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Coherent synchrotron radiation (CSR) fields are generated when a bunched beam moves along a curved trajectory. A new code, named CSRZ,

was developed using finite difference method to calculate the longitudinal CSR impedance for a beam moving along a curved chamber. The

method adopted in the code was originated by Agoh and Yokoya [Phys. Rev. ST Accel. Beams 7 (2004) 054403]. It solves the parabolic equation

in the frequency domain in a curvilinear coordinate system. The chamber considered has uniform rectangular cross-section along the beam

trajectory. The code was used to investigate the properties of CSR impedance of a single or a series of bending magnets. The calculation results

indicate that the shielding effect due to outer chamber wall can be well explained by a simple optical approximation model at high frequencies. The

CSR fields reflected by the outer wall may interfere with each other along a series of bending magnets and lead to sharp narrow peaks in the CSR

impedance. In a small storage ring, such interference effect can be significant and may cause microwave instability, according to a simple

estimate of instability threshold. # 2012 The Japan Society of Applied Physics

1. Introduction

Coherent synchrotron radiation (CSR) fields are generated
when a bunched beam moves along a curved trajectory. The
interests on CSR have been growing since the late 1980s
when numerous dedicated synchrotron light sources were
built and operated. A comprehensive historical review has
been readily in hand in ref. 1. In general, CSR wakefield
and CSR impedance are calculated in the time domain and
frequency domain respectively. The longitudinal beam
dynamics effect could then be evaluated.

CSR of an ultra-relativistic beam moving in a toroidal
chamber has been studied extensively. The steady-state CSR
in free space was addressed in refs. 2 and 3. The transient
effect in free space was studied in ref. 4. The steady-state
CSR in a rectangular toroidal chamber was also well
understood.5–7) The steady-state CSR between parallel plates
has been studied by in ref. 8. For a single bending magnet
with a vacuum chamber, Agoh and Yokoya9) and Stupakov
and Kotelnikov10) have developed different frequency-
domain methods to calculate the CSR impedance of a single
magnet. Starting with the same wave equation, a time-
domain integration method was developed in ref. 11 to
calculate CSR wakefields with space-charge included.
CSR fields may interfere with each other along a series of
bending magnets. In such cases, one-dimensional time-
domain method has also been investigated effectively in
the literature.12,13) But usually parallel plates model was used
to address the shielding effect of the chamber walls.

This paper follows Agoh and Yokoya’s method9)

to calculate CSR generated by a beam moving along an
arbitrary trajectory. The beam trajectory could be generated
by a single bending magnet (see Fig. 1), or a series of
bending magnets. The relevant chamber along a series of
bending magnets can be extended from Fig. 1 by adding
more curved sections. At present, we assume the chamber
has a uniform rectangular cross-section along the beam
trajectory. To close the problem, two long straight sections
are added before the entrance and after the exit of the
chamber. Meanwhile, the walls of the chambers are perfectly

conducting and always parallel to the beam orbit. This is
essential to simplify the boundary conditions for the field
equations so that the problem could be reduced to a two-
dimensional one.

We continue the studies presented in refs. 9 and 10 and do
investigations in the following aspects: 1) the features of
longitudinal CSR impedance in a single bending magnet; 2)
the interference of CSR fields in a series of bending magnets
and its effect on impedance. In x2, we will briefly discuss
the fundamental equations for CSR theory. The numerical
schemes will be described in x3. Several examples of CSR
impedance calculations will be presented in x4. The CSR
instability is addressed in x5. Section 6 is the summary and
remarks of this work.

The method described in this paper can also be applied to
calculate the CSR impedance in a wiggler or an undulator.
The interested readers are referred to ref. 14.

2. Problem Statement

The fundamental equation adopted in our studies of CSR
is the parabolic equation in the frequency domain in a
curvilinear coordinate with the origin on the beam
trajectory9,15)
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where E? is the transverse electric field, and RðsÞ is the
s-dependent bending radius along the beam orbit. �0 is the
vacuum permittivity. The beam is assumed to be rigid, i.e.,
the charge density �0 does not vary along s.

