PADN- 601 (PADN601CERLSCEEstimPrim4.doc) Begun to write since April 14th, 2009. Reformed on June 4th, 2009. Revised on March 15th, 2010. 注:20090526時点においては、未だ個人見解レベルの検討書です。詳しくは ERL-Gr へ。 Particle Accelerator Development Note

Compact ERL 建設のための基礎確認 ~ 周回部の space charge effect (SCE) による加減速・bunch dilution の程度見積 ~ 報告者: 中村英滋 (加速器第六研究系)

要約

電子バンチの空間電荷効果を認識しておくため、自己磁場の見積をしておく。オーダー評価 を行い、大きな影響が有りそうかどうかを調べる。3 ~ 0.1 ps という非常に短いバンチであ るため、電荷量によって MV/m クラスの電界が発生していても不思議ではない。方向性は横方 向を取り挙げることが一般的であるが、ここでは非常に短いバンチでもあり、縦方向の問題も 無視できない。特に、横方向はビーム電流が展開する磁場により発散力は収められ 3乗の抑 制効果を得られる。一般的に wall current の作用が効くことにより縦方向も同じ傾向とされ るが、バンチが極度に小さくなるため、壁まで到達する場は小さくその効果は期待できず、最 悪のケースとしては古典論レベルになる。空洞内では数十 MV/m の強電界がありその効果を抑え るのに十分な場が発生しており 2 次的な問題 (ビームローデング等)として残るが、周回部で は、中程度のエネルギーであることもあり、問題として残る可能性がある。

まずは、イメージ作りをするため、第1近似レベルのオーダー評価を行い、議論するほどの 問題であるかどうかを確認する(運動量偏差で 10%クラスの大きな変化の有無)。周回部では、 dispersion function が 0.5[m] 程度であり、「ビームサイズを1mmクラスにおさめるには dp/p で 0.2%に収める」のが本来の指標であるが、その辺の細かい議論は本論の後とする。 (注: single path の ring であり、偏向電磁石旋回半径が 1[m] であるため 10mm/1%)。

本論の中での代表的な計算結果(自己場による縦方向分散の様子): 初期ガウス分布から、1st loop 1/4 周、1/2、3/4、1 周進むにつれて形状が崩れていく。7.7pC 65MeV。

		日八		
概要	(要約・代表例)	р	1	
序	(試算にあたってのイメージ)	р	2、	3
計算結果1	(フルスペック時)	р	4、	5
計算結果 2	(1/10スペック時)	р	6、	7
計算結果3	(分布の広がり方)	р	8	
計算結果4	(電荷量依存性)	р	9	
まとめ		р	9	
参考資料		р	9	
補足	(計算論理の確認2例)	р 1	0、	11

まず、Two-loop の第1周回部に焦点をあてる。主な指標は以下のとおり。 65 MeV, 77pC/3ps-1mm mrad (or 7.7pC/0.1ps-0.1mm mrad) (= N/) Twiss parameters は現在設計の最適化を継続されているようで、且つ、場所によって大きく変 化する。ただ、殆どの空間で ~16 m であるので、オーダー計算としてはこれを用いる。

65MeV 時のビームサイズは概ね、下記のようになる。

$$< x > \sim \sqrt{\frac{\epsilon \beta trans}{\beta \gamma}} = \sqrt{\frac{\epsilon_N \beta trans}{\beta \gamma}} \sim 0.2 [mm]$$

同時に、縦方向の長さ(バンチ長)を調べると、65MeV ではほぼ光速なので、
 $< s > \sim cT - 3E8 \times 3E - 12 \sim 0.9 [mm]$
となり、アスペクト比が1前後の形となる。

ERLBeamDynamOV MD 3.0ps ~ 0.9mm $eN \sim 1 \text{ mm mrad}$ --> <r> ~ 0.2 mm0.1ps ~ 0.03mm $eN \sim 0.1 \text{ mm mrad}$ --> <r> ~ 0.2 mm

電荷密度は、概ね

0.3 [mC/m^3] 2E+15[#/m^3] (3 [mC/m^3] 2E+16[#/m^3])

楕円体表面の電界は、球平均で 8 [MV/m] (273 [MV/m]) に換算される。

まずは、1次元で加減速の様子を調べる。Transverse 方向への発散もあるが、磁場で戻され るため、次の議論として扱う。概ね下図のようなモデルで考える。多粒子シミュレーションを 実施するわけだが、計算速度の都合上数を減らさねばならない。バンチを longitudinal 方向 に輪切りにし、輪に入る粒子群は同じ運動を行うとみなし、縦方向の運動を調べる。自己場は 中心軸の縦方向電界を各ディスクから計算し、逐次反映させる。運動方程式を直接解く事でバ ンチの広がり具合を確認していく。

