounds connected to each other by conformal transformations

are gauge equivalent, and thus they become physically indistinguishable.

This is an algebraic representation of background-metric independence. This

symmetry is called “BRST conformal invariance” to emphasize that it is a

gauge symmetry.

In the following, describe it specifically using mathematical formulas.

First of all, diffeomorphism is a transformation that under a coordinate

3 Becchi, Rouet, Stora, and Tyutin discovered in the 1970s that gauge invariance could

be extended to include gauge fixing term and associated ghost term. BRST stands for

four acronyms. The BRST quantization method was sistematically formulated by Kugo

and Kojima soon after its discovery.
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transformation xµ → x′µ = xµ − ξµ(x), a line element defined by ds2 =

gµν(x)dx
µdxν using the metric tensor field becomes invariant as ds2 = ds′2.

If the gauge parameter ξµ is infinitesimal, then diffeomorphism is expressed

as δξgµν = gµλ∇νξ
λ+gνλ∇µξ

λ, where the variation is defined by δξgµν(x) =

g′µν(x)− gµν(x) and ∇µ is a covariant derivative.

Expand diffeomorphism under (4-2) and (4-3) and consider 15 gauge

degrees of freedom ζµ that satisfy the conformal Killing equation as the

gauge parameter ξµ.4 The BRST conformal transformation then arises at

the lowest of the perturbation as

δζϕ = ζλ∂λϕ+
1

4
∂λζ

λ,

δζhµν = ζλ∂λhµν +
1

2
hµλ

(
∂νζ

λ − ∂λζν

)
+

1

2
hνλ

(
∂µζ

λ − ∂λζµ

)
. (4-8)

This transformation says that the gravitational field is a field whose confor-

mal dimension is zero. In the transformation of the conformal-factor field

ϕ, there is a shift term that does not contain the field, which is not found

in normal conformal transformations and shows that this transformation is

derived from diffeomorphism. The generators of each transformation are

constructed using energy-momentum tensors derived from the Riegert and

Weyl actions, respectively.

Physical quantities must be invariant under the conformal transforma-

tion (4-8). One of the features of this transformation is that it involves

the field. In ordinary gauge transformations, the right side at the zeroth

order of perturbation depends only on gauge parameters, not on fields. Un-

der such transformations, modes that compose fields do not mix with each

other so that ghost modes become gauge invariant as they are. On the other

hand, under the transformation (4-8), modes in the field are mixed with each

other, and it can be shown that all ghost modes do not be gauge invariant

in their own right. Hence, the presence of the BRST conformal invariance

restricts physical quantities greatly, even though the gauge parameters have

4 All local gauge degrees of freedom ξµ other than the conformal Killing vector ζµ are

not considered here as they were used to eliminate field degrees of freedom as much as

possible, such as by imposing a radiation gauge-fixing condition.
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only 15 degrees of freedom, and solves the ghost problem from a different

perspective than before.

The ghost modes are not physical quantities in themselves, but they

are indispensable elements for diffeomorphism invariance to hold. Physical

states of quantum gravity are expressed as states in which whole Hamilto-

nian vanishes exactly, as described in the next chapter. The BRST conformal

invariance truly defines such diffeomorphism invariant states that appear in

the ultraviolet limit far beyond the Planck scale. Also, it is due to the ghost

modes that such states can exist as non-trivial states with entropy, not a

vacuum state with nothing.

The unitarity issue from the standpoint of conformal field theory will be

explained in Chapter 6 as well. The property that the BRST conformal in-

variance is realized in the high energy limit is called “asymptotic background

freedom”,5 and the physical implications it suggests will be discussed again

in Chapter 7. The quantum theory of gravity with such a property is called

“asymptotically background-free quantum gravity”.

On Historical Background

Here is mentioning a historical background of the BRST conformal invari-

ance briefly. This quantization method was started by Polyakov in the first

half of the 1980s for the case that spacetime is two-dimensional, and then

led to the discovery of an exact solution of two-dimensional quantum grav-

ity by Polyakov, Knizhnik, and Zamolodchikov in the latter half of the the

same decade. Following that discovery, Distler and Kawai, David and others

formulated two-dimensional quantum gravity as a quantum Liouville field

theory. Its action is the Liouville action, which is a two-dimensional Wess-

Zumino action originally discovered by Polyalov, and the Riegert action was

found as a four-dimensional counterpart of that.

In two dimensions, the traceless tensor field has two components, which

5 This is a concept similar to “asymptotic safety” proposed by Weinberg in 1979 in the

sense that the existence of ultraviolet fixed points is premised, though the approach is

different. It will be discussed in the last section of Chapter 10.
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can be eliminated using the gauge degrees of freedom of diffeomorphism,

thus quantum gravity can be expressed as a theory of the conformal-factor

field ϕ only. In addition, the Einstein-Hilbert action, which is the action

I in this case, becomes a topological invariant (Euler characteristic), and

quantization is represented as a path integral that performs over all possible

gravitational field-configurations in each topology and then sums up for

topology.
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What is Hamiltonian Constraint?

It is widely believed that diffeomorphism invariance, as well as gauge in-

variance in gauge fields, is a fundamental principle that holds from classical

theory to quantum theory, from an infinitesimal world to a cosmic-scale

world. There are some researchers who do not allow essential modifications

for the Einstein equation as a divine equation, but what should hold is dif-

feomorphism invariance. Although the Einstein equation is incompatible

with quantum theory, diffeomorphism invariance and quantization of grav-

ity are never in conflict. However, it should be noted that there are some

sensuous differences from ordinary quantization. One of them is what is

commonly called the Hamiltonian constraint. When considering quantum

gravity, you should pay more attention to the existence of this condition.

The background-metric independence shown in the previous chapter exactly

expresses that.

Normally, gravity is thought to be generated where matter is present.

To emphasize this view, the Einstein equation is expressed in the form of (2-

1). However, this traditional expression hides an essence of diffeomorphism

invariance. The Einstein equation is the equation of motion for the gravita-

tional field, that is derived as an equation in which a gravitational variation

of the whole action including the Einstein-Hilbert action vanishes. On the

other hand, gravity is coupled to all fields, and quantities obtained by vary-

ing the action with respect to the gravitational field are nothing but energy-

momentum tensors. In other words, letting I be the whole action and denot-

ing its energy-momentum tensor by Tµν (= gµλgνσT
λσ), then the equation

of motion is given by the variational principle as δI/δgµν =
√
−g T µν/2 = 0,

thus expressing the Einstein equation as

M2
P

(
−Rµν +

1

2
gµνR

)
+ TM

µν = 0 (5-1)
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is essentially correct, where MP = 1/
√
8πG is the reduced Planck mass,

defined by dividing the Planck mass mpl by
√
8π. In particular, the time-

time component of the energy-momentum tensor is the Hamiltonian density,

and the Hamiltonian is given by integrating it over space volume. That is,

the Hamiltonian disappears.

In quantum field theory, equations of motion can be expressed by an

identity called the Schwinger-Dyson equation in the path integral method.

Letting φ be a field variable in a certain spacetime and I be its action, it is

written as ∫
[dφ]

δ

δφ(x)

(
eiI(φ) · · ·

)
= i

〈
δI(φ)

δφ(x)
· · ·

〉
= 0,

where ⟨· · ·⟩ =
∫
[dφ] · · · eiI(φ) represents a vacuum expectation value, or

correlation function, and the dots denote fields that are in a different location

than x here. Taking a free scalar field as an example, this equation shows

that the equation of motion, called the Klein-Gordon equation, holds in the

form of the expectation value. If there are interactions, then the equation

of motion involves terms from quantum corrections.

The identity is a generalization to functional integrals of the fact that∫
dv ∂f(v)/∂v = 0 holds in ordinary integrals when f(v) is a function that

disappears at infinity or is defined in a closed space. That is, letting the

integral variable be the field φ instead of v, and replacing the ordinary

integral and derivative with those of functionals. At this time, it is assumed

that the field disappears at infinity or is defined in a compact spacetime

without boundaries.

Let us apply the Schwinger-Dyson equation to the gravitational field.

Putting aside the issue with path integral measures for a moment, the iden-

tity can be intuitively expressed as∫
[dg]

δ

δgµν(x)

(
eiI(g) · · ·

)
=
i

2
⟨
√
−g T µν(x) · · ·⟩ = 0. (5-2)

That is, the energy-momentum tensor including quantum corrections exactly

vanishes. This identity shows that the theory is invariant under a change of

the metric tensor field, which is alternative expression of the background-
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metric independence. In order to define it concretely, it is necessary to cor-

rectly formulate the path integral in the diffeomorphism invariant manner,

as shown in the previous chapter.

Early attempts to formulate a quantum theory of gravity in canonical

quantization result in equations such as the Hamiltonian and momentum

constraints and also the Wheeler-DeWitt equation, but they are essentially

the same as Eq. (5-2). However, it should be noted that many of equations

called so have been discussed within the framework of Einstein’s theory of

gravity using the ADM formalism initiated by Arnowitt, Deser, and Misner.

Therefore, they still have many of the problems mentioned in Chapter 3.

In addition, since canonical quantization itself treats time specially when

setting commutation relations, there is also a problem that diffeomorphism

invariance becomes obscure.1 Moreover, from the standpoint of path inte-

gral, there is the fact that these equations have not been derived with care

for the measure. Therefore, in (5-2), the path integral measure of the gravi-

tational field is written by omitting the subscript g like [dg], instead of [dg]g

introduced in the previous chapter. This measure indeterminacy is also the

main cause of difficulties in canonical quantization known as the “operator

ordering problem”.

Now, rewrite equation (5-2) to a correct one and proceed the argument.

The main part of the action I is given by the conformally invariant fourth-

derivative action consisting of the Weyl action and the Euler term, and lower-

derivative actions such as the Einstein-Hilbert action and matter actions are

added to it. Rewrite the diffeomorphism invariant measure into the practical

one defined in flat background as in (4-5), and then denote the whole action

as IQG, including the Wess-Zumino action S as a Jacobian required for its

rewriting, as in (4-6). The partition function can be written as (4-7), thus

1 Two-dimensional cases where time and space are of the same dimension are special, so

diffeomorphism invariance may hold even with canonical quantization.
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the Schwinger-Dyson equation is expressed as∫
[dϕdh]η

δ

δϕ(x)
eiIQG = i

〈√
−g T λ

λ(x)
〉
= 0,∫

[dϕdh]η
δ

δhνµ(x)
eiIQG =

i

2

〈√
−g

(
Tµ

ν(x)−
1

4
δµνT

λ
λ(x)

)〉
= 0. (5-3)

These are collectively written as ⟨
√
−g T µ

ν(x)⟩ = 0. From the way of per-

turbation expansion (4-2) and (4-3), this equation holds exactly for the

conformal-factor field, while perturbatively for the traceless tensor field.

The equation of motion (5-3) is an expression of the background-metric

independence, and the expectation value involves quantum corrections. In

other words, the equation of motion can be expressed as an equation that

variation of the effective action with respect to the background metric van-

ishes. That has the following structure:

T (4)
µν +M2

P

(
−Rµν +

1

2
gµνR

)
+ TM

µν = 0, (5-4)

where T
(4)
µν is a fourth derivative gravitational term in which contributions

from the Wess-Zumino action, the Weyl action, and quantum corrections

generated by quantizing them are incorporated.

Physical meanings of diffeomorphism invariance

Now, what does the vanishing of the whole energy-momentum tensor mean

as physics? Two important things are addressed here:

I. One is that since the whole Hamiltonian vanishes, there is no time

globally defined in the whole system as assumed in ordinary quantum theory.

That is, there is no longer usual notion of time evolution like the Schrödinger

equation.

This is also true in classical theory, as can be seen by rewriting the Ein-

stein equation as in (5-1). Time progresses differently depending on strength

of the gravitational field. In places where the gravitational field is weak, such

as on the earth, changes in gravitational potentials are monotonic, and thus

it is possible to measure differences in the progress of time depending on
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locations, but time does not proceed in the same way throughout the whole

system at all.

In quantum spacetime where gravity is completely fluctuating, the con-

cept of time itself disappears. The property called the background-metric

independence states that even if the Minkowski spacetime is selected as a

reference background, the reference no longer makes sense if the confor-

mal factor fluctuates greatly around it. In other words, physical time and

distance defined by the metric tensor (4-2) fluctuate, making them prac-

tically impossible to measure. In the previous chapter, it has been shown

that this property will be realized as the BRST conformal invariance in the

high-energy limit far beyond the Planck scale.

Approximate time is given as a dynamical change of the gravitational

field that results from solving the equation of motion (5-4) where the energy-

momentum tensor vanishes. As the conformal factor, the scale factor in

cosmology, begins to increase monotonically, it becomes time in the entire

universe, which is a process where the conformal invariance gradually breaks

due to physical scales such as the Planck mass. The flow of time will begin

with inflation. As will be shown later, during that period, the fluctuations

with sizes that are involved in determining structures of the universe reduce,

thus time becomes an entity as a uniform flow. The reduced fluctuations

are then inherited by the Friedmann solution, which is the solution of the

Einstein equation, and the time also continues.

It should be noted here that there is a non-trivial spacetime solution

despite thinking of a solution where the Hamiltonian vanishes. In other

words, the state with zero eigenvalue of the Hamiltonian is not uniquely

determined, but it changes, so that time is created. Why such a change

occurs is from the fact that the Einstein-Hilbert action is not bounded below.

If this action were positive-definite, like that of matter fields, then there

would be no dynamical solution and no time would occur. This is also linked

with the statement in Chapters 3 and 4 that ghost modes are necessary to

make quantum gravity states with zero Hamiltonian.

More notably, the equation (5-4) holds even if the TM
µν term which is a

source of mass disappears, due to the presence of the T
(4)
µν term. In other
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words, it is possible to describe a world in which there is no matter and

only gravitational fluctuations exist. In this way, you can discuss spacetime

with a completely different perspective from that of the Einstein equation

where matter creates gravity. Furthermore, this equation can also describe a

transition process from such a world of only gravity to a world with matters.

An excited state and inflation model of quantum gravity, in which such a

process plays an important role, will be described in detail in later chapters.

Since there is no absolute time, the normal meaning of “conservation”

does not hold. Conservation means that it does not change during the

evolution of the universe, and will be expressed here as renormalization

group invariance (see Chapter 10). The energy-momentum tensor is exactly

a renormalization group invariant. Entropy of the universe, given by the

effective action because the whole Hamiltonian vanishes, is also conserved

as a renormalization group invariant. This indicates that the entropy of

the universe is originated from quantum fluctuations of gravity, and since

it is preserved constant, adiabatic conditions premised in Gamow’s Hot Big

Bang model are strictly correct.

II. Another significant fact indicated by the equation of motion (5-4)

is that there is no zero-point energy.

Before understanding this fact, it should be pointed out that the energy-

momentum tensor is a “normal product”, which is a composite field that

behaves as a finite operator in correlation functions. For free fields, it

refers to normal ordered operators. In ordinary quantum field theory, it

can be generally shown as follows. Consider a finite correlation function

⟨· · ·⟩ =
∫
[dφ]g · · · eiI(φ,g) in curved spacetime. Then, since a quantity ob-

tained by applying variation with respect to the metric tensor to the correla-

tion function is apparently finite, it can be shown that the energy-momentum
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tensor Tµν including quantum corrections is a finite operator as2

δ

δgµν(x)
⟨· · ·⟩ = i

2
⟨
√
−gT µν(x) · · ·⟩ = finite. (5-5)

This is a general conclusion drawn from diffeomorphism invariance, and can

be clearly shown by performing quantization with the path integral method

that preserves the invariance strictly.

Adler, Collins, and Duncan have shown in 1977 that Tµν is actually rep-

resented by a normal product, as part of the study of conformal anomalies.

Brown and Collins, and then Hathrell further developed their work and de-

rived peculiar couped renormalization group equations using the fact that

the energy-momentum tensor is not only a normal product but also a renor-

malization group invariant. Recently, it has been shown that solving their

renormalization group equations determines the form of the gravitational

action. This work will be covered in Chapter 10.

In ordinary quantum field theory, the energy-momentum tensor is only

shown to be finite as in (5-5), but even stronger in quantum gravity, it

vanishes exactly as shown in (5-3), or (5-4). This means that there is no

zero-point energy.

In general, it may be said that when canonical quantization is employed

in quantum field theory, applying normal ordering is a task to recover dif-

feomorphism invariance. In fact, it can be shown that when the quantum

gravity theory (4-7) is quantized using the canonical quantization method

to obtain generators of the BRST conformal symmetry, normal ordering has

to be applied to them in order for the conformal algebra to close properly,

that is, for diffeomorphism invariance to hold.

The fact that there is no zero-point energy is related to problems with the

origin of fluctuations in the early universe. In Einstein’s theory of gravity,

the source of matters that makes up the present universe must still be some

2 An important point to note as a renormalizable quantum field theory is that the Tµν

defined by this variation is written in terms of bare quantities before renormalization,

that is, is a renormalization group invariant. The expression (5-5) says that Tµν can

be rewritten to a normal product defined by renormalized quantities, in which all of

contributions concerning conformal anomalies are contained.
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kind of matter, and when considering inflation theory, an unknown scalar

field called inflaton is introduced for that purpose. At that time, the origin

of fluctuations is explained as zero-point energy of the inflaton. However,

in quantum theory of gravity, such zero-point energy does not exist, instead

excited states of quantum gravity will be the source of everything.

What is called the cosmological constant problem is also related to this

fact. This problem comes from the fact that calculating zero-point energy

by introducing an ultraviolet cutoff at the Planck scale, a large cosmological

constant of the fourth power of the Planck mass is obtained, which does not

agree with observations at all. In the quantum gravity theory describing

a world beyond the Planck scale, however, the root cause of the problem

disappears.

In the first place, the appearance of a large cosmological constant of

the cutoff to the fourth power depends on regularization methods. For

example, it does not arise if you use dimensional regularization that preserves

diffeomorphism invariance. Nevertheless, if you dare to introduce a cutoff

at the Planck scale, it means that such a setting has a physical meaning.

