PADN- 611 (PADN611CERLEGUNHVPS.doc) Begun to write since Jan. 14th, 2010.

注:20090526 時点においては、未だ個人見解レベルの検討書です。詳しくは ERL-Gr へ。

Particle Accelerator Development Note

Compact ERL 建設のための基礎確認

~ 電子銃用 500kV/10mA 級高圧電源のための基礎資料 ~

報告者: 中村英滋 (加速器第六研究系)

要約

基礎的資料を集め、データベースとの意味合いで資料としてまとめる。

目次

	<u> </u>			
概要	(要約・代表例)	р	1	
序	(試算にあたってのイメージ)	р	2、	3
計算結果1	(フルスペック時)	p	4、	5
計算結果 2	(1/10 スペック時)	р	6、	7
計算結果3	(分布の広がり方)	p	8	
計算結果4	(電荷量依存性)	р	9	
まとめ		р	9	
参考資料		р	9	
補足	(計算論理の確認2例)	p 1	0、	1 1

序: 絶縁物の耐電界強度

== 理論限界概要 ==

物質名 破壊電界(kV/cm) 物質名 破壊電界(kV/cm)

空気 35.5 パラフィン 7~12

水素 15.5 ゴム 20~25

酸素 29.1 ポリエチレン 18~24

窒素 38.0 塩化ビニール 12~16

二酸化炭素 26.2 ベークライト 8~30

一酸化炭素 45.5 アルコール 700~800

アンモニア 56.7 四塩化炭素 1600

メタン 22.3 二硫化炭素 1400

プロパン 37.2 アセトン 640

アセチレン 75.3 ベンゼン 1500

マイカ 50~150 ニトロベンゾール 1300

鉛ガラス 5~20 トルエン 1300

長石磁器 30~35 キシレン 1500

ケーブル紙 6 クロロホルム 1000

ファイバー 7~10 変圧器油 1000

純水 (不純物濃度に依存)

== 実用限界 ==

大気 : 10kV/cm

変圧器油: 一般的には概ね 320kV/cm

 $SF6 : E 89 \times p^{0.6}(0.8)$

まず、Two-loop の第1周回部に焦点をあてる。主な指標は以下のとおり。

65 MeV, 77pC/3ps-1mm mrad (or 7.7pC/0.1ps-0.1mm mrad)

$$(= N/)$$

Twiss parameters は現在設計の最適化を継続されているようで、且つ、場所によって大きく変化する。ただ、殆どの空間で ~16 m であるので、オーダー計算としてはこれを用いる。65MeV 時のビームサイズは概ね、下記のようになる。

「時のヒームサイ人は概ね、下記のようになる
$$< x > \sim \sqrt{\frac{\epsilon \beta_{trans}}{\epsilon}} - \sqrt{\frac{\epsilon_N \beta_{trans}}{\beta \gamma}} \sim 0.2 [mm]$$

同時に、縦方向の長さ(バンチ長)を調べると、65MeV ではほぼ光速なので、

 $\langle s \rangle \sim c T$. 3E8 × 3 E –12 ~ 0.9 [mm]

となり、アスペクト比が1前後の形となる。

Child-Langmuir 則

500kV. 7cm で約 170mA/mm^2。

まとめ

最終目標のビーム状態のイメージ作りを行っている。ビーム電流が大きく、cERL でも MW クラスの大強度ビームになり、又、ビーム利用の観点から非常に密度の高く、自己場(空間電荷効果)による散逸が問題になると考えられ、これが加速電流値の上限指標の一つとなり得る。まずは単純なモデルで試算してみたが、数mで運動量が 1%かわる結果となり、好ましくない結果となった。近似精度はさほどよくはないが、オーダーでかわるものがあるとは考えにくい。シミュレーションでありがちな前提条件・評価式の再確認等慎重な検討が必要である。他の ERL での状況を反映させたいが、他では SECI imit を越えるような運転はされていない。GeV クラスでは小さいな問題であるが、100MeV クラスの中程度のエネルギー特有の問題である印象が強い。

< 参考資料 >

(ERL 関連) KEK Report 2007-7, T Shaftan.

(ERL 関連) KEK Proceedings 2007-8, Dec. 2007. KEK Proceedings 2008-16, Feb. 2009.

(ERL 関連) C.Hernandez-Garcia FEL-2004.363.

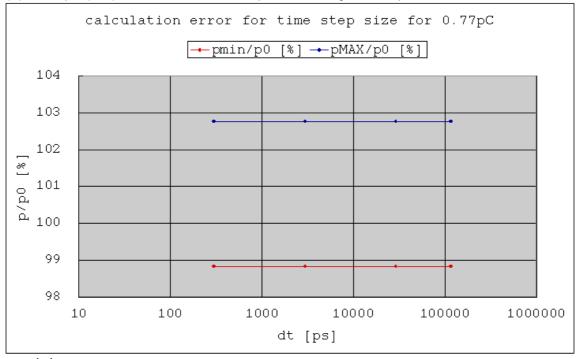
(XFEL 関連) Z. Huang, PRST-AB 7, 080702 (2004).

(XFEL 関連) K. Bane, A. Chao, PRST-AB 5, 104401 (2002).

< 本論主修正履歴 >

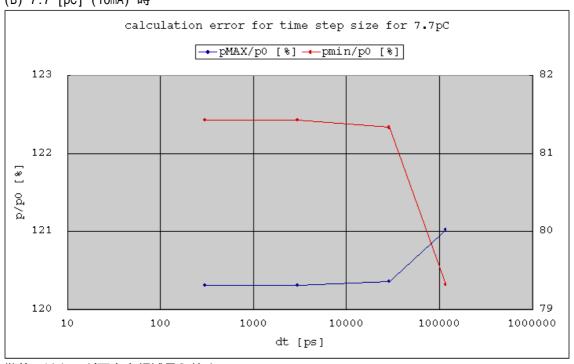
v1: 起題; v2: 初期まとめと GL への起題用編集; v3: 周辺情報追加による本格化

補足1(計算論理確認): ディスク分割数の少なさの影響


0.77 pC (1mA), 65 MeV, 70 m, 3 ps, R0.2 mm, gaussian profile

ERLcERLchargedep.xls		g0	128.201566	broh	0.21851453		
Õ	0.77	[pC]	b0	0.99996958			
		N [#]	pmin [T m]	pMAX [T m]	pmin/p0 [%]	pMAX/p0 [%	
976	25	1001	0.216046		98.870	102.683	
488	13	501	0.215994	0.224473	98.847	102.727	
293	8	301	0.215957	0.224564	98.830	102.768	
196	5	201	0.216028	0.224572	98.862	102.772	
98	3	101	0.215775	0.22495	98.746	102.945	
59	2	61	0.2156	0.225242	98.666	103.079	
30	1	31	0.215455	0.225643	98.600	103.262	
20	1	21	0.214874	0.226006	98.334	103.428	
	103	•••	-	-			
[&]	102						
[%] od/d	101						
Д	100						
	99	مسمو	-	-			
	10)	100	1000	1000	oo	
	10	,	100 N [;		1000	~	

本文の計算は、時間をかけたくないので、N=301 としている。


補足2(計算論理確認): s 方向のステップ幅 当然だが、電界による効果量絶対値がこれで決まるので、電荷量条件に依存する。

(A) 0.77 pC (1mA), 65 MeV, 70 m, 3 ps, R0.2mm, gaussian profile, N=301

安定

(B) 7.7 [pC] (10mA) 時

微差ではあるが不安定領域見え始め

本文の計算では左端の 300 [ps] を採用している。