自己場(Es) による分散化の様子を調べる

電子ビーム	
周回エネルギー	60-85 MeV
平均電流	10-100 mA
バンチ繰返し	1.3 GHz
規格化エミッタンス	1.0 mm-mrad (77pC時)
	0.1 mm-mrad (7.7pC時)
エネルギー広がり (rms)	< 0.03 %
バンチ長(通常モード)	1-3 ps (rms)
バンチ長(圧縮モード)	0.1 ps (rms)
電子銃 加速電圧	500 kV
入射用超電導加速器	
セル数・空洞数	2 セル・3 空洞
加速勾配	7.4 MV/m (50mA以下の低電流時 14.7 MV/m)
加速電圧	5 M V (50mA 以下の低電流時 10 MV)
主超電導加速器	
セル数・空洞数	9 セル・4 空洞
加速勾配	15-20 MV/m
加速電圧	55-80 MV
周回軌道	
合流部	3 - ダイポール型
アーク部	トリプルベンドアクロマット(TBA)
周長	70 m
冷凍・液化機	600W at 4.4 K or 250 L/h

表1: cERL 目標物理量(KEK Report 2007-7 p.4)

補足式: ディスク電荷群からの電界計算式

Transverse には一様分布とする。

ディスク全体に中心評価電場ができるとみなす(横方向の評価は本論の次の検討事項の扱い)

On the centre of the surface of a bunch disk,

$$E(0;s) = \iiint d V \frac{q}{\varepsilon_0 \ 4 \ \pi \ r^3} \ r = \frac{Q}{\pi \ a^2} \int_0^a d \ r \ 2 \ \pi \ r \ \frac{1}{\varepsilon_0 \ 4 \ \pi \ (r^2 + s^2)^{3/2}} \ s$$
$$= \frac{Q \ s}{2 \ \pi \ a^2 \ \varepsilon_0} \int_0^a d \ r \ \frac{r}{(r^2 + s^2)^{3/2}} = \frac{Q \ s}{2 \ \pi \ a^2 \ \varepsilon_0} \left[-\frac{1}{\sqrt{r^2 + s^2}} \right]_0^a$$
$$= \frac{Q \ s}{2 \ \pi \ a^2 \ \varepsilon_0} \left(\frac{1}{|s|} - \frac{1}{\sqrt{a^2 + s^2}} \right)$$

For large s,

$$E \to \frac{Q s}{2 \pi a^{2} \epsilon_{0}} \left\{ \frac{1}{s} - \frac{1}{s(1 + \frac{a^{2}}{2 s^{2}})} \right\} = \frac{Q s}{2 \pi a^{2} \epsilon_{0}} \frac{\frac{a^{2}}{2 s^{2}}}{s(1 + \frac{a^{2}}{2 s^{2}})}$$

= $\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{s^{2} (1 + \frac{a^{2}}{2 s^{2}})} \sim \frac{Q}{4 \pi s^{2} \epsilon_{0}} (O.K.)$
For small s,
 $E \to \frac{Q}{2 \pi a^{2} \epsilon_{0}} (1 - \frac{s}{a}) \sim \frac{Q}{2 \pi a^{2} \epsilon_{0}} (O.K.)$

<u>計算結果1(77pC 時)</u>

ディスク数: 300

70m (first loop 相当) for 65MeV; 90m for 125MeV and 5GeV 走行距離 : 77 pC / 3 ps幅 電荷条件 :

まとめ1: エネルギー・ビーム径による結果

	初期energy	初期分布	Rdisk [mm]	結果:		
				Etail	Ehead	バンチ長
(a)	65 MeV	flat	0.2 mm	18 MeV	285 MeV	(diluted)
(b)	65 MeV	gaussian	0.2 mm	19	170	(diluted)
(c)	125 MeV	flat	0.2 mm	25	540	(diluted)
(d)	125 MeV	gaussian	0.2 mm	26	293	(diluted)
(e)	125 MeV	flat	0.1 mm	22	917	(diluted)
(f)	125 MeV	gaussian	0.1 mm	23	364	(diluted)
(g)	5 GeV	flat	0.2 mm	4.39 GeV	5.67 GeV	変化無し
(h)	5 GeV	gaussian	0.2 mm	4.92	5.08	変化無し
(i)	5 GeV	flat	0.003 mm	(0.028)	(33)	(OverFlow)
(j)	5 GeV	gaussian	0.003 mm	4.89	5.11	変化無し

細目: 第1項目の各分布

100

E.C

s [m]

-0.014 -0.012 -0.01 -0.008 -0.006 -0.004 -0.002

0.002

0

0.004

26Me\

-0.008

-0.01

10

000

-0.006 -0.004

-0.0

s [m]

2931 0.002

0.004

計算結果2(7.7pC 時)

ディスク数: 300

走行距離 : 70m (first loop 相当) for 65MeV ; 90m for 125MeV and 5GeV 電荷条件 : 7.7 pC / 3 ps 幅