In other words, it is the same as assuming that there is no world beyond

the Planck scale and there is no field there. From this, it can be seen that

it is necessary to describe the world beyond the Planck scale in order to

discuss the cosmological constant problem. This issue, which is also related

to renormalizability of quantum gravity, will be revisited again in Chapter

11.
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Conformal Field Theory and Unitarity

Quantum field theory in which vacuum states are invariant under conformal

transformations is called conformal field theory (CFT). It is a representa-

tive of non-perturbative quantum field theories. Conformal invariance has

been studied as an important symmetries involved in physical phenomena

such as phase transitions. As nontrivial places where it is realized, critical

points in statistical systems that show critical phenomena and fixed-points

in quantum field theory where beta functions disappear are well-known. As

one of them, the ultraviolet fixed-point of quantum gravity has been added.

In quantum field theory, even if an action is conformally invariant, con-

formal invariance is normally broken by quantization. The conformal anomaly

already mentioned in Chapter 4 stands for this fact. It represents the exis-

tence of a physical scale, which can be used to describe physical phenomena

(see Chapter 7). From this, it can be seen that it is quite nontrivial that

conformal invariance appears at the quantum level.

The conformal transformation is a transformation in which when coordi-

nates are transformed as xµ → x′µ, a line element ds representing distance

changes by a conformal factor so that

ds2 → ds′2 = Ω2(x)ds2. (6-1)

At this time, the metric tensor that determines distance remains fixed. In

constarct, it can also be defined as the Weyl transformation that extends

the metric tensor by the conformal factor without changing the coordinates,

but it is originally defined as the coordinate transformation.

Conformal invariance has come to be discussed in physics at the begin-

ning of the 20th century. First, it was shown that the Maxwell equation is

conformally invariant. Later, the Dirac equation for massless fermions was

shown to be conformally invariant and was actively studied by physicists
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and mathematicians. The Weyl curvature tensor (4-1) was also discovered

around the same time. In those days, it was still discussed as a classical

symmetry.

Entering the second half of the last century, conformal invariance came to

be recognized as an essential nature in understanding quantum field theory

and critical phenomena in statistical systems. Although I am not sure when

the concept of “universality” in critical phenomena was born, the conformal

bootstrap method proposed by Polyakov, Ferrara, Gatto, Grillo, Mack and

others in the 1970s is a method that presupposes the existence of the univer-

sality. This method was originally conceived to understand hadron physics

based on scaling hypotheses predicted from the short-distance behavior of

strong interactions, and was an idea that be descended from an algebraic

approach using current algebras and scattering matrices in the 1960s. It

has then developed as a method of understanding critical phenomena from

conformal invariance and unitarity without using actions or Hamiltonians.

In the mid-1980s, Belavin, Polyakov, and Zamolodchikov discovered de-

generate representations in two-dimensional conformal field theory, demon-

strating that the conformal bootstrap method is a quite useful method in

two dimensions. Furthermore, Friedan, Qiu, and Shenker showed that phys-

ical critical exponents can be determined by imposing conditions of unitarity

(positive-definiteness) further, so that two-dimensional critical phenomena

have been able to be classified. The results are in perfect agreement with

critical exponents of a series of exactly solvable lattice models, including the

Ising model, solved by Andrews, Baxter and Forrester at the same time.

Entering this century, the conformal bootstrap method has made great

strides and it has become clear that it works even in three or more dimen-

sions. It is significant as there is no exactly solved lattice model, including

the Ising model, in three or more dimensions. Until then, two dimensions

have been considered special because conformal algebra becomes infinite

dimensional. However, this study suggests that even in higher dimensional

conformal field theory, where conformal algebra is finite dimensional, critical

exponents can be determined by imposing conformal invariance and unitar-

ity. The following is a brief summary of recent developments in conformal



Conformal Field Theory and Unitarity 51

field theory, and then argue unitarity in quantum gravity.

Critical phenomena and conformal field theory

First, briefly touch on the relationship between conformal field theory and

critical phenomena. Here, conformal field theory defined in Euclidean space

is considered, which can be returned to the theory in Minkowski spacetime

by making an analytic continuation, called the Wick rotation, (Osterwalder-

Schrader reconstruction theorem). In general, it is believed that a D-

dimensional classical lattice-statistical model such as the Ising model pro-

vides a conformal field theory on D-dimensional Euclidean space when a

continuum limit is taken just above critical points.

Let T be a variable such as temperature that controls critical phenomena

of a statistical system, and Tc be a critical point. In general, denoting a field

involved in critical phenomena to be O, correlation functions far from the

critical point decay exponentially like

⟨O(x)O(0)⟩ ∼ e−|x|/ξ

where |x| =
√
x2 and ξ is a correlation length. At the critical point T = Tc,

the correlation length becomes infinite, and the correlation function behaves

in a power-law like

⟨O(x)O(0)⟩ = 1

|x|2∆
.

This indicates that conformal invariance has appeared. Here, ∆ is called

conformal dimension of the field O, which must be non-negative so that the

correlation function does not diverge at long distance.

In the following, let ICFT be an action of conformal field theory that

appears just above the critical point. Usually, that is unknown in most

cases except in free fields. Therefore, it can be said that conformal field

theory is a discipline for understanding critical phenomena from conformal

invariance and unitarity without relying on actions.

Critical phenomena are classified by exponents that indicates how to

approach the critical point, when considering a small perturbations from it.



52 Chapter 6

For example, consider perturbation by a field O with a conformal dimension

∆ smaller than D, that is, a relevant field. If deviation from the critical

point is expressed by a dimensionless parameter t (≪ 1), then the action is

deformed incorporating the perturbation as

ICFT → ICFT − ta∆−D

∫
dDxO(x),

where a is an arbitrary length scale introduced to make up for missing

dimensions, which corresponds to a lattice spacing in statistical models.

Here, the only physical scale is the correlation length ξ, and so identifying

ta∆−D with ξ∆−D from dimensional analysis yields1

ξ ∼ at−1/(D−∆). (6-2)

For example, considering energy operator ϵ as O represents a perturbation

by temperature t = |T − Tc|/Tc. Letting ∆ϵ be its conformal dimension,

since a corresponding famous critical exponent ν is defined by ξ ∼ at−ν , a

relation ν = 1/(D −∆ϵ) is obtained. In addition, critical exponents of spe-

cific heat and magnetization are also determined from conformal dimensions

and structure constants (operator product expansion coefficients) of fields

defining conformal field theory.

Unitarity and critical exponents

In quantum field theory for elementary particles, unitarity means that scat-

tering matrices connecting in- and out-going free-particle states in interac-

tive processes are given by unitary matrices. On the other hand, since con-

formal field theory does not consider such asymptotically-free particle states,

1 A procedure such as (6-2) that defines physical scales by associating dimensionless pa-

rameters with an arbitrary scale is called “dimensional transmutation”. In the standpoint

of renormalizable quantum field theory, the correlation length is a physical scale, that

is, a renormalization group invariant independent of the scale a introduced arbitrarily as

dξ/da = 0. Substituting (6-2) into this condition and solving it, it can be seen that a

beta function of t becomes negative as βt = −adt/da = −(D − ∆)t from the relevant

condition, and thus the system approaches the critical point of t → 0 at the continuum

(ultraviolet) limit of a → 0. Renormalization group invariants will be touched upon later

when defining physical constants in QCD and quantum gravity theory.
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scattering matrices are not defined. Therefore, unitarity in conformal field

theory will be expressed such as reality of fields and positive-definiteness of

actions.

Quantum field theory with an action I formulated in Euclidean space

can be regarded as a statistical system with e−I as the Boltzmann weight.

In order that the weight does not diverge, the action has to be bounded

below. Also, in order for the weight to be positive-definite so that it can

be interpreted as existence probability, the action is required to be real.

In general, unitarity in a system in which the action contains a complex

number is broken. Hence, the action that gives such a physical weight has

to be real and bounded below. Furthermore, field configurations in which

the action positively diverges become unphysical because their Boltzmann

weights vanish so that they have zero existence probability. Therefore, soli-

ton and instanton solutions that have field configurations where the action

becomes infinite are not taken into account. It is also the same logic that

solutions with spacetime singularities can be eliminated by introducing the

fourth derivative gravitational action including the Riemann curvature ten-

sor described in Chapter 3.

However, in many cases, the action is not known in conformal field the-

ory. Therefore, unitarity conditions that do not depend on the action are

required. First, as already mentioned, there is a condition that conformal di-

mensions have to be non-negative. The most important are conditions that

express reality of fields. One of them is that two-point correlation functions

of real fields become positive-definite. Since the square of a real number

is positive, this is a condition that should naturally hold unless physically

suspicious operations are made. On the contrary, if two-point correlation

functions become negative when considering real fields, it suggests that the

action is not positive-definite. In this case, the path integral will diverge,

thus in order to regularize it the reality of fields is sacrificed.

By imposing this positive-definiteness condition that real fields should

satisfy, lower limits of physically allowed conformal dimensions are deter-

mined, so that stronger conditions than the non-negativity are given. This

conditions are called unitarity bounds. For example, in 4 dimensions, the
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conformal dimension of a scalar field is 1 or more. The lower limit 1 is the

dimension of a free scalar field. That of a vector field is 3 or more, and

the lower limit 3 is the dimension that conserved currents should have. For

a second-order symmetric tensor field, it is 4 or more, and the lower limit

4 represents the dimension of energy-momentum tensors to be conserved.

Here note that a free electromagnetic vector field does not satisfy this uni-

tarity condition because its dimension is 1. This is due to the fact that the

vector field itself is not gauge invariant. Hence, consider its field strength

Fµν that is gauge invariant. It is an antisymmetric tensor field and the uni-

tarity bound in this case is 2 or more, so that the condition is satisfied. In

this way, the condition must be imposed on physical quantities.

ϕ1

ϕ2

ϕ4

ϕ3

∑

O
=

ϕ1 ϕ4

ϕ2 ϕ3

∑
O

Figure 6-1: Crossing symmetry.

Since the positive-definiteness of two-point functions gives only lower

limits of conformal dimensions, this condition cannot determine anything

concrete. Therefore, reality on three-point correlation functions has come

to be taken into account as a new condition. Three-point functions are al-

most determined from conformal invariance except overall coefficients. The

coefficients are called structure constants because they determine structures

of operator product expansions expanding products of fields by other fields.

If reality of fields holds, structure constants should be real numbers. In fact,

all of structure constants in a unitary series of two-dimensional conformal

field theory are given by real numbers. On the other hand, it is known

that structure constants of the Lee-Yang model, which is a representative of

non-unitary models, become complex numbers. Recent studies have shown
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that upper limits of conformal dimensions can be found by imposing this

condition even in three or more dimensional conformal field theory.

Allowed Region

Figure 6-2: The result of numerical calculations by the conformal bootstrap

method in three dimensions, where ∆ = ∆ϵ and d = ∆σ. The pale blue part

is the region representing a pair of conformal dimensions allowed from unitarity.

The critical exponents of the three-dimensional Ising model appear at the bent

point on the boundary that is the upper limit of the allowed region. [S. El-Showk,

M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and A. Vichi, Phys. Rev.

D 86 (2012) 025022.]

A structure constant is a real number, that is, its square is positive. The

recent results of finding critical exponents of the three-dimensional Ising

model by imposing this condition will be briefly described below. This is

the first successful application of the conformal bootstrap method developed

by Polyakov and others to other than two dimensions.

Let us consider a scalar field φd with conformal dimension d, and assume

that its operator product expansion is given by

φd(x)φd(0) =
1

|x|2d
+

fdd∆
|x|2d−∆

O∆(0) + · · · .

Later, φd is identified with a spin operator σ in the Ising model. The first

term on the right-hand side represents the two-point correlation function

of φd, and its coefficient is a positive number due to unitarity, normalized

to 1 here. The field O∆ is a scalar with conformal dimension ∆, which is
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Figure 6-3: More detailed analysis on the allowed region in three dimensions. Here,

∆′ = ∆(ϵ′). From the top, the conditions are strengthened as ∆′ ≥ 3, ∆′ ≥ 3.4,

and ∆′ ≥ 3.8. The last figure is an enlargement of the vicinity of the Ising model

point in the third figure. [S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D.

Simmons-Duffin, and A. Vichi, Phys. Rev. D 86 (2012) 025022.]

later identified with the energy operator ϵ, and has the smallest conformal

dimension among scalar fields that appears in the right-hand side satisfying

the unitarity bound. The dots represent contributions of other fields, and

in order for the operator product expansion to be complete, not only scalar

fields but also completely symmetric tensor fields with integer spin are re-

quired. The expansion coefficient fdd∆ is the structure constant between O∆

and two φd. Similarly, structure constants between completely symmetric

tensor fields and two φd are defined. The unitarity condition is that all of

these structure constants are real numbers.

In order to set this condition in a form that can be handled numerically,

consider four-point correlation functions of the scalar field φd. The discovery

by Dolan, Osborn and Petkou that functions called conformal blocks can

be written in a product of Gauss hypergeometric series gives the basis for

this achievement. Using them, you can determine the four-point correlation

function completely except for information on the structure constants. The
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four-point correlation function can be decomposed into products of three-

point correlation functions, then a crossing symmetry shown in Fig. 6-1

holds because there is an arbitrariness on how to decompose it. Using this

property, information of the structure constant fdd∆ can be successfully

extracted. Imposing a condition that its squared is non-negative restricts

values of ∆ allowed for dimension d. Fig. 6-2 shows the result as a graph of

(d,∆) = (∆σ,∆ϵ).

At this stage, all values in the pale blue region are still allowed con-

tinuously. Therefore, let us add more restrictions by assuming that con-

formal dimensions of fields appearing in the operator product expansion

have a discrete structure as in the case of two-dimensional conformal field

theory. Fig. 6-3 shows results of the same analysis under an assumption

that there is a discontinuous gap between the conformal dimension ∆ of the

scalar field O∆ and a conformal dimension ∆′ (> ∆) of next scalar field.

Increasing the restriction on ∆′, a pair of values d (= ∆σ) = 0.5182(3) and

∆ (= ∆ϵ) = 1.413(1) emerges as a peculiar point. These values are in agree-

ment with the numerical calculation results of the three-dimensional Ising

model by the Monte Carlo method. Further, imposing such restrictions to

conformal dimensions of higher scalar fields and tensor fields, the allowed

region of pale blue will eventually become like an isolated island, and will

be narrowed down to this Ising point.

This was a surprising result. It has been thought that why two-dimensional

conformal field theory can be solved is that conformal algebra is infinite di-

mensional. In higher dimensions, conformal invariance were not thought to

be strong enough to determine conformal dimensions, because the algebra

becomes finite dimensional, but it was not so.

Conformal invariance and unitarity in quantum gravity

What discussing in this book is a special conformal invariance that appears

in the high-energy limit of quantum gravity. Whereas normal conformal in-

variance refers to vacua being conformally invariant, that of quantum gravity

demands that since it arises as part of diffeomorphism invariance, that is,
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a gauge symmetry, all quantities have to be conformally invariant, as men-

tioned in Chapter 4. Therefore, it is called the BRST conformal invariance.

Normal conformal invariance indicates that the system is independent of a

particular scale, but the metric that defines distance exists as certain. On

the other hand, that of quantum gravity is a conformal invariance caused

by fluctuations of distance itself, so there is no scale in the true sense.

Here, the algebraic difference between the BRST conformal invariance

and normal conformal invariance is summarized, once again. Unlike the con-

formal transformation (6-1), diffeomorphism is a transformation in which the

metric tensor gµν is also transformed together with the coordinate transfor-

mation to preserve the line element squared ds2 = gµνdx
µdxν invariant like

ds′2 = ds2.

Therefore, it is difficult to intuitively understand that diffeomorphism invari-

ance includes the conformal invariance. The BRST conformal invariance is

a hidden symmetry that can be seen by rewriting the quantum gravity the-

ory into a quantum field theory defined on a background spacetime as in

(4-7). At this time, the conformal transformation can be expressed as the

Weyl rescaling dŝ2 → dŝ′2 = e2ωdŝ2 for the background line-element squared

dŝ2 = ηµνdx
µdxν . On the other hand, since the original metric tensor gµν

is given by (4-2), the Wey rescaling of the background metric can be ab-

sorbed by changing the conformal-factor field as ϕ → ϕ′ = ϕ − ω (see also

footnote 2 in Chapter 4). In quantum gravity, this shift change is just a

rewrite of the integral variable. Since the integral region of ϕ is defined by

(−∞,∞), the path integral measure is invariant under the shift change as

[dϕ′]η = [dϕ]η. Consequently, it shows that the theory does not change even

if the background spacetime is transformed conformally.

Thus, the key point for achieving the BRST conformal invariance is that

the path integral over the conformal-factor field ϕ is performed by using a

practical measure defined on the background which is invariant under the

shift change of ϕ. Note that the conformal transformation is here described

by using the Weyl rescaling, while (4-8) given in Chapter 4 is expressed as

a coordinate transformation with the background dŝ2 fixed.
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The property that all of theories with different backgrounds connected to

each other by conformal transformations are gauge equivalent comes from

the fact that the original theory is written by the full metric tensor gµν .

That is, diffeomorphism invariance is nothing but expressed in an another

form. This is an algebraic representation of the background-metric indepen-

dence, showing that the conformal factor of spacetime fluctuates greatly in

a nonperturbative manner, so that physical distance cannot be measured

substantially.

In a world beyond the Planck scale, such background-metric indepen-

dence will be realized, thus there is no particle picture propagating in a

particular background. Therefore, scattering matrices cannot be defined ei-

ther. Such quantities can be defined only in a classical spacetime after a

spacetime phase transition described in the next chapter.

The unitarity in the quantum gravity theory is expressed by whether

or not reality of physical fields is maintained, following that of conformal

field theory. The ghost modes are required to achieve the BRST conformal

invariance, but they are not physical entities because they are not invariant

under the BRST conformal transformation. In fact, all BRST conformal

invariants are given as real composite scalar fields. Its reality will be ensured

to hold because the fourth-derivative quantum gravity action given by IQG

(4-6) is positive-definite.