Fig. 1. (Color online) Geometry of the curved chamber for a single

bending magnet. An infinitely long straight chamber is connected after the

exit of the curved section. The beam moves along the curved line with

arrows. The origin of the coordinate system coincides with the beam orbit.
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With paraxial approximation,9) the longitudinal electric
field is derived from the transverse fields and approximated
as

Es ¼ i

k
ðr? � E? � �0cJsÞ; ð2Þ

where �0 is the vacuum permeability, c is the speed of
light in vacuum, and Js ¼ �0c is the current density. The
detailed derivations of the above equations can be found
in refs. 9, 15, and 16. We will not discuss the validity of
these equations either, because it has been well addressed
in refs. 7 and 10.

Equation (1) also describes the field evolution in a straight
chamber where the inverse bending radius is zero:
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In our calculations, beam has a point charge form in the
longitudinal direction. Then the longitudinal impedance is
calculated by directly integrating Es over s

ZðkÞ ¼ � 1

q

Z 1

0

Esðxc; ycÞ ds ð4Þ

where ðxc; ycÞ denotes the center of the beam in the
transverse x–y plane. The appearance of the minus sign in
eq. (4) is due to the convention of the beam instability
formalism.

For a point charge or extremely small sizes in the
transverse directions, the second term inside the brackets in
eq. (1) is singular or highly peaked in the vicinity of the
beam. It was found in ref. 9 that field separation approach
can be adopted to smooth the field distribution. That is, to
remove this singularity in numerical solution, the total field
is separated into two parts: beam field in free space Eb

? and
radiation field Er

?. For an ultra-relativistic beam, the beam
field is perpendicular to the beam orbit and is independent of
s. Eb

? satisfies Poisson’s equation as follows
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Then the evolution equation for the radiation field can be
written as

@Er
?

@s
¼ i

2k
r2

?E
r
? þ 2k2x

RðsÞ ðE
r
? þ Eb

?Þ
� �

: ð6Þ

Similarly, for the field in the straight chamber, the field
evolution is approximately described by
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We will call Er
? in a straight chamber as radiation field

and will not differentiate it from the CSR field. With the
assumption of ultra-relativistic beam, the beam field in free
space does not contribute to the longitudinal electric field, so
eq. (2) is equivalent to9)

Es ¼ i

k
r? � Er

? ð8Þ

Practically, in numerically calculations, the beam trans-
verse size is assumed to be small. The distribution function
is bi-Gaussian as follows
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where q is the total charge of the beam and �ðkÞ indicates the
beam spectrum in the longitudinal direction. In a typical
calculation, we set �ðkÞ ¼ 1, q ¼ 1C, �x ¼ 0:1mm, and
�y ¼ 0:01mm. With such small beam sizes, the beam field is
still well concentrated in the vicinity of beam center. But it
will not cause problem in numerical calculations, because
the sharp peak of Eb

? will be smoothed out by multiplying a
small value of x in eq. (6).

3. Numerical Schemes

The numerical algorithms adopted in our work are adapted
from the mesh methods originally presented in ref. 9. We
start by dividing the rectangular domain ð0; aÞ � ð0; bÞ in the
x–y plane into an equidistant M � N mesh in the x and y
direction with a step size of �x ¼ a=M and �y ¼ b=N,
respectively. The mesh is shown in the solid lines in Fig. 2.
The grid points in the x–y plane are given by

ði; jÞ ¼ ði�x� xc; j�y� ycÞ: ð10Þ
For any function of space and s we put

Fnði; jÞ ¼ Fði�x� xc; j�y� yc; n�sÞ ð11Þ
where �s indicates the step size along s.

The transverse electric fields are sampled by staggering
the grid in half of a cell in both the x- and y-directions (see
Fig. 2). The grid staggering provides the convenience
of discretizing the field evolution equations.9) Furthermore,
it is also essential to remove the computational high-
frequency modes in the finite difference formulation. The
second-order derivative is calculated by applying central
finite difference approximation and the derivative with
respect to s is approximated by the leapfrog difference. The
leapfrog algorithm is fully explicit and conditionally stable.
Unconditionally stable implicit schemes are available17–19)

and have the advantages of allowing for large step size �s.
However, they are usually more complicated to program.
For example, in each solution step the matrix inversions will
be involved, which required more computational efforts.
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Fig. 2. (Color online) Staggered grid definition with ghost points outside

the boundary of the chamber. The positions of various field components are

shown. Equidistant spacing in the x and y directions is assumed. The outer

all is to the right.