まとめ1: エネルギー・ビーム径による結果

	初期 energy	初期分布	Rdisk [mm]	結果:		
				Etail	Ehead	バンチ長
(a)	65 MeV	flat	0.2 mm	43 MeV	94 MeV	6 ps
(b)	65 MeV	gaussian	0.2 mm	54	78.5	8 ps
(c)	125 MeV	flat	0.2 mm	62	175	4 ps
(d)	125 MeV	gaussian	0.2 mm	105	134	3.5 ps
(e)	125 MeV	flat	0.1 mm	69	212	4 ps
(f)	125 MeV	gaussian	0.1 mm	98	136	5 ps
(g)	5 GeV	flat	0.2 mm	4.94 GeV	5.06 GeV	変化無し
(h)	5 GeV	gaussian	0.2 mm	4.98	5.01	変化無し
(i)	5 GeV	flat	0.003 mm	(2.26)	(7.81)	変化無し
(j)	5 GeV	gaussian	0.003 mm	4.99	5.01	変化無し

細目: 第1項目の各分布 (注:各表の電荷量記載 77pC は誤りで、正しくは 7.7pC)

(7.81GeV)

0.0005 0.001 0.0015

0

s [m]

50000

4.99Ge\

-0.0025 -0.002 -0.0015 -0.001 -0.0005

5.0166

0.0005 0.001 0.0015

0

s [m]

50000

-0.0025 -0.002 -0.0015 -0.001 -0.0005

計算結果3(分布の広がり方の一例)

ディスク数: 300

走行距離 : 70m(first loop 相当)for 65MeV

電荷条件 : 7.7pC / 3 ps幅 / gaussian profile , beam 径 0.2mm

計算結果4(電荷量依存性)

ディスク数: 300

走行距離 : 70m(first loop 相当) for 65MeV 電荷条件 : 3 ps 長

ဨႜ႓ႃၣၭၓ

<< 95%幅での運動量偏差 >> ERLcERLchargedep.xls | g0 128.201566 broh 0.21851453 b0 0.99996958 pmin [T m] pMAX [T m] pmin/p0 [% pMAX/p0 [%] I [mA] Q [pC] 100 77 31.012 0.067765 0.563891 258.057 10 7.7 0.177941 0.262894 81.432 120.310 0.77 0.207885 0.232425 95.136 106.366 1 0.2 0.154 0.21747 0.222863 99.522 101.990 101.386 0.077 0.218811 0.221543 100.136 0.1 0.03 0.0231 0.219772 0.220599 100.575 100.954 0.01 0.0077 0.220049 0.220326 100.702 100.829

まとめ

最終目標のビーム状態のイメージ作りを行っている。ビーム電流が大きく、cERL でも NW ク ラスの大強度ビームになり、又、ビーム利用の観点から非常に密度の高く、自己場(空間電荷効 果)による散逸が問題になると考えられる。類似の現象は既に下記参考資料に報告がなされてい る。これが加速電流値の上限指標の一つとなり得る。まずは単純なモデルで試算してみたが、 数mで運動量が 1%かわる結果となり、好ましくない結果となった。近似精度はさほどよくはな いが、オーダーでかわるものがあるとは考えにくい。シミュレーションでありがちな前提条件・ 評価式の再確認等慎重な検討が必要である。他の ERL での状況を反映させたいが、他では SECI imit を越えるような運転はされていない。GeV クラスでは小さな問題であるが、100MeV ク ラスの中程度のエネルギー特有の問題である印象が強い。

< 参考資料 >

- (ERL 関連) KEK Report 2007-7, T Shaftan.
- (ERL 関連) KEK Proceedings 2007-8, Dec. 2007. KEK Proceedings 2008-16, Feb. 2009.
- (ERL 関連) C.Hernandez-Garcia FEL-2004, 363.
- (XFEL 関連) Z. Huang, PRST-AB 7, 080702 (2004).
- (XFEL 関連) K. Bane, A. Chao, PRST-AB 5, 104401 (2002).
- < 本論主修正履歴 >
- v1: 起題; v2: 初期まとめと GL への起題用編集; v3: 周辺情報追加による本格化

補足1(計算論理確認): ディスク分割数の少なさの影響

 $0.77\ pC\ (1mA)\,,\ 65\ MeV\,,\ 70\ m,\ 3\ ps,\ R0.2mm,\ gaussian\ profile$

		1			1		
ERLcERLchargedep.xls		g0	128.201566	broh	0.21851453		
Q	0.77	[pC]	b0	0.99996958			
		N [#]	pmin [T m]	pMAX [T m]	pmin/p0 [%]	pMAX/p0 [%]	l
976	25	1001	0.216046	0.224378	98.870	102.683	
488	13	501	0.215994	0.224473	98.847	102.727	
293	8	301	0.215957	0.224564	98.830	102.768	
196	5	201	0.216028	0.224572	98.862	102.772	
98	3	101	0.215775	0.22495	98.746	102.945	
59	2	61	0.2156	0.225242	98.666	103.079	
30	1	31	0.215455	0.225643	98.600	103.262	
20	1	21	0.214874	0.226006	98.334	103.428	

本文の計算は、時間をかけたくないので、N=301 としている。

補足2(計算論理確認): s方向のステップ幅 当然だが、電界による効果量絶対値がこれで決まるので、電荷量条件に依存する。

(A) 0.77 pC (1mA), 65 MeV, 70 m, 3 ps, R0.2mm, gaussian profile, N=301

微差ではあるが不安定領域見え始め

本文の計算では左端の 300 [ps] を採用している。