It should be noted here that the ghost mode containing in the Einstein-

Hilbert action is the cause of its indefiniteness, but the ghost modes in the

fourth-derivative gravitational action is not so. When performing quantiza-

tion, the gravitational field is decomposed into various modes, but the action

is positive-definite when viewed in the original field. This indicates that the

mode decomposition is for convenience only. In fact, the individual modes

are not independent, connected to each other by the gauge transformation.

Finally, describe how physical states corresponding to the real composite

scalar physical fields are expressed in terms of conformal algebra. Let D be a

generator of the dilatation when viewed as a conformal field theory, Mµν and

Kµ be generators of the Lorentz transformation and the special conformal

transformation, respectively. The physical state |ψ⟩ is then defined by the
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following condition:

D|ψ⟩ = 0, Mµν |ψ⟩ = 0, Kµ|ψ⟩ = 0.

Further, descendant states obtained by applying generator of the transla-

tion Pµ to this state becomes unphysical (BRST-trivial). These conditions

are nothing but the Hamiltonian and momentum constraints that represent

diffeomorphism invariance. It has been shown that there are an infinite

number of the physical states. As emphasized before, despite the vanishing

Hamiltonian, the fact that such states exist infinitely and so there is entropy

is due to the ghost mode which never appears as a physical state by itself.

In terms of conformal field theory, the physical state is a real primary

scalar state with spin zero, whereas there is no tensor state. This is con-

sistent with observations of CMB suggesting that scalar fluctuations were

predominant in the early universe.
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Phase Transition in Quantum Gravity

It has been shown in the previous chapter that critical phenomena of the

three-dimensional Ising model can be understood from the conditions of con-

formal invariance and unitarity without knowing its action or Hamiltonian.

In two dimensions, this problem can be solved exactly, and a series of criti-

cal exponents including the Ising model have been classified. It is believed

that there is universality for critical exponents, and a behavior near some

critical point are thought to be represented by one of the critical exponents

classified using conformal invariance. This is a very strong conclusion, but

you can still determine which exponent corresponds to the Ising model only

if the result is known in advance by another method. Also, not all physics

can be understood even if the vicinity of the critical point is known.

Actually, in hadron physics, mass spectra cannot be understood unless

you can describe strong interactions until regions where conformal invariance

is broken. Therefore, it is necessary to introduce a field in order to describe

such regions. The field that mediates strong interactions called gluon is

represented by a non-Abelian gauge field (Yang-Mills field). It was not

until the 1970s that its theory was formulated as quantum chromodynamics

(QCD) which is one of renormalizable quantum field theories.

When ´t Hooft, one of the founders of QCD, was working on the problem

of renormalizability for non-Abelian gauge field theory, many researchers

were negatively thinking about renormalization. Although successful in

quantum electrodynamics (QED), the method of making the theory finite by

renormalizing divergences seems terribly artificial, and in those days many

people rather aimed to build a finite theory without relying on quantum field

theory. The widespread acceptance of the renormalization method has, after

all, been due to the success of both QED and QCD. At the same time, it

is also significant that the theory was developed based on the idea of renor-
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malization group by Wilson and others. That is a tool for systematically

investigating how parameters in the theory respond to a change of energy

scale. The asymptotically free property that quarks and gluons show can be

brilliantly explained using the renormalization group.

QCD has come to be considered applicable to hadron physics only after

it was shown to be able to describe the asymptotically-free behavior verified

experimentally for strong interactions. That is a property that strong inter-

actions become relatively weak and quarks and gluons making up nucleus

behave like free particles at the high-energy limit. Theoretically, it means

that its beta function, which represents response of a coupling constant to a

change in energy scale, becomes negative. For the achievement discovering

that QCD has this property, Politzer, Gross, and Wilczek were awarded the

Nobel Prize in 2004.

However, before their discovery, ’t Hooft also allegedly showed that the

beta function is negative and understood its physical implications, though

he did not published it as a treatise. Since the Nobel Prize can be won

by only up to three persons, in order to settle this trouble, first, the Nobel

Prize was awarded in 1999 to ’t Hooft and his supervisor Veltman for an

achievement that elucidates quantum structures of the electroweak interac-

tion described by another non-Abelian gauge field, and then the above three

persons received the prize. This may be one of the reasons why the Nobel

Prize was not awarded until the beginning of this century, even though the

discovery of the asymptotic freedom was in the early 1970s.

Now, let us return to the topic of quantum gravity. It has been shown

that the beta function of the coupling constant t in the renormalizable quan-

tum gravity is also negative. It indicates that the coupling constant becomes

smaller in the high-energy limit, similar to non-Abelian gauge theories. In

the quantum gravity, the high-energy limit refers to entering a region beyond

the Planck scale. Since the coupling constant t is a parameter introduced to

control the traceless tensor mode hµν of the gravitational field, the smaller

t means that tensor fluctuations are smaller.

On the other hand, fluctuations of the conformal-factor field ϕ that

controls physical distance remain large. Spacetime that appears in the
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high-energy limit is described by a special conformal field theory that ex-

presses the background-metric independence, not by a simple free field the-

ory. Therefore, this property is referred to as the asymptotic background

freedom to distinguish it from the asymptotic freedom. The physical mean-

ings of each will be explained below.

QCD phase transition

The shielding effect, which is well known in QED, refers to a phenomenon in

which when an electric charge is present, electron-positron pairs are virtually

generated around it, so that the charge is shielded and looks small when

viewed from a distance.

The QCD confinement is interpreted as an opposite phenomenon of this

charge shielding effect. The difference from QED is that not only quarks

but also gluons have “color charges”. The electromagnetic fields do not

interact with themselves directly, but gluons, which are non-Abelian gauge

fields, interact with each other. Therefore, when a colored particle is present,

not only quark-antiquark pairs but also gluon pairs are virtually generated

around it. It is considered that the gluon pairs cause the opposite phe-

nomenon of QED, the “anti-shielding effect”. That is, at short distance the

color effect is diminished, so that strong interactions become weak, while at

long distance it increases and the confinement occurs.

The strength of the interaction between colors, obtained by adding the

above quantum corrections, is expressed by what is called the running cou-

pling constant (or the effective coupling constant). Letting Q be an energy

or momentum scale you are thinking of, its square is expressed as

ḡ2(Q) ∝ 1

log(Q2/Λ2
QCD)

. (7-1)

This expression is derived from the fact that the beta function is negative,

and the proportionality coefficient is a positive number determined from

that. The ΛQCD is a physical energy scale peculiar to QCD, which is a free

parameter that cannot be determined theoretically.

This represents the effective strength of the strong interaction at the
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Figure 7-1: Behavior of the running coupling constant in QCD and summary of

the measurement results, where αs(Q) = ḡ2(Q)/4π. [G. Prosperi, M. Raciti, and

C. Simolo, Progress in Particle and Nuclear Physics 58 (2007) 387.]

energy Q (≥ ΛQCD), and the higher the Q, the smaller the ḡ(Q), indicating

that it becomes weak (see Fig. 7-1). When the energy becomes low, it

grows slowly in logarithm and diverges rapidly at ΛQCD. In other words, this

QCD energy scale shows that the strong interaction becomes infinitely strong

and the confinement occurs. The value is determined from experiments as

ΛQCD ≃ 210MeV. Its reciprocal ξQCD (=1/ΛQCD) represents a correlation

length of the strong interaction, which is 1 fm ≃ 10−15m, a reference unit

for nucleon size. A world lower than this energy can no longer be described

using QCD. Therefore, ΛQCD is called an infrared cutoff of QCD.

It is thought that such a phase transition occurs in the process of cosmic

evolution. When temperature of the universe is higher than the QCD energy
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scale, quarks and gluons are moving around freely, but when temperature

drops below that, they are trapped in nucleus and cannot move freely. That

is, they move together as a hadron, a composite field of quarks that are

tightly bound by gluons.

Technically, such dynamics can be expressed in the form that effective

actions for gluons including quantum corrections disappear in proportion to

the reciprocal of the running coupling constant (7-1) as it diverges. There-

fore, there is no gluon kinetic term in the “low energy effective theory

of QCD” that is described by introducing new field variables representing

hadrons.

Spacetime phase transition

The same is true for the gravitational coupling constant t because its beta

function becomes negative. As similar to (7-1), the corresponding running

coupling constant squared, which represents the strength of effective gravi-

tational interactions, is given like

t̄2(Q) ∝ 1

log(Q2/Λ2
QG)

. (7-2)

This expression predicts the existence of a new physical energy scale ΛQG

that determines dynamics of quantum gravity. The proportionality coeffi-

cient is determined from that of the beta function, given in Appendix B.

Here note that the physical energy or momentum Q being considered

contains the gravitational field. Expressing the square of Q as the square of

momentum, since the metric tensor is (4-2), it is given by

Q2 = gµνqµqν =
q2

e2ϕ
, (7-3)

where q2 is the momentum squared defined by the metric tensor ḡµν exclud-

ing the conformal factor. This is demanded from diffeomorphism invariance.

Effective action of the quantum gravity is then expressed in terms of the

running coupling constant (see (B-4) in Appendix B). Parts of the effective

action that depend on the conformal-factor field ϕ through the physical mo-
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mentum (7-3) are exactly the Wess-Zumino actions, S, yielding conformal

anomalies, mentioned in Chapter 4.

This also apply to the QCD running coupling constant (7-1), then Q is

replaced by (7-3) when considering in curved spacetime of (4-2). Hence, con-

formal anomalies are indispensable quantities that arise in order to preserve

diffeomorphism invariance.

Now consider what the existence of the new gravitational energy scale

ΛQG, different from the Planck mass and the cosmological constant, repre-

sent. The coupling constant t is a parameter introduced to control conformal

dynamics of the fourth-derivative Weyl action. Considering in the same way

as in the case of QCD, divergence of the running coupling constant (7-2) at

ΛQG indicates that the conformal dynamics disappear completely at that

energy scale. More technically, it means that an effective action to the Weyl

action with quantum corrections added disappears in proportion to the re-

ciprocal of the running coupling constant squared.

The dynamics of the conformal-factor field is a part that does not exist in

QCD. The conformally invariant fourth-derivative action does not contain

the conformal-factor field, but its dynamics appear as the Wess-Zumino

action for conformal anomaly. In particular, the Riegert action that appears

at the zeroth order of the coupling constant t is an indispensable action for

realizing the BRST conformal invariance. An effective action to the Riegert

action with higher-order corrections of t added can also be written using the

running coupling constant (7-2), and when it diverges, the effective action

will also disappear. In this way, all of the fourth-derivative gravitational

actions responsible for the conformal dynamics disappear at the energy scale

ΛQG and spacetime transitions to a new phase. In terms of the gravitational

equation of motion (5-4), it is expressed by the disappearance of the T
(4)
µν

part.

Let us here see how the low-energy spacetime phase is described. In

QCD, when the gluon field action, which is the second derivative, vanishes,

dynamics of gluons completely disappears. On the other hand, in quantum

gravity, even if the fourth-derivative gravitational action disappears, the

second-derivative Einstein-Hilbert action remains, which gives the kinetic
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term of the gravitational field at low energy. That is, Einstein’s theory of

gravity appears as a low-energy effective theory. The gravitational field can

then no longer be considered separately as the conformal-factor field and

the traceless tensor field as in (4-2), and the gravitational field integrated

as a composite field of these becomes a field variable.

Well then, what is the value of the new gravitational scale? This has

to be decided from observations. The quantum gravity inflation scenario

described in Chapter 9 suggests that ΛQG is about 1017 GeV as a scale of the

spacetime phase transition. Since this value is about 1/100 of the Planck

mass mpl, the correlation length of the quantum gravity, ξΛ = 1/ΛQG, is

about 100 times the Planck length. That is, if you go higher and higher

in energy and explore shorter distances, Einstein’s theory of gravity breaks

down before you reach the Planck scale, and spacetime enters a new phase.

That is why many problems with Einstein’s theory of gravity can be solved.

The correlation length ξΛ gives a minimum distance that is measurable.

Since physics at longer distance than this length is described by Einstein’s

theory of gravity, distance can be measured classically, but if distance is

shorter than this, physics enters the region of quantum gravity, and so mak-

ing the measurement becomes impossible because the gravitational field will

begin to fluctuate greatly. In a microscopic world where the background-

metric independence is realized as the BRST conformal invariance, physics

does not depend on how to choose the metric tensor. It means that all

of worlds with different scales become gauge equivalent, and thus physical

distances are no longer defined there. In other word, it is a world where

the concept of distance is lost. Therefore, distances shorter than ξΛ are

virtually unmeasurable. In this way, in the renormalizable quantum gravity

theory, spacetime substantially quantized by the distance ξΛ shall appear

even though it is treated continuously without introducing an ultraviolet

cutoff.





Chapter 8

Localized Excitations of Quantum
Gravity

In the framework of Einstein’s theory of gravity, a point-like particle with

mass beyond the Planck mass becomes a black hole, because information of

such a particle is hidden inside the horizon created by the mass itself and

lost, as already pointed out in Chapter 2. On the other hand, the quantum

gravity theory shows that there is a localized excited state with large mass

exceeding the Planck mass.

It has already been mentioned that there is a new dynamical energy

scale ΛQG of about 1017GeV in the quantum gravity theory. This value,

two orders of magnitude smaller than the Planck energy scale, has been

determined so that a scenario of inflation caused by quantum gravity effects

described in the next chapter matches results of CMB observations. Here

also, this value is employed.

Spacetime is then substantially quantized by the correlation length ξΛ (=

1/ΛQG), about 100 times the Planck length. At distances longer than ξΛ,

Einstein’s theory of gravity can be applied to measure physical distance,

but inside it, quantum fluctuations of the gravitational field become large,

so that a background-free world where distance has no physical meaning

will be realized. This suggests that if there is an excited state of quantum

gravity, it will appear as a localized state whose diameter is given by the

correlation length ξΛ. This picture is quite similar to a glueball state in

QCD, but a big difference is that what is fluctuating inside is spacetime

itself, which is hard to imagine it. From the outside, however, it seems to

be a particle existing in classical spacetime.

As such an excited state, here consider a static spherical object whose

massm is about the Planck mass. Its classical horizon size, the Schwarzschild

radius rg (= 2Gm), becomes about the Planck length. It implies that when
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approaching the center of the object from a distance, quantum gravity ef-

fects begin to work from 100 times farther than the horizon. Hence, the

horizon disappears behind quantum fluctuations.

The outside of such an object is expressed by the Schwarzschild solution,

and the inside is described by the quantum gravity theory. Let us actually

find such a state as a solution to the equation of motion (5-4). At that time,

the matter energy-momentum tensor TM
µν is set to zero, that is, a purely

gravitational excited state is considered.

In order to find a concrete solution, the T
(4)
µν part responsible for quan-

tum gravity dynamics is boldly modeled by applying a kind of mean-field

approximation as follows. As already mentioned before, the effective ac-

tion incorporating quantum corrections can be written using the running

coupling constant t̄ (Q) (7-2). In coordinate space, the running coupling

constant is a complicated differential operator acting on fields, which is a

manifestation of nonlocality and nonlinearity caused by quantization. Here,

in order to simplified it, replace its expectation value with a mean field de-

pending on the radial coordinate r. That is, replace Q in (7-2) with the

reciprocal of twice r and express it as a function t̄2(r) ∝ 1/ log(R2
h/r

2),

which diverges at Rh (= ξΛ/2) corresponding to the radius of the object and

disappears at the origin.　
The equation of motion modeled by applying such mean-field approxi-

mation has the following structure (see end of Appendix B). As the running

coupling constant disappears near the origin, it reduces to an equation that

mainly consists of fluctuations of the conformal-factor field. Inversely, when

moving away from the center of the excited state, the running coupling con-

stant gradually increases and diverges when reaching the edge. Along with

this, the T
(4)
µν term disappears at the edge in proportion to the reciprocal of

the running coupling constant squared. That is, the outside is described by

the Einstein equation in vacuum.

The mass of the excited state is defined as m =
∫
|x|≤Rh

d3xT
(4)
00 (x) as the

sum of the internal gravitational energies, where x is the spatial coordinates

in the background with r = |x|. The solution with the mass m of twice

the Planck mass mpl is presented in Fig. 8-1. In the distance, the Einstein
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Figure 8-1: A localized excited state of quantum gravity with mass of 2mpl. The

gravitational potential Φ is represented by a solid line, while −Ψ is represented by

a dotted line. The radius of excitation, Rh (= ξΛ/2), is normalized to be 30, and

the outside is the Schwarzschild solution. [K. Hamada, Phys. Rev. D 102 (2020)

026024.]

equation can be written in the form of the Poisson equation, and its solution

can be approximated by the Newton potential. It is given by Ψ = −rg/2r
and Φ = −Ψ when introducing the gravitational potentials Ψ and Φ defined

by a line element ds2 = −(1 + 2Ψ)dη2 + (1 + 2Φ)dx2. Here, rg is the

Schwarzschild radius mentioned above, which is four times the Planck length

because the mass is set to twice the Planck mass.

The gravitational field gradually becomes stronger as you approach the

excited state from the outside. However, the radius Rh of the state under

consideration is more than 20 times larger than the Schwarzschild radius rg,

and thus the magnitude of the gravitational potential at the edge, rg/2Rh, is
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small enough for the approximation to work. Entering the inside, the grav-

itational potential begins to oscillate due to quantum effects and no longer

monotonically increases and diverges as in a classical solution. At this time,

the two gravitational potentials satisfying Φ = −Ψ outside gradually deviate

from each other, and a configuration of Φ = Ψ representing fluctuations of

the conformal-factor field, becomes predominant near the center. The oscil-

lation of the internal gravitational potentials indicates that physical distance

is fluctuating.

This solution employing the gravitational potentials has been derived

by assuming these facts in advance. As described above, the equation of

motion has been formulated by replacing the running coupling constant

with the mean field, and the solution has been obtained while confirming

that the calculation result does not contradict with the approximation. The

mass of twice the Planck mass is not only a physically interesting mass, but

fortunately a mass for which the approximation is valid. If the mass becomes

larger than this, it becomes necessary to consider nonlinear effects other

than the running coupling constant, which makes the calculation difficult.

Anyway, this solution is still incomplete, but it will capture characteristics

of the excited state.