D. Zhou et al.Jpn. J. Appl. Phys. 51 (2012) 016401

016401-2 # 2012 The Japan Society of Applied Physics



The grid in the x–y plane, as shown in Fig. 2, does not
vary along s due to the assumption of uniform chamber
cross-section. The second-order central finite difference
requires additional ghost points which are half cell outside
the chamber wall surfaces. The equivalent finite-difference
equations for the evolution equations and the boundary
conditions will be skipped in this paper. For the details,
readers are referred to refs. 9, 14, and 16.

4. Numerical Results

The methods discussed in x2 and x3 are implemented in a
new code named CSRZ using the programming language
FORTRAN 90 on a workstation. In this section, we will
present a few examples of using this code. Through this
section, the beam is always located at the center of the
chamber in the x–y plane, i.e., ðxc; ycÞ ¼ ða=2; b=2Þ.

4.1 Single bending magnet

We start to calculate the longitudinal CSR impedance of a
single short bending magnet with constant bending radius in
a curved chamber. The magnet parameters are chosen as the
same as Fig. 9 in ref. 10: the bending radius R ¼ 1m, and
the length of the curved chamber Lb ¼ 0:2m. The horizontal
and vertical dimensions of the chamber’s cross-section are
a ¼ 6 cm and b ¼ 2 cm, respectively. The calculation results
were compared with those given by Stupakov’s code10) (see
Fig. 3). The comparison shows a good agreement in general.
The tiny discrepancy in the high frequency impedance is due

to the mesh sizes we chose in calculation. Decreasing the
mesh sizes, resulting in longer computer time, can give
better results which are converged to those given by the
mode expansion method.10) Thus, the benchmark between
two independent methods confirmed the capability of the
new code CSRZ.

The previous example shows smooth CSR impedance for
a short magnet. In the next example, we investigate the
influence of the length of the curved chamber. At this time,
we choose R ¼ 5m, a ¼ 6 cm, and b ¼ 3 cm and vary the
curved chamber length as Lb ¼ 0:5; 2; 8m. The impedance
results are shown in Figs. 4(a) and 4(b). In the same figures,
we also plot the results given by the parallel plates model.9)

And the corresponding wake potentials with a short bunch
of rms length �z ¼ 0:5mm are given in Fig. 5. When
Lb ¼ 0:5m, which indicates a short curved chamber, the
impedance is very smooth. When the curved chamber gets
longer, the impedance becomes fluctuating with an interval
of around 1.3mm�1 in wavenumber and eventually results in
a series of resonant peaks. This observation clearly indicates
that the CSR impedance is actually correlated to the
eigenmodes of the curved chamber.15) When the curved
chamber is long enough, some specific modes which fulfill
the phase matching condition can be strongly excited by the
beam and become dominant in the radiation fields.
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Fig. 3. (Color online) CSR impedance for a single bending magnet with

R ¼ 1m and Lb ¼ 0:2m for (a) real part and (b) imaginary part. The

dimensions of the chamber cross-section are a ¼ 6 cm, and b ¼ 2 cm. The

blue solid and red dashed lines are given by Stupakov’s code and the code

CSRZ, respectively.
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Fig. 4. (Color online) CSR impedance for a single bending magnet with

R ¼ 5m and varied length of the curved chamber Lb ¼ 0:5; 2; 8m for

(a) real part and (b) imaginary part. The dimensions of the chamber cross-

section are a ¼ 6 cm, and b ¼ 3 cm. The impedances have been normalized

by the length of the curved chamber. Blue solid lines: Lb ¼ 0:5m; red solid

lines: Lb ¼ 2m; green dashed lines: Lb ¼ 8m; black solid lines: parallel

plates model. The purple and black dashed lines denote Ex and Ey modes

with p ¼ 1, respectively.
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One can compare the wavenumbers at the resonant peaks
in Fig. 4 with the analytical predictions shown in refs. 6, 7,
and 15. According to ref. 7, the resonant peaks should
appear at wavenumbers

kmp ¼ p�

b

ffiffiffiffiffi
R

xo

r
�

bðm� 0:25Þ
pxo

� �
; ð12Þ

where the integer indices m and p denote the individual
mode of the curved chamber and xo is the distance from the
beam to the outer wall in the horizontal plane. The plus sign
in eq. (12) indicates Ex modes in which Ey ¼ 0 and m ¼
0; 1; 2; 3; . . .; the minus sign indicates Ey modes in which
Ex ¼ 0 and m ¼ 1; 2; 3; . . .. p must be odd numbers, i.e.,
p ¼ 1; 3; 5; . . .. Finally, �ðrÞ is defined by

�ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð13Þ
When r is large, �ðrÞ can be approximated by 3r=23=2.7) It
infers that the resonance peaks in the CSR impedance are
almost equally spaced along the wavenumber axis. The
resonances are indicated by vertical dashed lines in Fig. 4.
They agree well with the observed peaks from numerical
calculations.

As stated in refs. 7 and 10, when the aspect ratio of the
curved chamber a=b is larger than 2, the shielding of the
inner and outer walls can be neglected and the parallel plates
model is a good approximation for a long bending magnet.
This criteria works well in the low frequency region with
k < kth as proved in ref. 7. Here kth is the shield threshold
defined by7)

kth ¼ �

ffiffiffiffiffi
R

b3

r
: ð14Þ

Our calculations do agree with this criteria as depicted in
Fig. 4. On the contrary, in the high frequency region, the
CSR impedance significantly differs from the parallel plates
model and exhibits fluctuations and even narrow resonance

peaks for a long curved chamber. A geometrical explanation
for this observation was proposed in ref. 20 as illustrated in
Fig. 6. CSR field is radiated in the direction almost tangent
to the beam trajectory when a beam enters the curved
chamber. The outer wall plays a role of mirror and reflects
the field back to the beam. If the curved chamber is long
enough, the reflected fields can accumulate and become
significant. The geometrical picture of CSR suggests a
critical length of

Lo ¼ 2R�o � 2
ffiffiffiffiffiffiffiffiffiffi
2Rxo

p
ð15Þ

for the curved chamber. Here �o ¼ arccos½R=ðRþ xoÞ� �ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xo=R

p
, and the approximation is justified when the

chamber dimension is much smaller than the bending radius,
i.e., xo 	 R. If Lb 
 Lo, some specific modes can be
strongly excited and results in the fluctuations or resonant
peaks in the CSR impedance. If Lb � Lo, such fluctuations
will be negligible. But if Lb 	 Lo, transient effect will also
become important. The critical length indicates a length
when the reflection of the outer wall becomes important. But
Lo does not depends on the aspect ratio of the pipe cross-
section. Therefore, the condition of neglecting shielding
due to the outer wall, i.e., Lb � Lo, can be a supplement for
k > kth.

Similar to the optical approximation in the theory of
geometric impedance,21) the critical length Lo defined by
eq. (15) can also be interpreted as a catch-up distance over
which the CSR, generated by the head of a beam, reflects
from the outer wall and reaches the beam tail at length
�so behind the head. It is easy to calculate �so from the
geometry shown in Fig. 6, and the result is20)

�so ¼ 2Rðtan �o � �oÞ � 4

3

ffiffiffiffiffiffiffiffi
2x3o
R

r
: ð16Þ

The quantity �so corresponds to a modulation wavenumber
of20)

�k ¼ 2�

�so
� 3�

2

ffiffiffiffiffiffiffiffi
R

2x3o

s
: ð17Þ

It turns out that �k ¼ kðmþ1Þp � kmp is exactly the distance
between adjacent resonances for the same vertical index p
and large argument r in eq. (13). When comparing �so with
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Fig. 5. (Color online) Short-bunch wake potentials due to CSR in a single

bending magnet with R ¼ 5m and varied length of the curved chamber

Lb ¼ 0:5; 2; 8m. The dimensions of the chamber cross-section are

a ¼ 6 cm, and b ¼ 3 cm. The gaussian bunch length �z ¼ 0:5mm with

bunch head to the left side. The wake potentials have been normalized by

the length of the curved chamber. Blue solid lines: Lb ¼ 0:5m; red solid

lines: Lb ¼ 2m; green dashed lines: Lb ¼ 8m; black solid lines: parallel

plates model.