This object can be called a particle rather than a black hole. Such purely

gravitational particles with only mass are called “dark particles”. If the mass

is lower than ΛQG, the quantum gravity effect will not be activated, therefore

such excitations will not occur. In addition, it is expected that mass spectra

of the quantum gravity will be quantized by ΛQG, but unfortunately it

cannot be confirmed by the mean-field approximation.

The excited state probably has a lifetime of about the reciprocal of ΛQG

and is thought to collapse soon. The fact that the running coupling constant

increases at the edge indicates that the gravitational interactions with mat-

ter fields open there. Hence, it may collapse as energy of the gravitational

field gradually shifts to that of matter fields from the edge.

On the other hand, for objects whose mass is more than 100 times larger

than the Planck mass, its classical horizon size becomes longer than the

correlation length ξΛ. Such an object is nothing but a black hole when
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viewed from the outside. At this point, its dynamics can only be imagined,

but it is thought that the gravitational field fluctuates greatly near the

center, as shown here.

In such a large black hole, gravity can be treated classically except near

the center. Hawking showed in the 1970s that under such semi-classical ap-

proximation, so-called evaporation phenomena occur in which black holes

gradually become smaller while emitting radiation. Thus, when the hori-

zon disappears at the final stage, it will change to a dark particle state as

shown above. Eventually it will decay and it is expected that the black hole

completely disappears.

It is thought that dark particles were produced in large amounts and

densely in the early universe. In order for them to remain as so-called “dark

matters” to the present, they have to be long-lived, namely stable. Since

dark particles are initially expected to have no angular momentum, even if

they have a short lifetime individually, they may coalesce before decaying.

As they grow and form the horizon, it can be expected that a large number

of primordial black holes will be formed using them as seeds. Then, since

their lifetime will be long, they become candidates for dark matter.
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Quantum Gravity Inflation

Quantum theory of gravity is believed to be necessary also in the epoch

of the creation of the universe. As inflation theory, which are proposed by

Guth, Sato, and Starobinsky around 1980, has become popular, the necessity

of the theory has increased. Inflation claimes that there was a period of

exponentially rapid expansion of the universe, and a natural interpretation

of this idea indicates that the vast area of the universe that you can currently

see began with a region narrower than the Planck length when tracing back

before inflation.

One of major reasons for thinking of inflation is to solve the “horizon

problem”. The rapid expansion of space can well explain why there were

larger correlations than the horizon size in the early universe. The other

is to explain the “flatness problem”. If the space in the early universe

had a curvature, depending on its sign, the universe would rapidly either

expands or collapses, so that no stars or galaxies would form. Nevertheless,

observations show that the curvature remains near zero even after more than

10 billion years. This problem can be explained by considering that the space

was extremely stretched and flattened during the period of inflation.

Another important role of inflation that should be emphasized here is to

generate primordial fluctuations that provide initial values for the evolution

of the universe after the Big Bang. To explain the present universe, their

spectra have to be almost scale-invariant, at least for the fluctuations with

sizes involved in the structure formation. Moreover, the magnitude of their

amplitude has to be so small. Inflation theory needs to explain these things.

Well then, why should the primordial fluctuations be very small? As

already mentioned in Chapter 2, it comes from the fact that the Friedmann

solution derived presuming homogeneity and isotropy in space is non-static

and unstable. That is, the solution changes monotonically in time, and
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when considering a small fluctuation (perturbation) around it, the fluctua-

tion grows with time and thus spacetime deviates significantly from the so-

lution. Usually, such a solution is not chosen as physics. It is a famous story

that Einstein introduced the cosmological constant to obtain a static and

stable solution. However, the universe is expanding, and there is no doubt

that the spectrum is “red-shifted”. Moreover, even though the universe has

been around for more than 10 billion years, it can still be approximated

well by the unstable Friedmann solution. This fact indicates that the initial

fluctuations were unnaturally small.

It may happen that such fluctuations with small amplitudes are selected

as the initial values, but that looks artificial. Rather, it is more natural to

think that there was some mechanism before that to make fluctuations small.

Thinking that inflation played such a role simplifies the story. However, it

is hard to say that inflation models constructed within the framework of

Einstein’s theory of gravity describe it well.

Here, a model of quantum gravity inflation derived as a solution of the

equation of motion (5-4) is presented, which provides a scenario from the

background-free world beyond the Planck scale to the present Friedmann

universe. The history of the evolution can be understood as a process in

which conformal invariance is gradually broken and derivative rank of grav-

itational actions contributing to dynamics becomes lower.

Inflationary solution

In the asymptotically background-free quantum gravity, there are three

“physical constants” that have to be determined by observations. They

are true constants whose values do not change during the evolution of the

universe, and are defined as renormalization group invariants, as mentioned

in Chapter 5 and also in the next chapter. Two of them, the Planck mass

mpl and the dynamical energy scale ΛQG, describe dynamics of the early uni-

verse. On the other hand, the third cosmological constant is not considered

here as it is negligibly small.

Inflation is generally represented by a de Sitter solution in which space
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expands exponentially. All solutions whose space expands rapidly can be

said to be inflationary ones, but here it refers to the de Sitter one. Also, the

solution explained below is similar to Starobinsky’s one, but there is a big

difference in how inflation terminates.

The inflationary solution is one of spacetime solutions in which the Weyl

curvature tensor vanishes. The asymptotic background freedom shows that

such conformally-flat spacetime configurations becomes dominant in the

high energy region where the running coupling constant (7-2) is small. In

other words, inflation can be said to occur in the energy region higher than

the dynamical scale ΛQG. Since the only scale that can exist in such a region

is the Planck mass, it should be the scale that determines the inflationary

solution. Therefore,

mpl > ΛQG (9-1)

is required as a condition for the solution to exist.

Let us premise that in the very early days before the evolution of the

universe begins, the conformal factor fluctuates so much that time and dis-

tance make no sense. At that time, assume that matters do not exist yet

and the energy-momentum tensor TM
µν vanishes initially. As already stated,

such a world can be described by an exact conformal field theory with no

scale. However, conformal invariance is not always perfect, and if there is

a scale breaking it, the universe will eventually begin to evolve. The mag-

nitude relation (9-1) indicates that the first scale the universe feels in the

evolution process is the Planck scale.

The equation of motion (5-4) of the quantum gravity shows that the

energy-momentum tensor of the whole system disappears. The inflationary

solution in which the conformal factor expands exponentially is derived from

the balance between the Einstein tensor term TEH
µν and the fourth deriva-

tive term T
(4)
µν responsible for the conformal gravity dynamics. Specifically,

assuming a spatially homogeneous and isotropic spacetime given by a line

element e2ϕ(η)(−dη2 + dx2), the solution will be obtained by solving the

equation of motion (5-4) for the conformal-factor field ϕ.

In cosmology, the conformal factor a(η) = eϕ(η), which depends only on
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the time component, is called a scale factor. Introduce τ defined by dτ =

a(η)dη as a time variable, then the time component of the line element can

be written as that of flat spacetime like −dτ2+a2(τ)dx2, thus this variable is

called physical time.1 In the early stages when the running coupling constant

is still small, the inflationary solution is given as a stable one that converges

to

H(τ) = HD, HD = mpl

√
π

bc
=MP

√
8π2

bc
, (9-2)

where H(τ) = ∂τa(τ)/a(τ) is the Hubble variable, thus it turns out that the

scale factor expands with an exponential of the time τ like a(τ) ∝ eHDτ (See

Figs. 9-1 and 9-2). Here, bc is a coefficient in front of the Riegert action that

is one of the Wess-Zumino actions necessary for diffeomorphism invariance,

and is a number that depends on a model of matter fields coupled with

gravity. Since a typical value of bc is about 10 (see Appendix B), it can be

seen that HD has a value between the reduced Planck mass MP and the

Planck mass mpl. Therefore, HD is referred to as a Planck scale. Also, a

time τP when the space starts to expand, given by the reciprocal of HD, is

called a Planck time.

Furthermore, with the inflationary solution (9-2) as a background, con-

sider fluctuations representing deviation from this solution. Examining their

time evolutions with the equation of motion (5-4) shows that the fluctua-

tions decrease during the inflation period. The details will be explained at

the end of this section, which states that the inflationary solution is indeed

stable, and even if the fluctuations are large at first, the universe eventu-

ally converges to this solution. At the same time, it implies that the time

variable τ has an entity as a uniform time. Hence, such monotonically in-

creasing scale factor signifies the birth of the concept of time in the entire

universe.

1 As the name of the coordinate variables, η is called comoving time. Similarly, x is called

comoving coordinates, and a coordinate r(τ) = a(τ)x that represents actual distance is

called physical coordinate.
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Figure 9-1: Time evolution of the scale factor a(τ). Inflation will begin at the

Planck time τP (= 1/HD) and terminates at a dynamical time scale τΛ (= 1/ΛQG),

which is 60 τP here. Spacetime then transitions to the Friedmann universe. [K.

Hamada, S. Horata, and T. Yukawa, Phys. Rev. D 74 (2006) 123502.]

Big Bang as spacetime phase transition

When does inflation end? As spacetime begins to expand and the value

of physical momentum Q (7-3) decreases, the running coupling constant

squared t̄2(Q) (7-2) given by the reciprocal of its logarithm slowly increases,

and rapidly grows when Q goes down close to the dynamical scale ΛQG. As

long as the running coupling constant is small, the inflationary spacetime

with a configuration where the Weyl tensor vanishes continues stably, but

as it becomes larger, the universe gradually deviates from such a spacetime

configuration. Eventually, inflation is over and the universe shifts to the

Friedmann spacetime described by Einstein’s theory of gravity. This change

is the spacetime phase transition.

In order to describe this transition process with the equation of motion

(5-4) incorporating quantum corrections of gravity, the running coupling

constant is expressed with a time-dependent mean field, as a variant of the

approximation applied in the previous chapter. That is, replace Q with the

reciprocal of the physical time τ and express it as t̄2(τ) ∝ 1/ log(τ2Λ/τ
2),

where τΛ is a dynamical time defined by the reciprocal of the energy scale
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Figure 9-2: Time evolution of the Hubble variable H and matter energy density ρ,

where it is normalized with HD = 1. After the phase transition point τ = τΛ (= 60),

it approaches the Friedmann solution with time asymptotically. The matter is

rapidly generated near the phase transition point. [K. Hamada, S. Horata, and T.

Yukawa, Phys. Rev. D 74 (2006) 123502.]

ΛQG. The spacetime phase transition is expressed as a process in which the

fourth-derivative gravitational term T
(4)
µν responsible for conformal gravity

dynamics disappears in proportion to the reciprocal of t̄2(τ) at the time τΛ.

If a phenomenon in which matters that make up the universe are gener-

ated is called the Big Bang, the spacetime phase transition is exactly the Big

Bang, and one of significant points of this phase transition is that there was

no matter of any kind before that. This is explained by the fact that since

the whole energy-momentum tensor (5-4) is preserved to zero, the TM
µν of

matter fields, which was zero initially, gets a value as T
(4)
µν disappears. That

is, the Big Bang occurs when all energy of quantum gravity is converted into

that of matters at the time of the phase transition. Interactions between

matter fields and the conformal-factor field that causes the transition are

given by the Wess-Zumino action S. The interactions open with increasing

the running coupling constant, and become stronger rapidly near the phase
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transition. Therefore, the change is occurred violently.

The Big Bang was originally a word for representing the beginning of

everything. The fact that the universe is expanding indicates that it started

from a certain point in the past with high temperature and high density,

thus the word Big Bang was born as a term to refer to that point. Actually,

going back in time, the Friedmann universe reaches a singular point where

the scale factor disappears. After the idea of inflation has been accepted,

the Big Bang has become a term that refers to the moment when matter

was created after inflation, that is, the prototype of the present universe

was created. Moreover, in the inflationary universe, the scale factor never

disappears, eliminating the singularity problem.

On the other hand, the term reheating is often used as an alternative

to the Big Bang. This is just a word when inflation is discussed within the

framework of Einstein’s theory of gravity. The meaning of reheating is that

in the middle of the evolution of the Friedmann universe, inflation occurred

and at that point the past universe was reset once and the present universe

was born. Therefore, it is characteristic to set the beginning of the inflation

late so that it does not reach the Planck scale when going back to the past.

Determination of dynamical energy scale

The scenario of quantum gravity inflation depends on the ratio of the two

mass scales, the Planck mass HD (= mpl

√
π/bc) and the dynamical scale

ΛQG. Since they are physical constants, there is no choice but to decide

them from observations. From the measurement of the Newton constant

G, the Planck mass mpl (= 1/
√
G) is determined to be 1.2 × 1019GeV. As

mentioned before, the coefficient bc of the Riegert action that determines

the newly introduced Planck scale HD is a number that depends on a model

of matter fields coupled with gravity, and bc = 10 is adopted here.

One of the indicators that characterizes inflation is the expansion rate

called the number of e-foldings. It is here defined by Ne = log [a(τΛ)/a(τP)]

which expresses how much the universe has expanded from the Planck time

τP to the dynamical time τΛ where inflation ends. Its approximate value is
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Figure 9-3: Cosmic evolution scenario with quantum gravity inflation. A fluctu-

ation which was the size of the correlation length ξΛ = 1/ΛQG (≫ lpl) before the

Planck time expands about 1059 times until today to the Hubble distance 1/H0 (≃
5000Mpc) comparable to the size of the universe, namely 1/H0 ≃ 1059 × ξΛ.

given by the ratio of the two scales as

Ne ≃
HD

ΛQG
. (9-3)

The number of e-foldings required by a typical inflation scenario is between

about 60 and 70.

In addition, the magnitude of fluctuations of the scalar curvature just

before the end of inflation is roughly estimated to be about δR ∼ Λ2
QG from

dimensional analysis. Considering a quantity divided by the scalar curvature

R = 12H2
D of the inflationary solution as a dimensionless index, it is also

given using the ratio of the two scales as

δR

R

∣∣∣∣
τΛ

∼
Λ2
QG

12H2
D

. (9-4)
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This gives the magnitude of the square root of the amplitude of the primor-

dial power spectrum, which is the initial value of the Friedmann universe.

The magnitude of (9-4) required to explain the CMB observation results

has to be a very small value of about 10−5. From this, the ratio of the

Planck scale to the dynamical scale can be estimated as HD/ΛQG = 60, so

that

ΛQG ≃ 1.1× 1017GeV (9-5)

is obtained. Then the number of e-foldings also becomes an appropriate

value of about 60 from (9-3). As a matter of fact, the Hubble variable

H does not remain a constant value HD all the time, and even after the

phase transition, spacetime is somewhat in an accelerated expansion until

it asymptotics to the Friedmann universe, so the number of e-foldings Ne

reaches close to 70 when they are included.

Expressing the number of e-foldings of 70 in digits, the universe expanded

about 1030 times during the inflation period. Furthermore, it expands 1029

times from the energy scale ΛQG transferred to the Friedmann universe

to the current 3oK. In total, the universe has expanded 1059 times. This

number of digits implies that the Hubble distance, which is the largest scale

in the universe, and the correlation length of quantum gravity are related

as

1

H0
∼ a0

a(τP)
ξΛ ≃ 1059 × ξΛ, (9-6)

as shown in Fig. 9-3, where a0 is the current scale factor.

Origin of primordial power spectrum

From the discussion so far, it can be considered that the origin of the pri-

mordial power spectrum, giving the initial value of the Friedmann universe,

is in the world of quantum gravity before inflation.

Well then, what is the difference from the conventional way of thinking?

Inflationary cosmology, which is discussed within the framework of Einstein’s

theory of gravity, usually has to introduce an unknown phenomenological
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scalar field called inflaton, which serves as the source of matters that make up

the present universe. Furthermore, the origin of all fluctuations is considered

to be given by zero-point energy of the field and its value is calculated by

introducing an ultraviolet cutoff. On the other hand, in the asymptotically

background-free quantum gravity in which diffeomorphism invariance holds

everywhere even beyond the Planck scale, zero-point energy disappears due

to this invariance, as stated before. Instead, the excited state of quantum

gravity that gives a value to T
(4)
µν is the origin of fluctuations. This is also

related to the cosmological constant problem, which will be discussed in

Chapter 11.

The asymptotic background freedom indicates that before inflation, where

the running coupling constant t̄ (Q) is still small, fluctuations of the confor-

mal factor are dominant, while tensor fluctuations are small in proportion to

the coupling constant. This is a cosmologically favorable property and can

explain well why the tensor-to-scalar ratio of the CMB fluctuations shown

by observations is small.2

A spectrum of fluctuations is given by their two-point correlation func-

tion. More precisely, a mean square of difference between fluctuations at two

points is a measurable quantity.3 The initial value of fluctuations should be

set before the Planck time when the universe begins to expand exponen-

tially. The scalar spectrum at this point is given by a two-point function of

the conformal-factor field ϕ derived from the Riegert action. It is expressed

as a logarithmic function that does not lose its correlation even over long

distances, never seen in ordinary quantum field theories. The logarithm is

a reflection of that the field is dimensionless, which results in true scale

invariance.

A power spectrum obtained by Fourier transforming the equal-time log-

2 The BRST conformal invariance suggests that there are no tensor fluctuations of the

CMB scales originated before inflation. Therefore, the tensor-to-scalar ratio does not give

limit on the inflation scale so that we can go over the Planck scale wall in quantum gravity

inflation.

3 Note that the mean square vanishes at the same point. The observable is a relative

value of fluctuations of two distant points, not an absolute value provided by zero point

energy.
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arithmic correlation function from coordinate space to three-dimensional

momentum space is a scale-invariant one, commonly known as the Harrison-

Zel’dovich spectrum. As a notation of power spectra, those that are made

dimensionless by multiplying them by an appropriate power of an absolute

value of momentum (wave number) are often used. Using this convention,

the scale-invariant spectra are expressed by positive constants that do not

depend on wavenumber. That of the conformal-factor field is exactly a pos-

itive constant with an amplitude of 1/2bc.

Scale invariance indicates that there is a correlation in all wavelengths.

On the other hand, its invariance is rapidly lost on the dynamical scale ΛQG.