R θo

Fig. 6. CSR reflected by the outer wall of the beam pipe. The beam starts

to radiate fields at the entrance of the curved chamber. The dashed curve

without arrows on it denotes the beam orbit. The arrowed dashed lines

represent the direction of the radiation fields.
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the bunch length �z, one can find the condition of neglecting
outer-wall shielding effect in evaluating CSR induced
instability, i.e., �so 
 �z. Namely, this condition says that
the reflected CSR fields from the outer wall can never catch
up with the beam tail and thus has no influence on the beam
in total.

One can check eqs. (16) and (17) by applying them to the
examples depicted in Fig. 4(a). The value �k ¼ 1:4mm�1 is
close to the observed value of 1.3mm�1. �so ¼ 4:4mm is
roughly the distance at which the first peak appears in the tail
part of the wake potential in Fig. 5. Since the bunch length
�z ¼ 0:5mm is much smaller than �so, the amplitude of
the wake potential in the vicinity of the beam is almost
independent of magnet length. Thus, we can conclude that
the outer-wall shielding mainly impose effects in the tail part
of CSR wake.

As depicted in Fig. 6, the radiation fields take a longer
path than the beam. Thus, the previous discussions on
outer-wall shielding holds for the trailing fields. A similar
geometric interpretation holds for the shielding of over-
taking fields due to the inner chamber wall. Detailed
discussions are given in ref. 22. The relevant critical length
of the curved chamber is

Li ¼ 2R�i � 2
ffiffiffiffiffiffiffiffiffiffi
2Rxi

p
; ð18Þ

with �i ¼ arccos½ðR� xiÞ=R� �
ffiffiffiffiffiffiffiffiffiffiffiffi
2xi=R

p
. The quantity xi is

the distance from the beam to the inner wall in the horizontal
plane, and the approximations are justified if xi 	 R. When
the beam travels the distance of Li, the radiation fields will
overtake the head of the beam at

�si ¼ 2Rð�i � sin �iÞ � 2

3

ffiffiffiffiffiffiffiffi
2x3i
R

r
: ð19Þ

If �si 
 �z, one can expect that the overtaking fields will
reach the bunch head without seeing the inner chamber wall.
Thus, the shielding due to the inner wall will be negligible.
On the other hand, if �si < �z, the inner-wall shielding
should be taken into account.

In summary, the shielding effects of the outer and inner
walls can be treated separately: the trailing fields reflect at
the outer wall, resulting in a head-to-tail interaction; the
overtaking fields may be shielded by the inner wall, affecting
the well-known tail-to-head interaction. In a storage ring, it
is usually true that the beam centroid coincides with the
center of the vacuum chamber. In this case, we will have
xo ¼ xi ¼ a=2, Lo ¼ Li, and �si ¼ �so=2. It turns out that
the condition of neglecting chamber-wall shielding can be
approximated as �z 	

ffiffiffiffiffiffiffiffiffiffi
a3=R

p
. This is exactly the condition

found in ref. 22.

4.2 Interference in a series of bending magnets

In a realistic storage ring, the bending magnets are arranged
consecutively along the beam orbit. There is a concern that
interference may enhance CSR fields generated in a series of
bending magnets. Our code can treat this case straightfor-
wardly. As an example, we place four identical hard-edge
magnets along s. The drift chambers between the 4 magnets
are also identical. In this case, R�1ðsÞ can be described by a
step function. The parameters for the magnets and chamber
are R ¼ 5m, Lb ¼ 2m, a ¼ 6 cm and b ¼ 3 cm. The length
of the drift chambers is Ld ¼ 2m. The impedance is plotted

in Figs. 7(a) and 7(b) and compared with that of single
magnets. The corresponding wake potentials with a short
bunch of rms length �z ¼ 0:5mm are given in Fig. 8.
One sees that the impedance spectrum contains a forest of
peaks, which indicate that specific eigenmodes can satisfy
the phase matching conditions and will be excited by
the beam. The impedance of a single magnet looks to be
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Fig. 7. (Color online) CSR impedance for four bending magnets

interleaved with equidistant drift chambers for (a) real part and

(b) imaginary part. The magnet parameters: R ¼ 5m, Lb ¼ 2m. The length

of drift chamber: Ld ¼ 2m. The dimensions of the chamber cross-section:

a ¼ 6 cm, b ¼ 3 cm. The blue and dashed red lines are the impedances with

and without considering interference, respectively.
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Fig. 8. (Color online) Short-bunch wake potentials due to CSR in four

bending magnets interleaved with equidistant drift chambers. The magnet

parameters: R ¼ 5m, Lb ¼ 2m. The length of drift chamber: Ld ¼ 2m.

The dimensions of the chamber cross-section are a ¼ 6 cm, and b ¼ 3 cm.

The gaussian bunch length �z ¼ 0:5mm with bunch head to the left side.

The wake potentials have been normalized by the number of magnets.
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broad-band approximation of that of a series of magnets.
The narrow spikes in the impedance lead to long-range
wake fields far behind the bunch as seen in the wake
potential.

Naturally one can suspect that if there are many bending
magnets placed in a long curved chamber, many high peaks
may exists in the CSR impedance. This is proved by a more
practical case of the SuperKEKB positron damping ring.
In the SuperKEKB damping ring,23) there are two arc
sections. In each section, there are in total 16 cells. Each
cell contain two reverse bending magnets,24) of which the
bending radius as a function of s is shown in Fig. 9. The
drift between consecutive cells is around 1m. The vacuum
chamber cross-section is approximated by a square with
a ¼ b ¼ 3:4 cm. The CSR impedances of one arc section
(in total 16 cells), of 6 consecutive cells, and of 1 cell
are calculated. The results are compared with that of single-
bend model as shown in Figs. 10(a) and 10(b). It is not
surprising that many narrow and high peaks appear in
the impedance spectrum when the number of cells grows.
And the CSR impedance calculated using single magnet
model again provides a broad-band approximation. The
wake potentials with rms bunch length of 0.5mm corre-
sponding to the previous impedances are plotted in Fig. 11.
The figure clearly shows that the tail parts are strongly
modulated due to interference effect. We also observed that
the shape of wake potential due to 6 cells is already close
to that of 16 cells at the distance less than 20mm to the
beam center. This is because that the CSR fields generated
at the first cells keeps far behind the beam and almost are
damped out in the range considered after the beam traverses
several arc cells.

5. Microwave Instability Threshold Due to CSR

As shown in Fig. 10, in a practical ring like SuperKEKB
positron damping ring, CSR impedance including inter-
ference effect contains sharp narrow peaks. The peaks
indicates field resonances generated by consecutive bending
magnets. There is concern that if such resonant CSR
impedance is considered, beam will become unstable. The
threshold of microwave instability due to CSR can be
estimated by solving the dispersion relation25,26) or by
solving Vlasov–Fokker–Planck equation.27) For a simple
instability analysis, one can apply the Keil–Schnell criter-
ion28) to a bunched beam29)

Zk
n

����
���� < FZ0

	
p�
2
��z

N0re
; ð20Þ

where Zk=n is the longitudinal impedance driving the
instability, 
p is the momentum compaction factor, �� is
the relative energy spread, �z is the rms bunch length, N0 is
the bunch population, re is the classical radius of electron. F
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Fig. 9. (Color online) Bending radius as a function of s for one cell in the

arc sections of SuperKEKB positron damping ring.
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Fig. 10. (Color online) CSR impedance of the arc section in the

SuperKEKB positron damping ring for (a) real part and (b) imaginary part.

The impedances have been normalized by the number of cells for

convenience of comparision. Blue solid line: 16 cells; red dashed line: 6

cells; Green dashed line: 1 cell; Black solid line: single-bend model.