It shows that when physical distance exceeds the correlation length ξΛ (=

1/ΛQG), the correlation rapidly decays and disappears. The relationship

(9-6) shows that the distance ξΛ in the Planck time is now extended to

the Hubble distance. The low multipole component of l = 2 in the observed

CMB fluctuation spectrum represents the presence or absence of such a large

size correlation. Hence, the fact that its component is falling sharply can be

explained by the new dynamical length scale ξΛ.

Reduction of fluctuations and stability of inflation

The spectrum of quantum gravity fluctuations before inflation begins has

been described above. However, it is not passed down as it is to the Fried-

mann universe. Here, let us see how the fluctuation evolves during the

inflation period, especially how the amplitude reduces. Specifically, con-

sider fluctuations (perturbations) around the inflationary solution and show

results of examining their time evolution by solving the equation of motion

(5-4).

To describe spectra of the expanding universe, it is convenient to use an

absolute value of spatial momentum in comoving coordinates called comov-

ing wavenumber. An actual wavenumber called physical wavenumber is the

one divided it by the scale factor a(τ), like the square root of (7-3). If the

current scale factor value a0 is normalized to 1, comoving wavenumber rep-

resents magnitude of the current wavenumber. In the following, discussions
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will proceed with a0 = 1. The inflation model introduced here indicates

that physical wavenumber at the Planck time when the expansion begins

was about 1059 times the current wavenumber.
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Figure 9-4: Solutions of linear evolution equations for the gravitational potentials

Φ (solid) and Ψ (dotted) in the inflationary background. The initial value is set

to Φ = Ψ = 1/
√
2bc = 0.224, and the comoving wavenumber is k = 0.01Mpc−1.

Normalize with HD = 1 so that τP = 1, and set τΛ = 60. The two gravitational

potentials change while decreasing the amplitudes, respectively, and become Φ =

−Ψ at the phase transition point τΛ. [K. Hamada, S. Horata and T. Yukawa, Phys.

Rev. D 81 (2010) 083533.]

The cosmic evolution scenario shown in Fig. 9-3 implies that the current

largest-size fluctuations was the one with a physical wavelength of about the

correlation length ξΛ when going back before inflation, which was ΛQG in

terms of physical wavenumber. Here, consider time evolution of fluctuations

with physical wavenumbers from ΛQG to several orders of magnitude higher

than that, which is thought to have been involved in the structure formation

of the universe after the Big Bang.

The equation of motion is expressed in terms of comoving wavenumber

and solved for each wavenumber. As in the previous chapter, fluctuations
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Figure 9-5: Time evolution of the gravitational potential Φ. The line at the phase

transition point τ = τΛ gives the primordial power spectrum.

dealt with here can be investigated using the two scalar-like gravitational

potentials defined by the line element ds2 = a2[−(1+2Ψ)dη2+(1+2Φ)dx2].

The difference from the previous one is that the square of the scale factor a

of the inflationary solution is multiplied to the whole. Calculation methods

are basically the same as before, except that a time-dependent mean-field

approximation is employed for the running coupling constant that repre-

sents nonlinear and nonlocal effects near the phase transition point. On

the other hand, as another nonlinear effect that appears in the early stage

when the fluctuations are still large, there are contributions from the expo-

nential function of the conformal-factor field contained in the Einstein ten-

sor part. It cannot be ignored when the physical wavenumber exceeds the

Planck scale HD, thus lower wavenumbers than HD are considered here to

avoid such nonlinearity. Unlike the previous chapter in which static fluctu-

ations was examined, linear equations of motion derived in this way become

complicated coupled ones because the fluctuations are treated around the

time-dependent background, but they can be solved numerically.

The initial spectrum before inflation begins is almost scale-invariant,

but as already stated above, there is a lower limit on possible wavenumbers

because correlations longer than the correlation length ξΛ decay rapidly and

disappear. Now let us see that it represents the falloff of the low multipole

component of l = 2 mentioned before. Since the comoving wavenumber
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of this component is about λ0 = 0.00026Mpc−1, you can find that the

ratio between this value and the physical scale (9-5) is λ0/ΛQG ∼ 10−59.

The right-hand side is exactly the scale factor before the expansion of the

universe begins, and this relation is nothing but (9-6) derived from the

inflation scenario because the reciprocal of λ0 corresponds to the Hubble

distance. Thus, the sharp falloff at l = 2 can be explained well using the

correlation length.

The comoving wavenumber is written as k, and calculation results of the

coupled linear equations of motion for the fluctuations are displayed in the

region of k > λ0. Also, the upper limit of k is taken to be m0 ∼ 10−59 ×
HD, as mentioned above, which represents the comoving wavenumber whose

physical one is HD in the Planck time. Since the inflationary solution is

calculated with HD/ΛQG = m0/λ0 = 60, it is given by m0 = 0.0156Mpc−1.

Fig. 9-4 shows results of calculating the behavior of the gravitational

potentials Φ and Ψ when k = 0.01Mpc−1. Fig. 9-5 shows the results within

the above wavenumber range, displaying only Φ. Since the initial stage is

filled with the fluctuation of the conformal-factor field that satisfies Φ = Ψ,

the initial value of the gravitational potential is given by the square root of

the amplitude 1/2bc of the power spectrum. In this way, it can be found that

the amplitude gradually decreases while maintaining the scale-invariant form

represented by a horizontal straight line, at least within the range shown.

In addition, it can be seen from Fig. 9-4 that at the phase transition point,

the fluctuation changes so as to satisfy Ψ = −Φ.

The exponential conformal factor being in the Einstein tensor part, which

makes calculations difficult in the higher frequency region, is a nonlinear

term that remains even in the limit where the coupling constant t disap-

pears. When viewed as conformal field theory, it is a necessary factor for the

Einstein-Hilbert action to work as a conformally invariant operator which

can be regarded as a potential term, not an ordinary mass term. From this,

it is believed that this nonlinear term has an effect of weakening the form of

the spectrum to a power of the mass scale. Therefore, this effect may cause

the scale-invariant spectrum to slowly red-tilt at k > m0.

Numerical calculations incorporating nonlinear terms of this type are
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Figure 9-6: CMB temperature fluctuation (TT) power spectrum. The calculation

result (solid) is displayed together with the data of WMAP5 and ACBAR2008. The

cosmological parameters are set to τe = 0.08, Ωb = 0.043, Ωc = 0.20, Ωvac = 0.757,

H0 = 73.1, Tcmb = 2.726, YHe = 0.24, and the tensor-to-scalar ratio is r = 0.06.

The falloff of low multipole components is explained by a dynamical factor that

attenuates at λ0 = 0.00026Mpc−1. [K. Hamada, S. Horata and T. Yukawa, Phys.

Rev. D 81 (2010) 083533.]

difficult and have not yet been performed. The calculated range, λ0 < k <

m0, corresponds to the observed CMB multipoles from l = 2 to beyond

the first acoustic peak. Here, assuming that the scale-invariant form is

maintained even in the region of k > m0, the CMB spectrum is calculated

and is compared with the experimental results. Fig. 9-6 shows the results

obtained in this way.

From after the Big Bang to the present

During the inflation period, the quantum fluctuations of gravity are stretched.

Although fluctuations of various sizes are generated along the way, the am-
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plitude of the specific fluctuations expanding up to the size involved in de-

termining the later large-scale structure of the universe is greatly reduced.

Hence, the basis of the classical spacetime structure leading to the present

is formed, in which matters and dark excitations generated as local fluctu-

ations are flying around as particles. The reduced gravitational quantum

fluctuations that have expanded to a sufficiently large size are inherited

in the Friedmann universe without being involved in local disturbances at

the Big Bang. In order to obtain the temperature fluctuation spectrum

of CMB shown at the end of the previous section, it is necessary to know

how they have been transmitted through the spacetime until today. This

section briefly describes the history of their evolution. The fluctuations rep-

resent deviation from the spatially homogeneous and isotropic Friedmann

solution, and their time evolution is described by the Einstein equation and

conservation equations of energy and momentum for each matter generated.

The universe immediately after the Big Bang can be described as a

perfect fluid in which various matters frequently interact with each other

and thermal equilibrium is achieved. At first, the radiation-dominated era

with high energy density of particles moving at the speed of light mainly on

photons and neutrinos continues. As the universe expands and temperature

drops by the inverse of the scale factor, particles with mass such as quarks

gradually slow down, and they bind to each other due to strong interactions

and change into stable protons and neutrons. Further, heavier atomic nuclei

such as helium nucleus are sequentially generated, and the world of matters

is composed of them together with photons, neutrinos, and electrons.

When temperature drops to about 1 eV, the universe enters the matter-

dominated era, where energy density of massive matters that have become

non-relativistic exceeds that of radiations. This is because energy density

of non-relativistic matters decreases with the cube of temperature, whereas

that of radiations decreases faster with the forth power according to the

Stefan-Boltzmann law, thus they reverse on the way of the evolution.

Shortly after entering the matter-dominated era, atomic nuclei and elec-

trons combine to form atoms, and the universe rapidly neutralizes. After

that, since electric charges disappear, photons can propagate freely, and the



Quantum Gravity Inflation 91

universe become clear. This phenomenon is called recombination, and the

moment when it occurs is cut out and called the “last scattering surface”.

Matters also contain still unknown objects not yet observed directly that

interact almost only with gravity. Among them, a stable one that remains

until today is called “dark matter”. In particular, the one that is treated

non-relativistically assuming that mass is relatively heavy, is called “cold

dark matter”. Its existence has been predicted to explain the observed

CMB spectrum, formation of large scale structures in the universe, anomalies

in the galaxy rotation curve, and gravitational lens effects suggesting the

existence of invisible mass.

In the world where the Einstein equation holds, fluctuations of the grav-

itational potentials are reflected in density fluctuations of each matter. As

they grow, the unevenness in mass distribution becomes large, and structures

such as stars, galaxies, clusters of galaxies, and superclusters are formed.

The formation of these structures begins mainly after the universe has been

neutralized. Stars and galaxies are very large concentrations of mass when

viewed individually, but when looking at the universe so wide that even

galaxies can be regarded as points, the magnitude of fluctuations indicat-

ing the existence of large-scale structures such as clusters of galaxies and

superclusters, which are deviations from the homogeneous and isotropic dis-

tribution of galaxies, is about 1/10. It shows that the entire universe is still

at a level that can be sufficiently approximated by the Friedmann solution.

Large-size fluctuations that affect the large-scale structures begin to grow

after the universe has been neutralized. Until then they do not change much

and the small amplitude immediately after the Big Bang is maintained.

Figs. 9-7 and 9-8 show that such changes occur by examining how various

fluctuations evolve from the past (upper right) to the last scattering surface

where the universe is neutralized. The comoving wavenumber k represents

a current wavenumber of fluctuations, and the reciprocal of Mpc is used as

a unit. The time axis is represented by the redshift z, which is defined as

z + 1 = a0/a using the scale factor. The reciprocal of k is a wavelength of

fluctuations, which is large enough to regard a galaxy as a point. As a side

note, a cluster of galaxies has a size of 4 ∼ 6Mpc, and a supercluster has a
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size of 10 ∼ 30Mpc. Going back in time, the physical wavelength at the last

scattering surface is about one-thousandth of the current length, because it

has to be multiplied by the scale factor for that time. If you go back to

before inflation begins, it falls within the Planck length.

Figure 9-7: Time evolution of various fluctuations from the radiation-dominated

era to the decoupling time (z ≃ 103). From the top, the density fluctuation of cold

dark matter (blue), the density fluctuation of photon (red), and the gravitational

potential Φ (green) are displayed using the logarithm of the redshift z as time. The

calculation is performed assuming the Harrison-Zel’dovich spectrum in which the

initial value of Φ is unity, independent of the wavenumber k. The cold dark matter

fluctuation increases monotonically from short-wavelength fluctuation that enter

the inside of the horizon after shifting to the matter-dominated era. On the other

hand, the photon fluctuation begins to oscillate greatly.

Most of the deformations of the various fluctuation spectra occur during

the period until the universe shifts from the radiation-dominated era to

the matter-dominated era and then becomes neutral. Before that, since the

scale-invariant spectra are preserved, you can go back to the past indefinitely
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as long as the radiation-dominated era continues.4 Therefore, as long as

Einstein’s theory of gravity is correct, information immediately after the

Big Bang when the primordial spectrum was generated can be extracted

from the current CMB spectrum.

Figure 9-8: Time evolution of a perturbation variable for the CMB temperature

fluctuation (a variable that appears in the Sachs-Wolfe effect). The calculation is

performed under the same conditions as in Fig. 9-7. The last solid line is a spectrum

at the decoupling time (z ≃ 103). The first extreme value near the wavenumber

0.02Mpc−1 corresponds to the first acoustic peak of the CMB spectrum.

After the neutralization of the universe, photon becomes free (decou-

pling) from interactions with matters, so its fluctuation does not grow. This

is expressed as the so-called Sachs-Wolfe effect, which gives a relationship

between the gravitational potential at the decoupling time and the current

CMB temperature fluctuation. Therefore, if the spectrum of the gravita-

4 Fuctuations in sizes larger than the horizon size hardly change in any era. In particular,

the CMB multipole component of l < 30 corresponds to a fluctuation with a size that has

entered the inside of the horizon after the neutralization or has not yet entered, and thus

it is thought that it retains the primordial spectrum immediately after the Big Bang as it

is.
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tional potential at the last scattering surface representing the moment of

decoupling is known, the current CMB spectrum can be roughly known

through the Sachs-Wolfe effect. Fig. 9-8 shows this fact, and the structure

of a trigonometric function appearing on the last scattering surface (z ≃ 103)

determines rough structure of the current CMB spectrum.

In order to understand the growth of the matter fluctuations involved in

the structure formation, it is necessary to consider nonlinear effects after the

neutralization. On the other hand, the photon fluctuation of the size con-

sidered here can be handled by almost linear approximation from after the

Big Bang to the present. Therefore, it is possible to make a prediction with

high accuracy. The study of the evolution of the universe using perturbation

theory based on this fact is called cosmological perturbation theory.

The CMB spectrum can be roughly divided into three regions: the low

multipole component region l < 30 in which the scale-invariant spectrum of

the early universe is believed to be maintained almost as it is, the region 30 <

l < 700 where a plasma fluid oscillation of photons and baryons generated

before the universe is neutralized appears, and the Silk damping region l >

700 where the amplitude of the photon fluctuation decreases exponentially

during the neutralization process. In this damping region, the perfect fluid

approximation does not hold and an anisotropic stress appears. This effect

is not taken into account in the figures shown in this section.

The Silk damping occurs because thermal equilibrium cannot be main-

tained gradually as the mean free path of light becomes longer during the

period from the start of the neutralization (recombination) process until

the light is completely free (decoupling) from matters. If the wavelength is

longer than the mean free path, a perfect fluid approximation holds, but if it

becomes shorter, photon diffusions occur, so that the fluctuation is averaged

and the amplitude decreases.5 This effect begins to appear beyond the first

acoustic peak, and becomes significant where l exceeds 700. Therefore, the

5 The perfect fluid is a fluid with zero viscosity ( ̸= ideal gas). Viscosity is a quantity

proportional to the mean free path, and having zero viscosity means that the system is in

a tightly coupled state with zero mean free path. In such a frequently interacting system,

heat exchange is closed in the system and thermal equilibrium can be achieved.
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cosmological perturbation theory assuming the perfect fluid is applicable in

the long wavelength region up to at most l < 700. In order to handle the

Silk damping, it is necessary to solve the Boltzmann equation that takes the

Thomson scattering into account.

The calculation of the CMB spectrum has already been programmed,

and existing calculation codes such as CMBFAST have been published. One

of the important role in early universe cosmology is to give its initial con-

dition, the primordial spectrum. The goal of the quantum gravity theory is

exactly to provide that.
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About Renormalizablility

In this chapter, some topics on renormalization will be discussed in a little

more detail. In particular, the part involved with gravity will introduce a

recent topic that the combination of the four-derivative gravitational actions

decided from physical considerations in Chapter 4 can be determined from

conditions of renormalizability. The story will be more specialized, so if you

are not familiar with terms, you may skip it.

What is renormalization?

The fundamental theory of elementary particles is described by a renormal-

able quantum field theory. A typical example is quantum electrodynamics

(QED), which describes interactions between electrons and photons. This is

one of the most successful theories, and its correctness has been verified with

extremely high accuracy. From this undeniable fact, methods of renormal-

ization that underlies quantification of the theory have become increasingly

reliable. For the achievements in the study of renormalization, Tomonaga,

Schwinger, and Feynman were awarded the 1965 Nobel Prize in Physics.

The intellectual giant Dyson, who passed away at the age of 96 in 2020, was

also a strong candidate.

Four dimensional quantum field theory that deals with continuous infinite-

dimensional degrees of freedom normally accompanies ultraviolet divergences.

Renormalizable means that types of ultraviolet divergences are finite and

they can be appropriately removed by introducing counterterms. Appro-

priately means that the counterterm has the same form as original action,

and removing divergences can be carried out by absorbing them in fields

and coupling constants, that is, by renomalizing them. The reason why

Einstein’s theory of gravity is not renormalizable is that if you start from



98 Chapter 10

the Einstein-Hilbert action, then new divergences that cannot be offset in

the form of this action occur one after another, and after all you have to

prepare an infinite number of counterterms.

Unlike clear rules like symmetry, renormalizability was a property found

by trial and error at first. In fact, renormalization at the one-loop level only

looks like removing divergences by hand. The essence of renormalization

becomes apparent at two or more loop levels, and its specific procedure is

as follows.

First of all, prepare all possible local actions that are allowed by symme-

tries and field properties that the theory has. Original fields and coupling

constants before processing are called “bare fields” and “bare coupling con-

stants”, and are collectively called “bare quantities”. Then, formally express

bare quantities as products of “renormalized quantities” and “renormaliza-

tion factors” (sometimes given in sum). At this point, renormalized quan-

tities are not substantial yet and are just named. Loop calculations are

performed using renormalized quantities, then renormalization factors are

determined in order, so that divergences yielded by the calculations can be

removed. That is, the divergences are dealt with as if the original bare

quantities were diverging. A task of determining renormalization factors is

nothing but determining counterterms mentioned above. In this way, a fi-

nite quantity described only by renormalized quantities is obtained, thereby

revealing physical properties that renormalized quantities have, such as the

asymptotic freedom.