−5 0 5 10 15 20

−60

−40

−20

0

20

40

z (mm)

−W
||
(V

 /p
C

)

Fig. 11. (Color online) Short-bunch wake potentials due to CSR in the

arc section of SuperKEKB positron damping ring. The gaussian bunch

length �z ¼ 0:5mm with bunch head to the left side. The wake potentials

have been normalized by the number of cells. Blue solid line: 16 cells; red

dashed line: 6 cells; Green dashed line: 1 cell; Black solid line: single-bend

model.
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is a form factor, for a gaussian bunch, we take it as F ¼ffiffiffiffiffiffiffiffi
�=2

p
. n ¼ !=!0 is the harmonic and !0 is the revolution

angular frequency. The above equation is also called Keil–
Schnell–Boussard criterion. It is apparent that this criterion
can only provide a crude estimate of the instability threshold
in a storage ring. As pointed out in ref. 30, this criterion is
only correct for a broad-band impedance wider than
the frequency spectrum of the bunch. In principle, sharp
resonances can also drive microwave instabilities.31) But, as
derived from ref. 30, it is more appropriate to use a modified
criterion as follows:ffiffiffiffiffiffi

2�
p

k0�z

4

Rs

Q

�����
����� < FZ0

	
p�
2
��z

N0re
; ð21Þ

to detect the instability threshold driven by sharp resonances,
of which the frequency width is much narrower than that of
bunch spectrum. In the above equation, k0 ¼ !0=c ¼ 2�=C
where C is the circumference of the storage ring. One should
notice that eq. (21) is written in the form that it has the same
right side as eq. (20). In the above equation, Rs is shunt
impedance, Q is quality factor and kr is the resonant
impedance. These parameters define the well-known reso-
nator impedance model of

ZkðkÞ ¼ Rs

1þ iQðkr=k � k=krÞ : ð22Þ

As an example, let us examine the resonant peak at
kr ¼ 1:264mm�1 in the CSR impedance shown in Fig. 10.
This peak is close to the first mode defined by eq. (12) and
exhibits large amplitude and relatively large width. As
shown in the figure, Rs andQ should be functions of number
of cells Ncell. We fit this peak using eq. (22) and get the
corresponding parameters of Rs and Q. The results are
plotted in Fig. 12. The figures show that the quality factor
is almost a linear function of Ncell. And Rs=Q=Ncell

converges to a constant of around 130� when Ncell > 5,
this agree with the shape of calculated wake potentials
in Fig. 11. Larger values are observed at Ncell < 5 and we
believe it is due to fitting errors. It is seen that for small
number of cells, the CSR impedance spectrum becomes
broad-band and neighboring resonant peaks overlap with
each other.

Next we check the instability threshold using a set of
machine parameters of SuperKEKB positron damping ring
as shown in ref. 23. The parameters are listed as follows:
C ¼ 135:5m, 	 ¼ 2153, 
p ¼ 0:0141, �� ¼ 5:5� 10�4,
�z ¼ 7:74mm, N0 ¼ 5:0� 1010. Using these parameters,
the right hand side of eq. (21) is calculated to be 0.24�.

The bunch length of �z ¼ 7:74mm corresponds to a
critical bandwidth 0.13mm�1 in unit of wavenumber. With
kr ¼ 1:264mm�1, the critical quality factor is Qth ¼ 9:8.
Comparing with Fig. 12(a), we conclude that whenNcell > 5,
eq. (21) should be applied. Choosing Rs=Q=Ncell ¼ 130�

and taking into account the total number of cells Ncell ¼ 32

for two arc sections, we obtain an impedance of 0.95�
for the left hand side of eq. (21). This value is quite above
0.24� which is defined by machine parameters. It implies
that CSR may be of importance in the SuperKEKB positron
damping ring. More careful studies via standard numerical
simulations, which is beyond the scope of this paper, should
be done to estimate the threshold with CSR included.

6. Summary and Remarks

In this paper we presented the numerical calculations of
the longitudinal CSR impedance for a beam moving in
an arbitrarily curved chamber. The CSRZ code was used
to investigate the properties of CSR impedance of a single
bending magnet. It turns out that the magnet length, in addi-
tion to the chamber aspect ratio, may also play an important
role in defining the profile of CSR impedance and wake
function. For a long magnet, the shielding effect of the outer
wall can be well understood using a geometric model. With
this code, the interference among CSR fields in a series
of bending magnets could be approached. The calculations
revealed that the interference can be significant in a small
storage ring. In such a ring, the bending radius may be in the
order of a few meters, and the CSR fields reflected by the
outer wall may reach the bunch tail if the bunch length is in
the order of a few millimeters. Our studies suggested that
during evaluating the CSR instabilities in a small storage
ring, interference effect should be taken into account.
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