As can be seen from this procedure, since the original action is local,

there is a restriction that all ultraviolet divergences must be local as a con-

dition of renormalizability. This is a natural condition considering that the

ultraviolet represents a narrow area. On the other hand, if you recall that ef-

fective actions including quantum corrections, which are described in terms

of running coupling constants, are nonlocal, you can understand that this is

not necessarily a trivial condition.

Symmetry is a main factor in defining quantum field theory, while renor-

malizability is subordinate. If an action has no dimensional parameters,

renormalizability becomes obvious in a theory whose action is uniquely de-
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termined by symmetry that does not break even when quantized. Gauge

theories such as QED and QCD are exactly like that.1 If not so, you have to

find the theory by groping. Therefore, even now, without accepting renor-

malizability as a guiding principle, quests for a manifestly finite theory con-

tinue, especially in theories concerned with gravity.

The renormalization method has become more believable after an idea

of “renormalization group” has been established. When performing renor-

malization calculations, a new arbitrary scale that did not exist in original

actions is introduced, written as µ on mass scale here. Renormalization

group represents a relationship between worlds with different µ, and the

“renormalization group equation” is a partial differential equation that ex-

presses response to changes in µ. One of the most important functions that

appears when defining the equation is the beta function, which represents

response of the renormalized coupling constant to µ.

Well then, how does that the arbitrary mass scale arise? In order to

explain this fact, it is necessary to describe regularization, which is a task

to make the theory finite once in order to handle ultraviolet divergences. If

you do not specify its method, you cannot say that the theory is truly de-

fined. The simplest example is to introduce an ultraviolet cutoff for energy.

Renormalization is to remove terms that diverge when you bring the cutoff

to infinity. In addition, there are lattice regularization and dimensional reg-

ularization. Each has its advantages and disadvantages, but one of criteria

for selection is whether or not symmetries, which are considered to be the

most important for the theory, are preserved. The following describes the

individual regularization methods.

If the theory is regularized by introducing an ultraviolet cutoff ΛUV,

divergences in the form of log Λ2
UV will appear. Since an argument of loga-

rithm must be dimensionless, a new scale µ will be introduced to offset the

dimension of the cutoff, and the divergence will be processed in the form of

log(Λ2
UV/µ

2).2 If renormalization is executed so that the cutoff dependency

1 Even if fermions have mass, it does not change the structure of ultraviolet divergences

and thus does not breaks renormalizability.

2 For simplicity, mass parameters included in the action are considered to be zero here.



100 Chapter 10

is removed in this form, then to make up for the lack of dimensions the

scale µ remains as a nonlocal quantum correction term log(q2/µ2) in the

effective action. Eventually it replaced with a physical scale that appears in

the running coupling constant.

An advantage of introducing an ultraviolet cutoff is that it is simple, but

there is a big problem that it breaks diffeomorphism invariance as well as

gauge invariance, and such undesired divergences will occur in a power of

ΛUV, not in the logarithm. If all divergences could be properly renormalized,

the broken symmetry could be restored by bringing the ultraviolet cutoff to

infinity. However, it is difficult to actually do it with the cutoff method,

thus this method is generally applied to non-renormalizable field theories

that are quantized while keeping the cutoff finite.

The same applies to the method of discretizing spacetime in a lattice

pattern and making the theory regular. In this case, a lattice spacing cor-

responds to the reciprocal of the cutoff ΛUV, and an arbitrary scale will be

introduced to offset the dimension. This is a method of approximating the

neighborhood of each lattice point with an average value and finally taking

a limit of zero lattice spacing to restore continuity. At this time, renor-

malizability represents that the continuum limit can be taken appropriately.

Unlike the simple cutoff method, an advantage of this method is that a lat-

tice version of gauge symmetry is mathematically well-defined. Although

the translation and rotation symmetries are broken, it is also believed that

they will recover in the continuum limit.

The formulation of gauge field theory on a lattice was proposed by Wil-

son in the 1970s, and its concrete numerical calculation based on the Monte

Carlo method was started by Creutz in 1980. The usefulness of this reg-

ularization method is evident in the success of lattice gauge theory. It is

nowadays possible to calculate hadron mass spectra with fairly high accu-

racy. This success also shows that gauge symmetry is a crucial symmetry

that determines physics.

Finally, dimensional regularization proposed by ’t Hooft and Veltman in

1972 is described. This is a method to make the theory finite by performing

an analytic continuation that makes spacetime dimension a little smaller
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than 4 while holding the continuity of fields, then ultraviolet divergences

arise in the form of poles such as 1/(D − 4)n, where D is the spacetime

dimension and n is a natural number. After removing the divergences ac-

cording to the renormalization procedure, you can return the dimension to 4

and obtain physical quantities. The arbitrary mass scale µ is introduced to

make up for the lack of mass dimension caused by changing the spacetime

dimension. An advantage of this method is that it preserves gauge symme-

try and diffeomorphism invariance strictly. On the other hand, when you

apply it to a theory with symmetry such as chiral symmetry or supersym-

metry that holds only in a specific integer dimension, you have to determine

whether it is okay that the symmetry is broken or whether it is likely to be

restored when the dimension returns to 4.

In addition, methods of Pauli-Villars regularization and zeta-function

regularization are known. The former was a mainstream regularization ap-

plied to gauge field theory before dimensional regularization was devised.

The latter is a method often used in two-dimensional quantum field theory.

Now, let us return to the story of the renormalization group. It should be

noted that renormalizable theories are originally defined by bare quantities.

It means that bare quantities depend only on scales and parameters existing

in its original action. From this fact, a condition that they do not depend on

the arbitrary mass scale µ introduced upon quantization is derived, so that

µd(bare quantities)/dµ = 0. The so-called renormalization group equation

is obtained by rewriting it in terms of renormalized quantities, which is a

partial differential equation that describes how parameters in the theory

respond to changes in scale. The beta function introduced at that time

is the most important function, which is defined by βg = µdg/dµ for a

renormalized coupling constant g.

The partition function or the effective action given by its logarithm,

which is originally defined as bare quantities, is an quantity that does not

depend on the arbitrary mass scale µ. On the other hand, renormaliz-

able means that it is finite, that is, represented by renormalized quantities.

Among renormalized quantities, the one that does not depend on the scale

µ is specially called a renormalization group invariant. The effective action
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is exactly a renormalization group invariant. The energy-momentum tensor

is also a renormalization group invariant which is a bare quantity as well as

a finite quantity.

A renormalized parameter that is not a bare one but a renormalization

group invariant is called a physical constant, namely, a true constant which

does not change anywhere. Writing it as Mphys, it satisfies

µ
d

dµ
Mphys = 0. (10-1)

The physical constant can be constructed by combining the arbitrary scale

µ, the renormalized coupling constant and so on, and this operation is called

“dimensional transmutation”. For example, in QCD, if the one-loop beta

function is given by βg = −β0g3, the dynamical energy scale is described

in the form ΛQCD = µ e−1/2β0g2 as a renormalization group invariant. Its

higher order terms in perturbation are more complex, but can be systemati-

cally defined. Using this expression, it can be shown that nonlocal logarith-

mic quantum corrections are grouped in the form of the running coupling

constant (7-1), and the effective action can be written in the renormaliza-

tion group invariant form in which the reciprocal of the running coupling

squared is extracted in front, as pointed out in Chapter 7.

Renormalizability and quantum gravity

Although renormalization is incompatible with Einstein’s theory of gravity,

it never inconsistent with diffeomorphism invariance. Renormalization in the

asymptotically background-free quantum gravity introduced in this book is

carried out by employing the dimensionless coupling constant t in a diffeo-

morphism invariant way, same to the renormalization procedure described

above. Renormalization in quantum gravity discussed from a different per-

spective will be touched upon in the next section.

One of the conditions that determine quantum gravity actions is, of

course, diffeomorphism invariance. However, why quantum gravity is so

difficult is that the action cannot be determined only from the invariance.

In fact, there are three candidates for the fourth-derivative actions of the
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gravitational field: the square of the Riemann curvature tensor, the square

of the Ricci tensor, and the square of the scalar curvature, and at first glance

a combination of them can be chosen arbitrarily. Here, I introduce a work

that the action is determined to a certain combination from renormalizability

conditions.

In order to determine the gravitational action, first consider QED or

QCD in curved spacetime. That is, consider gauge field theories in which the

gravitational field remains classical and all other fields are quantized. Then,

among various counterterms required to remove ultraviolet divergences gen-

erated as quantum corrections, those composed only of the gravitational field

are called gravitational counterterms. The reason for considering such a the-

ory is that imposing both gauge invariance and diffeomorphism invariance

uniquely determines the form of (bare) actions for gauge fields and fermions,

including how to couple with the gravitational field. In other words, the only

parts that have not been determined at this point are the gravitational coun-

terterms. However, since interactions between the gravitational field and the

other quantum fields are known, if you find forms of ultraviolet divergences

by calculating Feynman diagrams in which outer lines are the gravitational

fields and inner lines are gauge fields and fermions, you should be able to

determine the gravitational counterterms uniquely as well.

Calculations of the gravitational counterterm are performed using di-

mensional regularization that preserves both gauge invariance and diffeo-

morphism invariance. Renormalizability can be expressed in terms of renor-

malization group equations, which impose strict restrictions on the coun-

terterm form. In fact, in order to determine forms of conformal anomalies,

Hathrell derived in the 1980s a special renormalization group equation that

correlation functions containing various normal products, such as energy-

momentum tensors, should satisfy. At that time, the condition that ultra-

violet divergences are local, which was mentioned in the previous section,

plays an important role. Recent studies have shown that solving this renor-

malization group equation with all orders in perturbation brings together

the gravitational counterterms in only two forms. They are in the form of

the conformally invariant gravitational actions described in Chapter 4, when
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returned to four dimensions. More precisely, parts that deviate from four

dimensions are also determined completely, and these parts exactly contain

information of the Wess-Zumino actions S (4-5) such as the Riegert action.3

It can be said to be a natural result because the theory is quantized so as to

preserve diffeomorphism invariance. And you can see that the result does

not depend on gauge group and kinds of fermions in gauge field theory.

The fact that the gravitational counterterms are given by two confor-

mally invariant forms reflects that interactions contributing to ultraviolet

divergences of gauge field theory has a conformally invariant form in four

dimensions. If interactions with dimensionless coupling constants that are

not conformally invariant manifestly are added, then a counterterm of the

scalar curvature squared will be added to these two. What emphasizing here

is that they are classified into these definite three types.

Since quantum field theory in curved spacetime can be regarded as part

of quantum gravity theory, the quantum gravity action also has to be the

same form as the gravitational counterterm above if renormalizability is

required. Therefore, you have to adopt it as a bare quantum gravity action.

Once the form of the action is determined, you can find how to introduce

coupling constants. Here, it is assumed in advance that conformal invariance

is important in the ultraviolet limit. That is, as explained in Chapter 4, the

reciprocal of the square of the dimensionless gravitational coupling constant

t is introduced before the Weyl action with a correct sign so as to be a

perturbation expansion around a conformally flat spacetime.

Next, using this action, it is necessary to calculate and confirm whether

there is no contradiction as a quantum theory of gravity and whether the

beta function is correctly negative so that conformal invariance is realized

in the ultraviolet limit. Actually, it can be shown that the beta function of

the coupling constant t becomes negative regardless of matter field contents

couped with gravity. This indicates that, like QCD, the dynamical energy

scale ΛQG of the quantum gravity can be defined, and conformal invariance

will appear at higher energy than that.

3 When dimensional regularization is employed, the Schwinger-Dyson equation (5-2)

holds as it is, including contributions from the measure, without rewriting as in (5-3).
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Conformal invariance also appears in ordinary gauge field theory, but a

big difference is that here it appears as the background-metric independence.

It is a quantum diffeomorphism invariance that occurs for the first time

by quantizing the gravitational field, and is called the BRST conformal

invariance to emphasize that it is a gauge symmetry. It has already been

stated everywhere that all ghost modes become unphysical because of the

presence of this gauge symmetry.

On renormalization in a different perspective

As mentioned in Chapter 3, if you try to formulate quantum gravity by sim-

ply perturbing Einstein’s theory of gravity, it will be expanded employing

the Newton constant, which has dimension of length squared, as a cou-

pling constant. Therefore, it is easy to find from dimensional analysis that

higher-derivative gravitational counterterms composed of multiple products

of curvatures are required. It is said that renormalization is impossible be-

cause if the order of perturbation is increased, eventually an infinite number

of new counterterms will have to be introduced. Nevertheless, many physi-

cists still try to formulate quantum gravity based on Einstein’s theory of

gravity. Below, I will comment on such attempts.

First of all, consider a system with only the gravitational field, and an

attempt was made to eliminate gravitational counterterms by imposing the

Ricci flat condition, that is the Einstein equation, on the gravitational field

in external lines of Feynman diagrams. This approach could eliminate the

gravitational counterterm at the one-loop level, but failed soon because some

of higher-derivative gravitational counterterms required in higher loops did

not disappear.

Then, supergravity theory with supersymmetry that restricts the the-

ory more strongly has been considered. Supersymmetry is a symmetry that

connects bosons and fermions discovered in the 1970s, and combining this

symmetry and gravitational equations of motion, it was expected that the

gravitational counterterms would be limited to a finite number. This ap-

proach has been actively studied because there was Hawking’s prediction
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that raising the level of supersymmetry to the highest would determine ev-

erything, but did not work out. This is a method different from normal

renormalization, and it can be said that it is a desperate resort devised for

quantizing gravity. This approach is eventually absorbed in string theory,

and supergravity then emerges as its effective field theory.

As a different perspective, there is an idea of “asymptotic safety” advo-

cated by Weinberg in the 1970s in the approach of introducing an ultraviolet

cutoff. It was proposed as a property that correct quantum theories of grav-

ity should have when you bring the cutoff to infinity, which is that an infinite

number of gravitational counterterms are allowed, but there have to exist a

non-trivial ultraviolet fixed point in renormalization group flows for newly

introduced coupling constants associated with the counterterms. It repre-

sents an expectation that at the ultraviolet limit, the theory converges to

that point and then diffeomorphism invariance lost by the cutoff will be

restored.

The research is still being actively conducted to show that such a fixed

point exists. At this time, a method called functional renormalization group,

which was conceived to investigate response of effective field theory to a

change of the cutoff, is often used. This is a broader concept than the

renormalization group that appears in renormalizable quantum field theories

described in the first half, and is also applied to non-renormalizable field

theories such as Einstein’s theory of gravity.

If such a fixed point exists, it is reasonable to assume that some conformal

invariance is realized there. The asymptotically background-free quantum

gravity is a renormalizable field theory in which the core part is given by

conformal field theory and perturbation expansion is defined as deviation

from it. Therefore, it can be said that the asymptotic background freedom

is a representation of the asymptotic safety.

Finally, as already mentioned, the choice of regularization method de-

pends on what symmetry determines the theory. There may not be a suitable

method other than the cutoff. In that case, experience matters. However,

it creates ambiguity, and as a result the theory is broad interpreted and

becomes uncertain. In the next chapter, the cosmological constant problem
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will be described as one such problem.





Chapter 11

What is The Cosmological Constant
Problem?

Some people say that the cosmological constant problem is a big problem,

while others say it is just a parameter problem. As I have already pointed

out, I am in the latter position. The root cause of the problem is that the

existence of a world beyond the Planck scale is ignored. Here, I will present

an answer to this problem from the standpoint of quantum gravity theory.

Discovery of the cosmological constant

First, the history of the cosmological constant will be described briefly. The

cosmological constant was introduced by Einstein himself in 1917, the year

after the general theory of relativity was published, in order to realize a

static universe. That in itself is nothing surprising, because the existence of

the cosmological constant cannot be denied from diffeomorphism invariance,

and also many researchers in those days, including Einstein, thought that

the universe would not change over time.

The static universe image was shattered by observation results published

by astronomer Hubble in 1929. He measured velocities of many galaxies

and found that all galaxies were moving away from the earth. It has been

shown that the farther the galaxy is, the faster its recession velocity is, that

is, the space is expanding everywhere and distance between all objects is

increasing. A few years after this discovery, Einstein allegedly described the

introduction of the cosmological constant as “the biggest mistake in life.”

It was not until the late 1990s that the cosmological constant came into

limelight again. Observations of brightness of Type Ia supernovae, which are

used as standard candles, have shown that the expansion rate of the universe

is increasing (see Fig. 11-1). A standard candle is a celestial body whose
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absolute luminosity, corresponding to wattage of a light bulb, is known,

and difference in brightness can be regarded as difference in distance from

the earth. This fact, which indicates that the universe is currently accel-

erated expanding, can be explained using the cosmological constant. For

this discovery, Perlmutter, who led the Supernova Cosmology Project, and

Riess and Schmidt, who led the Supernova Search Team, were awarded the

2011 Nobel Prize. The existence of the cosmological constant was further

confirmed by observations of CMB fluctuations by WMAP. In those days,

many people still believed that the cosmological constant did not exist. This

discovery was a big shock, as supersymmetric field theories that makes the

cosmological constant exactly zero were being actively studied.

The observed cosmological constant has a dimension of the fourth power

of energy, which is about 120 orders of magnitude smaller than the value of

the fourth power of the Planck mass. It is extremely small and negligible in

the early universe, and does not contribute to the inflation scenario described

in Chapter 9. The reason why the small cosmological constant contributes

greatly to the current accelerated expansion is as follows. In the Einstein

equation that determines the evolution of the universe after the Big Bang,

energy density of matters is overwhelmingly large at the beginning, but its

contribution becomes smaller and smaller as the universe expands. On the

other hand, since the contribution of the cosmological constant is constant,

the contributions of both are reversed near the present.

Is the cosmological constant problem really a problem?

Until the cosmological constant was discovered, whether it had a finite value

was a major issue. However, it is a subject that has nothing to do with quan-

tum theory and can be discussed within the framework of general relativity.

The cosmological constant problem, which is the main subject of this chap-

ter, is what will be described below.

The first to point out the cosmological constant problem is said to be

Pauli.1 That was in the 1920s when quantum mechanics was born. When

1 See, for example, “Cosmic Conundrum” Scientific American, February 2021 and N.
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Figure 11-1: Observation results indicating the existence of the cosmological con-

stant, where the horizontal and vertical axises represent redshift (recession velocity)

and luminosity distance, respectively. The points are observed Type Ia supernovae.

If expansion rate of the universe is constant, the slope will be constant, but since

most of the observed values are above it, the universe is accelerated expanding.

[Supernova Cosmology Project, S. Perlmutter, et.al., Astrophys. J. 157 (1999)

565.]

he calculated a repulsive force due to zero-point energy, he got a very large

value. He recognized it as a serious problem because it implies that the

universe would expand rapidly and celestial bodies would soon be far apart

and could not recognize each other. In those days, it seemed that nobody

really took the story severely because it was too eccentric, but he might

have been amused and challenged the task. A perfectionist known for Pauli’s

exclusion principle, he is also famous for leaving behind the harsh word ”not

even wrong”, meaning that it does not make sense in the first place before

Straumann, The History of the Cosmological Constant Problem, arXiv:gr-qc/0208027.
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deciding whether it is right or wrong.

The first concrete calculation of zero-point energy was done by Zel’dovich

in the 1960s when quantum field theory became widely accepted. As a result,

a very large cosmological constant that did not match the observation was

obtained, and then the cosmological constant has come to be discussed as a

problem of quantum field theory.

The description so far is just a summary of what is widely known (see

Weinberg’s review in 1989). The question here is not the magnitude of the

value, but how the calculation was performed. The essence of the cosmolog-

ical constant problem is that when an ultraviolet cutoff was introduced to

the Planck scale and zero-point energy was calculated, a large cosmological

constant proportional to the fourth power of the Planck mass was obtained.

In this calculation method, the cutoff is finite and has a physical meaning.

In other words, it is presumed that there is no field in a world beyond

the Planck scale. Needless to say, it comes from the prejudice that the

gravitational field cannot be renormalized. Considering discrete spacetime

is often called quantization of gravity, but denying field continuity like this

breaks diffeomorphism invariance. Hence, the problem with diffeomorphism

invariance is hidden behind the cosmological constant problem.

When the cutoff method is applied to gauge field theory, a mass term of

gauge field proportional to the cutoff squared will appear and gauge invari-

ance is broken. Mass terms will also appear in other matter fields. At that

time, a choice is often made to manually remove the terms that obviously

break gauge invariance and leave the terms that do not. The cosmological

constant in question is that kind. In the first place, there is no guarantee that

the cutoff dependence will be in the form of the cosmological term, which is

not a simple mass term, because diffeomorphism invariance is broken.

Despite the fact that what predicts the existence of the cosmological

term is diffeomorphism invariance, if the quantization method breaks this

invariance, it is a wrong way for the end. Actually, if you use dimensional

regularization, which can make the theory finite while preserving gauge in-

variance and diffeomorphism invariance, ultraviolet divergences in a power

of the cutoff that break the invariance do not appear.
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To solve the cosmological constant problem, you have to step into the

trans-Planckian regions. In general, quantum theory of gravity that holds

even in such regions shows that zero-point energy vanishes as a result of

diffeomorphism invariance, as was shown in Chapter 5 using the Schwinger-

Dyson equation. That is, it means that the cause of the problem itself

disappears.

Well then, what is the cosmological constant? In the renormalizable

quantum gravity it becomes a physical constant. To be precise, it is a renor-

malization group invariant, that is, a true constant whose value does not

change in the evolution of the universe. It is a constant that is determined

experimentally, as is the Newton constant.

The discovery of the cosmological constant is similar to the discovery of

neutrino mass that led to Kajita’s 2015 Nobel Prize. The neutrino mass

has long been believed to be zero, but that was just a desire, only because

the number of free parameters was reduced and the theory became simpler.

There is no symmetry that requires the mass to vanish. These discoveries

tell us that if a quantity does not denied by some symmetry, it should exist.

In this case, what you need to find is merely whether its value is large or

small. Conversely, this indicates that there is a world of difference between

zero and small.

Finally, as an alternative to the cosmological constant, the term “dark

energy” is often used in recent years. The cosmological constant is literally a

physical constant, but this term is used more generally including a possibility

that it is not a constant. It is impressive when used in combination with

the word dark matter. Also, inflation theory discussed in the framework

of Einstein’s theory of gravity generally uses the cosmological constant, so

there seems to be a theoretical background that wants to distinguish it from

the current cosmological constant.
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Other Issues in Quantum Gravity

This chapter devotes to other issues that are believed to occur near the

Planck scale. One is the Landau pole singularity, which is known as a theo-

retical difficulty that arises in QED, and the other is the issue on topology.

Let us see how these problems are reinterpreted in the quantum gravity

theory.

QED and Landau poles

The Landau pole singularity is a problem that is thought to occur gener-

ally in asymptotically non-free quantum field theory whose beta function is

positive, and refers to having a singular point where the running coupling

constant incorporating quantum corrections diverges on the high energy

side. QED is known as a representative of theories with Landau poles. Such

a theory is not defined in regions beyond energy at which the singularity

appears, so it has to be replaced with a new theory there. Hence, a the-

ory with the Landau pole singularity is not appropriate for a fundamental

theory that describes a microscopic world.

Such a bad thing is usually thought to occur near the Planck scale.

Therefore, you have to consider a scenario that the theory is integrated into

another particle model that shows asymptotic freedom such as grand unified

theories (GUT) before it breaks down, otherwise restrict parameters of the

theory so that it works up to the Planck scale. The latter is a negative way

of thinking that if the theory holds until the Planck scale, then it is not

a matter, from the perspective that there is no point in thinking about a

world beyond it.

However, the dynamical scale ΛQG is set to 1017GeV here, which is two

orders of magnitude lower than the Planck energy. Therefore, the theoreti-
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cal situation changes because quantum gravity corrections are added before

reaching the Planck scale.

Now consider whether Weinberg’s asymptotic safety requirements men-

tioned in Chapter 10: 10.3, can be applied not only to quantum gravity

but also to QED. That of quantum gravity has already been revealed as

the BRST conformal invariance, and here I expect that QED with quantum

gravity corrections also has a non-trivial ultraviolet fixed-point where its

beta function βe vanishes. Although non-perturbative calculations to con-

firm this are so difficult, it is known that quantum gravity loop corrections

in the expansion by t described in Chapters 4, 7, and 10 give a negative

contribution to the QED beta function. Therefore, it can be expected that

βe will decrease and reach an ultraviolet fixed-point when energy exceeds

ΛQG.

During the inflation period, the conformally invariant dynamics in which

the Weyl tensor disappears are well retained and the running coupling con-

stant t̄(Q) does not increase until near the point where the spacetime phase

transition occurs. Let us then assume that the QED beta function βe is also

mostly stuck at a fixed point, maintaining a zero value which indicates the

presence of conformal invariance. Approaching the phase transition point,

the running coupling constant increases rapidly, and eventually the con-

formally invariant dynamics of gravity disappear completely, shifting to a

low-energy effective field theory based on Einstein’s theory of gravity. At

that time, if βe also becomes non-zero and the Wess-Zumino interaction
√
−g βeϕF 2

µν opens, you can consider a scenario that photons are generated

from the scalar-like quantum gravity fluctuation through this interaction.

The mechanism of matter creation during the spacetime phase transition

also applies to the QCD and GUT models if the photon field strength Fµν is

replaced with that of the Yang-Mills field. In these cases, the Landau pole

singularity does not occur because the beta functions disappear in the high

energy limit.
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Topology and gravitational instantons

Not a few researchers think that quantization of gravity is to do a summation

over topologies. In lower-dimensional quantum gravity, where there is no

local dynamics of the gravitational field, topology may be essential, but

in four dimensions, it is not a major topic and the local dynamics of the

gravitational field is much more important. However, if you are looking for

dynamics causing CP violation, for instance, in the early universe, spacetime

with a special topology may contribute to it. In general, such spacetime

configurations are called gravitational instantons.

There are a number of gravitational instanton solutions, which were in-

vestigated mainly in the 1970s and summarized in a report by Eguchi, Gilkey,

and Hanson. Most of them are given as solutions of Einstein equations with

satisfying a self-dual condition of the Riemann curvature tensor, and many

of them have boundaries.

Here consider a particular solution closely related to the Weyl action,

which is very similar to the Yang-Mills instanton solution discovered by

Belavin, Polyakov, Schwartz, and Tyupkin in 1975. It is a compact four-

manifold with no boundaries that is obtained as a solution that satisfies

both the self-dual condition for the Weyl tensor and the equation of motion

of the gravitational field derived from the Weyl action.1 The known solution

is only the two-dimensional complex projective space (CP2) examined by

Eguchi and Freund.

The full Weyl action in CP2 space may be given by adding a gravita-

tional version of the theta term, iθτ , where τ is the Hirzebruch signature,

which denotes the number of the gravitational instantons and is given here

with τ = ±1 depending on orientation. Up to this point, it is similar to

normal instanton solutions, simply the field strength of the Yang-Mills field

is replaced with the Weyl tensor, which is the field strength of the traceless

tensor field.

The big difference from when dealing with normal instantons is that

1 Discuss in Euclid spacetime as in the Yang-Mills instanton, which is obtained by Wick

rotating the background spacetime.



118 Chapter 12

there is no spin structure in the CP2 space, that is, fermions cannot be

correctly defined in the space. This can be seen from the fact that Atiyah-

Singer’s spin-1/2 Dirac index, which must be an integer, becomes a fraction

as I1/2 = −τ/8. Being an integer is a necessary condition, and can be

overcome by the number of Weyl fermions to a multiple of 8, but it is not

enough yet. When parallel-transporting a fermion over a non-contractible

two-sphere (CP1) subspace in CP2, you find another contradiction that an

extra phase arises from the spin connection.

If fermions do not exist in space, the real world cannot be described.

So Hawking and Pope came up with so-called generalized spin structures

to accommodate fermions. That is to introduce a background U(1) gauge

field on the CP2 space and modify the spacetime structure so that fermions

are affected not only by the spin connection but also by the gauge field.

If fermion charges are odd, the problem can be solved by offsetting the

extra phase resulting from the spin connection when parallel-transported

over the CP1 subspace with that from the background gauge field. At that

time, it also adds a restriction that charges of boson fields coupled with the

background gauge field must be even numbers.

What you can see from the discussion so far is that the Standard Model

with SU(3)×SU(2)×U(1) does not have spin structures in the CP2 space.

If you just want to make the Atiyah-Singer index an integer, you can do

it by considering right-handed neutrinos because the total number of right-

handed and left-handed fermions becomes 16 per generation. However, since

the right-handed neutrino has no gauge charge, the phase of the spin con-

nection cannot be erased by introducing a background gauge field. For other

fermions and boson fields, their charges are also not assigned well, so that

there is no spin structure. Therefore, there is no choice but to modify the

theory so that spin structures can exist by adding an extra U(1) gauge field

and appropriately assigning its charge to fields. Also, the SU(5) GUT with

15 fermions for each generation does not have spin structures because the

Atiyah-Singer index does not become an integer.

Of various GUT models that contain the Standard Model as part, the

simplest gauge group that can have spin structures on CP2 is SO(10). In
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this case, there are several possible ways to make it have spin structures, and

they depend on which U(1) subgroup of SO(10) the background gauge field

is introduced into. In addition, the Atiyah-Singer index must be chosen to

be zero, in order for the partition function to exist with a non-zero value.2

Therefore, for example, considering SO(10) → SU(4) × SU(2) × SU(2) as

a symmetry breaking pattern and introducing the background gauge fields

into U(1) subgroups of both SU(2)s, it can have spin structures.

Thus, there are some interesting limitations, such as that SO(10) is

selected, which has not yet been excluded from experiments, and the number

of fermions is required to be a multiple of 16. However, this does not force

SO(10) by any means. If spin structures do not exist, this topology is

merely excluded from the path integral. Conversely, if SO(10) is chosen as

physics, then CP2 space may also have to be considered. The application of

gravitational instantons to physics is a research field that has not progressed

much, and is a future task.

2 This is a necessary condition for absence of fermion zero-modes. If there is a zero-mode,

the partition function disappears due to its Grassmann integral. If there is a mass term,

it can be avoided to be vanishing, but here is considering in high energy regions where the

mass can be regarded as substantially zero.
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Lattice Quantum Gravity

The asymptotically background-free quantum gravity is a renormalizable

quantum field theory that is formulated in a hybrid form combining non-

perturbative conformal field theory and perturbation theory. As an ap-

proach to formulate this theory completely nonperturbatively, a method

based on dynamical triangulations has been proposed. As in the case of lat-

tice gauge field theory, this is a method of considering Euclidean spacetime

and dividing it into random lattices for examination.

The method of formulating gravity theory by discretizing spacetime was

started by Regge in the 1960s. Initially, various spacetimes were expressed

by changing length of each side while fixing how to connect lattices. How-

ever, it is recognized that this method cannot sufficiently express all possible

spacetime configurations required for path integral over the gravitational

field. There is also a question of what integral measure to use when per-

forming it.

Figure 13-1: Element of n-dimensional simplicial quantum gravity

As a method different from the Regge calculus, a “simplicial quantum
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gravity” has been proposed, in which spacetime is divided into a random

lattice, instead of changing length of each side. An element that composes a

lattice is given by a simplex as shown in Fig. 13-1, and n-dimensional space-

time is made by gluing n-simplices. For example, when triangles, which are

representative of 2-simplices, are glued, a two-dimensional surface as shown

in Fig. 13-2 can be constructed. Here, a spacetime without boundaries is

considered and its topology is fixed.

What is important here is the variety of possible patterns for gluing sim-

plices, not the shape of each simplex, which is considered equivalent with

the same volume. Spacetime exists inside the simplex on average, and it is

thought that a smooth spacetime can be obtained by taking a continuum

limit. Different gluing patterns represent locally different spacetime config-

urations, and the path integral for gravity is expressed by taking the sum

of all possible configurations. For topology, first consider the sphere, and if

necessary, consider other topologies and take the sum over them.

Figure 13-2: A two-dimensional random surface (dotted line) and Feynman dia-

gram dual to it (double line).

This method was first performed successfully in two dimensions by Wein-

garten, David, Kazakov, and others. Let the number of triangles be N2 and

denote their possible gluing patterns as T2, then the partition function is
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defined by

ZSG2(λ) =
∞∑

N2=0

∑
T2

e−λN2 =
∞∑

N2=0

Ω(N2)e
−λN2 , (13-1)

where Ω(N2) is the partition number of T2. This is known as a statisti-

cal model in which a second-order phase transition occurs. Denoting the

critical point by λ = λc, the partition number behaves in the large N2 as

Ω(N2) ∼ Nγst−3
2 eλ

cN2 , where the exponent γst is called the string suscepti-

bility. Letting area of each triangle be 1, N2 becomes area of the surface,

and thus λ acts as a cosmological constant that controls it. Introducing a

scale a corresponding to lattice spacing, two-dimensional quantum gravity

is then derived taking a continuum limit that N2 → ∞ at the same time as

a→ 0 while retaining (λ− λc)/a2 → λcos at the critical point, where λcos is

a physical cosmological constant.

Two-dimensional random surfaces have a one-to-one correspondence with

Feynman diagrams when considering dual diagrams as shown in Fig. 13-2,

thus the partition function (13-1) can be expressed using a matrix model

with three-point interaction (like a 0-dimensional Yang-Mills theory) that

generates the Feynman diagrams. Using this method, the summation of

random surfaces can be performed analytically as an integral of the matrix

variable, and you can show that the second-order phase transition actually

occurs. Furthermore, it was shown by three groups, Brezin and Kazakov,

Douglas and Schenker, Gross and Migdal that taking the continuum limit

just on the phase transition point gives a result completely in agreement

with the two-dimensional quantum gravity mentioned at the end of Chapter

4.

In the 1990s, following the success in two dimensions, extension to higher

dimensions was actively examined. Numerical calculations of four-dimensional

quantum gravity by the dynamical triangulation method were started by

groups such as Ambjørn and Jurkiewicz, Agishtein and Migdal, and were

executed as follows. Letting N4 be the number of 4-simplices represent-

ing total volume and N2 be the number of 2-simplices contained in it, the
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Figure 13-3: Phase transition point κc4 and its κ2-dependence in numerical calcu-

lation when NX +62NA matter fields are introduced, where NX and NA represent

the number of scalar and U(1) gauge fields, respectively. Below the × mark, the

susceptibility becomes negative and a second-order phase transition point appears.

[K. Hamada, S. Horata and T. Yukawa, Focus on Quantum Gravity Research (Nova

Science Publisher, NY, 2006), Chap. 1.]

partition function is then defined by

ZSG4(κ, λ) =
∞∑

N4=0

∑
T4

eκN2−λN4 =
∞∑

N4=0

Ω(κ,N4)e
−λN4 , (13-2)

where T4 denotes possible gluing patterns of N4 4-simplices. κ corresponds

to the square of the Planck mass, and λ corresponds to the cosmological

constant. If a second-order phase transition occurs at λ = λc(κ), the par-

tition number behaves like Ω(κ,N4) ∼ N
γ
(4)
st −3

4 eλ
c(κ)N4 at that point, where

the exponent γ
(4)
st is a four-dimensional version of the string susceptibility.

In 4-simplicial quantum gravity, the existence of the second-order phase

transition required to take the continuum limit is not as obvious as in the

two-dimensional model, but its existence is numerically suggested by Horata,
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Figure 13-4: Numerical results of the susceptibility γ
(4)
st . By matching the calcu-

lated susceptibility with the formula of γ
(4)
st = 2− (b1 +

√
b21 − 4b1)/2 derived from

the continuum theory, a functional form of b1 shown in the figure is obtained, where

b1 is the coefficient of the Riegert action. As predicted in (B-3), it can be seen that

it is represented by a linear function of NX +62NA. [K. Hamada, S. Horata and T.

Yukawa, Focus on Quantum Gravity Research (Nova Science Publisher, NY, 2006),

Chap. 1.]

Egawa, and Yukawa (see Fig. 13-3). That is the result of numerical simula-

tion performed by gluing more than 10,000 4-simplices to form a manifold

with four-sphere topology and further incorporating matter fields into it.

Fig. 13-4 shows that the four-dimensional string susceptibility obtained by

evaluating just at the phase transition point is consistent with that derived

from the asymptotically background-free quantum gravity in four dimen-

sions.

It should be noted in comparing the two methods that the weight eκN2−λN4

of the 4-simplicial quantum gravity has only the two parts corresponding to

the Einstein-Hilbert action and the cosmological term in the continuum the-

ory. In other words, information on the fourth-derivative gravitational terms
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will be included in the gluing patterns denoted by T4. This is linked to the

fact that the fourth-derivative gravitational action I(4) and the Wess-Zumino

action S are purely quantum-mechanical quantities independent of ℏ, and
can be regarded as part of the path integral measure, as mentioned at the

end of the first section of Chapter 4.

Lastly, three-dimensional quantum gravity will be briefly described be-

low. Unlike even dimensions, there is no gravitational scalar quantity that

becomes dimensionless when volume integration is done in three dimen-

sions. Therefore, it is necessary to introduce a dimensionful parameter to

the gravitational action. From this, it can be seen that the methods em-

ployed in two and four dimensions cannot be applied to three dimensions.

As one of the methods using continuum fields, Witten’s approach describing

the gravity theory without the cosmological constant and matter fields as a

Chern-Simons theory is widely known. It represents that three-dimensional

gravity is a topological field theory with no local degrees of freedom. Corre-

sponding to this, there are some models expressing topological invariants as

3-simplicial gravity such as the model by Ponzano and Regge constructed by

using the Racah-Wigner 6j symbol to represent 6 sides of a tetrahedron and

the model by Turaev and Viro that is a more mathematical development of

it. Research on the relationship between them and the Chern-Simons theory

is still ongoing.

In addition, Boulatov’s model proposed as a 3-simplicial quantum gravity

is well known, which is defined by doing the sum over all possible gluing

patterns of 3-simplices, with fixing topology and adding the weights due to

the cosmological term and the Einstein-Hilbert action as in (13-1) and (13-2).

He generalized the matrix model that succeeded in 2-simplices to a model

with tensor legs, and aimed to execute the sum in 3-simplices. However,

since it is a fairly complicated model, it cannot be said that the analysis

is progressing. Also, it seems that a large-scale numerical calculation for

3-simplicial gravity has not yet been performed, probably because proper

physical quantities that can be compared and examined are not known.

Three-dimensional quantum gravity is mainly studied as a mathematical

object.
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Concluding Remarks

There is an old scientific thought called “Ockham’s razor”. That is a princi-

ple advocated by William, a philosopher in the village of Ockham, England

in the 14th century, stating that you should not make more assumptions

than necessary to explain an event. A razor is used to mean cutting off

unnecessary things.

The Ptolemaic theory, for instance, can be made as precise as you like

by adding circular motions one after another if all the planets are on the

same disk. This is, however, typical of parameter physics which introduces

variables one after another to match observations, thus is against the thought

of Occam’s razor. In fact, when Pluto and comets with oblique orbits are

added, it can no longer deal with them, and if you consider outside the solar

system, it breaks down. Occam’s razor does not judge authenticity, but

it makes sense to think that it is better to be able to explain by simpler

principles.

The guiding principle that has been respected throughout this book is

diffeomorphism invariance. However, it seems that many people in the world

put the Einstein equation first. Since the Einstein equation is beautiful and

so clear that it can be used as a T-shirt design, there is a certain idolatry

aspect, and there is a tendency that denying this equation is denying Einstein

himself. That is, of course, wrong, and Einstein’s greatest achievement

is undoubtedly the discovery that diffeomorphism invariance is one of the

fundamental principle of physics. That is never in conflict with quantum

theory. The Einstein equation is one of equations derived from the principle,

but it is incomplete.

The “asymptotically background-free quantum gravity”, proposed to de-

scribe the trans-Planckian world, is a quantum field theory which has been

formulated so that diffeomorphism invariance holds everywhere. This is a
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renormalizable theory that can handle infinite degrees of freedom systemati-

cally and is described using continuum fields without introducing ultraviolet

cutoffs. This nature is, of course, guaranteed by diffeomorphism invariance.

The background-metric independence that characterizes quantum gravity is

also contained in properties that diffeomorphism invariance acquires at the

quantum level. I have shown that these properties provide new solutions

different from before to the problems with gravity. All are derived from

diffeomorphism invariance.

The novelty in this approach is the use of conformal invariance. The

background-metric independence hidden in diffeomorphism invariance is re-

vealed in the form of conformal invariance by non-perturbatively treating

the most important conformal factor in the gravitational field that governs

distance, where the other tensor modes are handled perturbatively as having

less role in the ultraviolet limit. The quantization of gravity in this case is

not a simple task that is automatically established if diffeomorphism invari-

ant actions are prepared. It is necessary to correctly incorporate contribu-

tions from the path integral measure, which is generally called conformal

anomaly. When that is executed, the background-metric independence is

expressed as the BRST conformal invariance. That is, all theories with dif-

ferent backgrounds connected to each other by conformal transformations

become gauge equivalent. The world beyond the Planck scale is then de-

scribed as a special conformal field theory with this property.

The condition that the theory should be renormalizable provides a ra-

tionale that the dimension of spacetime is four. It seems that many people

unknowingly see the universe from outside the four-dimensional spacetime.

An idea that the universe was born at a certain moment is that you are

looking at that moment from the outside. However, since you are in a

four-dimensional world, you cannot know if there is an outside world in the

universe. Extra dimensions are like unknown continents. It adds an infinite

number of extra degrees of freedom than what needs to be explained.

The asymptotic background freedom indicates the existence of a novel

dynamical scale of quantum gravity. It is a physical energy scale that sepa-

rates between quantum spacetime phase with the background-metric inde-
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pendence and classical spacetime phase, and its value has been determined

to be 1017GeV, which is two orders of magnitude smaller than the Planck

mass mpl, from the scenario of inflation ignited by the quantum gravity ef-

fect. That is, it implies that the quantum effect of gravity begins to work

before reaching the Planck scale. Therefore, problems in classical theory

that were thought to be manifest at the Planck scale can be avoided.

The correlation length of quantum gravity is given by the reciprocal of

this energy scale, which is about 100 times the Planck length. If a distance

you are trying to measure is longer than the correlation length, you can mea-

sure it classically, but once inside, you will be in a quantum world where the

spacetime phase changes and distance fluctuates greatly. The background-

metric independent world will emerge as its extreme state. This means that

physical distance is substantially quantized by the correlation length, though

spacetime is described continuously.

It can be shown that as a consequence of diffeomorphism invariance,

the Hamiltonian of the whole system vanishes, which means that zero-point

energy disappears. Therefore, you cannot think of it as the origin of primor-

dial fluctuations. The evolution of the universe is represented as a process

that states of spacetime are changing while preserving the Hamiltonian to

be zero. The evolution scenario becomes clearer when you consider that

the universe began from a state where only quantum fluctuations of gravity

exist. That indicates that quantum gravity is the source of everything.

The gravitational field is a dimensionless field and is also the only field

that interacts with all matter directly. And the asymptotic background

freedom says that scalar-like fluctuations by the conformal factor in the

gravitational field become predominant in the early universe. Although

matter fields still remain conformally invariant in the trans-Planckian region

and are not coupled to the conformal-factor field there, when the spacetime

phase transition begins to occur, interactions between the conformal-factor

field and matter fields open through the Wess-Zumino action of conformal

anomaly, and matters are generated. The primordial spectrum obtained in

this way after the phase transition inherits the scalar-like and scale-invariant

properties derived from the conformal invariance of quantum gravity. The
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essence of these properties originates from the fact that the gravitational

field is dimensionless.

Nobody knows how wide the universe is. The observed region is only

a part of it. In the inflation scenario, going back to the beginning of the

universe, all currently visible regions fall within the correlation length of

quantum gravity. That is, it suggests that the universe started with one of

bubbles excited by quantum gravity. When inflation begins, it is considered

that new bubbles fill gaps in space created by the expansion densely so that

its energy density becomes almost constant. The universe that expanded

rapidly like that undergoes the spacetime phase transition and shifts to the

present universe, then bubbles are converted into matters all at once.

The trans-Planckian world with the background-metric independence is

an unimaginable world as mentioned so far. That is why a solid guiding

principle is necessary, and that is diffeomorphism invariance. There are

attempts looking for new guiding principles, but the first thing you should

do is to have a deep understanding of diffeomorphism invariance. What

I had done was exactly to make sure that normal field methods work for

quantum theory of gravity without doing any oddities, while adhering to

diffeomorphism invariance. This has opened up new horizons in quantum

gravity research.
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Fundamental Constants

Reduced Planck constant ℏ = 1.055× 10−27 cm2 g s−1

Speed of light c = 2.998× 1010 cm s−1

Newton’s constant G = 6.672× 10−8 cm3 g−1 s−2

Planck mass mpl = 2.177× 10−5 g

= 1.221× 1019 GeV/c2

Reduced Planck mass MP = 2.436× 1018 GeV/c2

Planck length lpl = 1.616× 10−33 cm

Planck time tpl = 5.390× 10−44 s

Boltzmann constant kB = 1.381× 10−16 erg K−1

Megaparsec 1Mpc = 3.086× 1024 cm

Hubble constant H0 = 100h km s−1 Mpc−1

Hubble distance c/H0 = 2998h−1 Mpc

(current observation: h ≃ 0.7)

Useful constants for converting to natural units (c = ℏ = kB = 1)

1 cm = 5.068× 1013 ℏ/GeV

1 s = 1.519× 1024 ℏ/GeV/c

1 g = 5.608× 1023 GeV/c2

1 erg = 6.242× 102 GeV

1 K = 8.618× 10−14 GeV/kB
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Concise Summary of The Theory

The Minkowski metric used in this book is ηµν = (−1, 1, 1, 1). The Riemann

curvature tensor is defined by Rλ
µσν = ∂σΓ

λ
µν − ∂νΓ

λ
µσ + Γλ

ρσΓ
ρ
µν − Γλ

ρνΓ
ρ
µσ

using the Christoffel symbol Γλ
µν = gλσ(∂µgνσ+∂νgµσ−∂σgµν)/2. The Ricci

tensor is Rµν = Rλ
µλν , and the scalar curvature is R = Rµ

µ. The covariant

derivative is represented by ∇µAν = ∂µAν − Γλ
µνAλ.

The action of the asymptopically background-free quantum gravity, I =

I(4) + IEG/ℏ, is given by

I =

∫
d4x

√
−g

[
− 1

t2
C2
µνλσ − bG4 +

1

ℏ

(
1

16πG
R− Λ + LM

)]
. (B-1)

The first two terms gives the conformally invariant fourth-derivative action

I(4), the first is the Weyl action, and the second G4 = R2
µνλσ − 4R2

µν + R2

is the Euler density (Gauss-Bonnet combination). The action of the renor-

malizable theory will be described in terms of bare quantities, and usually

symbols different from renormalized quantities are used, but they are not

distinguished here for simplicity. Also, as mentioned in the text, ℏ appears

only before the lower derivative IEG. This comes from the fact that the

gravitational field is a completely dimensionless field. All fourth-derivative

gravitational actions describe purely quantum-mechanical dynamics and cre-

ate entropy of spacetime. In the following, ℏ = 1.　
Decompose the metric tensor field as gµν = e2ϕḡµν and ḡµν = (ĝeh)µν =

ĝµλ(δ
λ
ν + hλν + · · · ), using the conformal-factor field ϕ, the traceless tensor

field hµν , and the background metric ĝµν . Since the Weyl tensor is the field-

strength of hµν , introducing the coupling constant t as in (B-1) is intended to

be expanded in hµν . On the other hand, the conformal factor e2ϕ is treated

non-perturbatively as it is. Here, note that I(4) does not contain the ϕ-field,

while the other lower-derivative action IEG has an exponential factor of ϕ,
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and also fourth-derivative gravitational actions shown below are expressed

by polynomials of ϕ.

The key to quantization is to rewrite the theory into a quantum field

theory defined in the background spacetime with the practical metric ĝµν .

The partition function is expressed in the path integral method by

Z =

∫
[dg]g e

iI(g) =

∫
[dϕdh]ĝ e

iIQG(ϕ,ḡ), (B-2)

and then the action is changed to IQG(ϕ, ḡ) = S(ϕ, ḡ) + I(g), where eiS

is a Jacobian that is necessary to preserve diffeomorphism invariance when

rewriting the invariant measure of the full metric to a practical measure

defined on the background metric. The S is called the Wess-Zumino action

satisfying the Wess-Zumino consistency condition (see footnote 2 in Chapter

4), whose conformal variation yields conformal anomaly.

The Wess-Zumino action S is responsible for fourth-derivative dynamics

of the conformal-factor field ϕ. The action that remains even at the zeroth

order of the coupling constant t is particularly important, which is called

the Riegert action, given by

SR(ϕ, ḡ) = − b1
(4π)2

∫
d4x

√
−ḡ

(
2ϕ∆̄4ϕ+ Ē4ϕ

)
,

where E4 = G4 − 2∇2R/3 is the Euler density modified up to the total

divergence and
√
−g∆4 is a conformally invariant fourth-derivative operator

for scalars, defined by ∆4 = ∇4 + 2Rµν∇µ∇ν − 2R∇2/3 +∇µR∇µ/3. The

quantities with the bar are the ones defined by ḡµν , and these satisfy the

relation
√
−gE4 =

√
−ḡ(4∆̄4ϕ + Ē4). The lowest of the coefficient b1 =

bc + o(t2) is given by

bc =
1

360

(
NX + 11NF + 62NA

)
+

769

180
, (B-3)

where NX, NF, and NA are the number of scalar fields, Dirac fermions,

and gauge fields belonging to the matter term LM, respectively. For ex-

ample, bc is 7.0 for the Standard Model, 9.1 for the SU(5)GUT model,

and 12.0 for the SO(10)GUT model. In addition, interaction terms such

as ϕn+1√−ḡ(2∆̄4ϕ + Ē4), ϕ
n√−ḡ C̄2

µνλσ, and ϕn
√
−ḡF̄ 2

µν for a gauge field
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Fµν with n ≥ 1 arise as the Wess-Zumino actions at higher orders of t (note

that
√
−g C2

µνλσ =
√
−ḡ C̄2

µνλσ and
√
−gF 2

µν =
√
−ḡF̄ 2

µν).
1 The last one will

contribute to the generation of matters at the spacetime phase transition.

The Riegert action, together with the kinetic term of the Weyl action,

is a key part in realizing the BRST conformal invariance, which is an al-

gebraic representation of the background-metric independence at the ultra-

violet limit of t → 0. It shows that physical results do not change even

if the background metric is Weyl-rescaled like ĝµν → e2σ ĝµν . And there-

fore, it is justified to quantize gravity using a simple Minkowski metric as a

background.

The beta function βt = µdt/dµ = −β0 t3+o(t5) is negative and the 1-loop

coefficient is given by β0 = [(NX+6NF+12NA)/240+197/60]/(4π)2, where µ

is an arbitrary mass scale introduced upon quantization. The corresponding

Weyl sector effective action is, in momentum space, given by

ΓW = −
[
1

t2
− 2β0ϕ+ β0 log

(
q2

µ2

)]√
−g C2

µνλσ

= − 1

t̄2(Q)

√
−g C2

µνλσ. (B-4)

The first in the first line is the tree action, the second is the Wess-Zumino

action, and the third is a nonlocal loop correction, which put together

in the running coupling constant as t̄2(Q) = [β0 log(Q
2/Λ2

QG)]
−1, where

Q2 = q2/e2ϕ (7-3). The dynamical energy scale is then expressed as ΛQG =

µ e−1/2β0t2 . This is one of the renormalization group invariants, satisfying

dΛQG/dµ = 0. The same is true including higher order corrections, though

expressions of the running coupling constant and the dynamical scale be-

come more complicated.

The physical cosmological constant satisfying dΛcos/dµ = 0, which is

1 Strictly speaking, in order to correctly perform higher-order path integral, including

these terms as S, it is necessary to formulate (B-2) using dimensional regularization, which

is known as the only method that can perform higher loop calculations while preserving

diffeomorphism invariance (see Chapter 10).
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defined by the effective action ΓΛ = −Λcos
√
−g, is given as follows:

Λcos = Λ+ (7− 2 log 4π)
Λ

bc
−
(
Λ

bc
− 9π2M4

2b2c

)
log

(
64π2

µ4
Λ

bc

)
−9π2

2

(
25

3
− 4 log 4π

)
M4

b2c

−6π
M2

bc

√
Λ

bc
− 9π2M4

4b2c
arccos

(
3πM2

2
√
bcΛ

)
+

5

128
α2
tM

4

(
log

π2α2
tM

4

µ4
− 21

5

)
,

where αt = t2/4π. M =1/
√
8πG and Λ are renormalized quantities of the

Planck mass and the cosmological constant in the action, respectively. To

derive this expression, an approximation of large bc, namely large number of

matter fields, is employed, so that the ratios Λ/bc andM
4/b2c are comparable,

and αt/4π and 1/bc are also so.

Finally, the equations of motion describing the static spherical excitation

discussed in Chapter 8 are written below. As a coupled linear differential

equation of gravitational potentials Φ and Ψ, it is given by

bc
8π2

B(r)

(
−4

3
|∂4Φ− 2

3
|∂4Ψ

)
+M2

P

(
−4 |∂2Φ− 2 |∂2Ψ

)
= 0

and

bc
8π2

B(r)

(
−8

9
|∂4Φ− 4

9
|∂4Ψ

)
+

1

t̄2(r)

(
−8

3
|∂4Φ+

8

3
|∂4Ψ

)
+M2

P

(
−2 |∂2Φ− 2 |∂2Ψ

)
= 0,

where |∂2 = ∂2r + (2/r) ∂r is the spatial Laplace operator. B(r) = [1 +

a1t̄
2(r)]−1 is a factor modeled by adding higher-order Wess-Zumino correc-

tion terms to the Riegert action. The term with 1/t̄2(r) is derived from

the Weyl action and the term with MP is from the Einstein tensor. The

cosmological term and the matter part are set to be zero.
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