On MADX sequence file and optics matching for HE-LHC

Demin Zhou

Acknowledgements:

M. Benedikt, M. Crouch, J. Jowett, R. De Maria, S. Fartoukh, M. Giovannozzi, M. Hofer, P. Martinez, Y. Nosochkov, K. Oide, T. Risselada, L. Riesen-Haupt, D. Sagan, D. Schoerling, R. Tomas, P. Thrane, E. Todesco, D. Tommasini, F. Zimmermann

6th HE-LHC optics meeting, CERN, Oct. 17, 2017

Outline

- > On MADX sequence file for HE-LHC
- **Comments on HE-LHC V0.1 via SAD**
- **Future plan**

Compare the "average beam" of LEP and (HE-)LHC

- Current baseline: merged_HE-LHC.18x60_v102.seq (Orange line)
- Need to switch to merged_HE-LHC.18x60_tr.seq, but need further improvement in geometry (by Thys)
 - HE-LHC V0.2 can be based on merged_HE-LHC.18x60_v102.seq

► Global variables: Ring separation

• merged_HE-LHC.18x60_v102.seq:

const aip1 = 0.008285831213598*bsep; const aip2 = 0.007899520984845*bsep; const aip3 = 0.000566187234257; const aip4 = 0.001571604107948; const aip5 = 0.008285831213598*bsep; const aip7 = 0.000377458178579; const aip8 = 0.007899520984845*bsep;

• LHC V6.5.seq:

REAL CONST sep_ARC REAL CONST sep_IR3 REAL CONST sep_IR4 REAL CONST sep_IR7 REAL CONST AIP1 = REAL CONST AIP2 = REAL CONST AIP3 = REAL CONST AIP4 = REAL CONST AIP5 = REAL CONST AIP5 = REAL CONST AIP5 =

= 0.194; = 0.224; = 0.420;

- = 0.224;
- = ATAN(sep_ARC/2/Dsep1);
- = ATAN(sep_ARC/2/Dsep2);
- = ATAN((sep_IR3-sep_ARC)/2/Dsep3);
- = ATAN((sep_IR4-sep_ARC)/2/Dsep4);
- = ATAN(sep_ARC/2/Dsep5);
- = ATAN((sep_IR7-sep_ARC)/2/Dsep7);
- = ATAN((sep_ARC)/2/Dsep8);

Comment:

Switch to LHC definitions?

REAL CONST Dsep1	= 85.913;
REAL CONST Dsep2	= 6 3.295;
REAL CONST Dsep3	= 26.493;
REAL CONST Dsep4	= 71.901;
REAL CONST Dsep5	= 85.913;
REAL CONST Dsep7	= 39.7395;
REAL CONST Dsep8	= 63.295;

Global variables: Others

• merged_HE-LHC.18x60_v102.seq:

const r0 = 0; ! separation ON const bsep = 0.204*(1-r0); on_sol_atlas := 0.000000000000; on_x1 := 0.000000000000; on sep1 := 0.0000000000000; on sep2 := 0.0000000000000; on_x2 := 0.000000000000; on_alice := 0.000000000000; on_sol_alice := 0.0000000000000; on x5 := 0.000000000000; on_sep5 := 0.000000000000; on_sol_cms := 0.0000000000000; on x8 := 0.0000000000000; on_sep8 := 0.0000000000000; on_lhcb := 0.000000000000; phi ir1 := 90.000000000000; phi ir5 := 0.0000000000000; abas := 12.00/6.0*clight/(7e12)*on_sol_atlas; abls := 6.05/12.1*clight/(7e12)*on_sol_alice; abcs := 52.00/13.0*clight/(7e12)*on_sol_cms;

Comment: Consistency in the dependence of global constants and derived variables to be checked?

► Global variables: DS

• merged_HE-LHC.seq (24x60 sequence):

```
! inner-outer path length differences in main bends
ds = bsep/2 * twopi/1280;
sumds = 0;
```

••• •••

mbds,	at = sumds + 277.520526004 + 0.5*ds; sumds = sumds + ds;
mbds,	at = sumds + 292.553250504 + 0.5*ds; sumds = sumds + ds;
mq.8r1.b1,	at = sumds + 301.737250504;
mq.8r1.b1 <i>,</i>	at = sumds + 304.137250504;
mbds,	at = sumds + 314.017250504 + 0.5*ds; sumds = sumds + ds;
mbds,	at = sumds + 329.049975004 + 0.5*ds; sumds = sumds + ds;

••• •••

Comment:

DS: to keep the ring survey closed when beam separation is turned on. To be added to 18x60, 17x90 and 20x90 sequence files

► IR2

- Injection for beam 1
- To be improved by injection group (?)

LHC V6.503

HE-LHC

► IR3

- Momentum collimation section
- Used for tune matching in V0.1 (to use IR4&6 instead in V0.2)
- Keep features of LHC IR3 (preferred by collimation group?)
- To be reviewed by collimation group

LHC V6.503

HE-LHC

► IR4

- To be used for tune matching
- Quads in the last arc cell individually powered
- Need to be reviewed by RF and BI groups?

LHC V6.503

HE-LHC

► IR5

- Experimental IR
- Triplets longer than LHC
- Matching sections could be improved? For example, positions of matching quads to be optimized?

HE-LHC

LHC V6.503

20 15 $\sqrt{\beta_x}, \sqrt{\beta_y} (\sqrt{m})$ $\sqrt{\beta_{x}},\sqrt{\beta_{y}}$ (\sqrt{m}) 15 η_{x} 2 ղ_x, ղ_y (m) η_x, η_y (m) η_y 1.5 η_x 0.5 η_y 0 200 400 600 800 1000 m 200 400 600 800 1000 m QDML_6F QFML_5R BRC_4R5 MQML.6 MQYL.5 MCBYY MBRD.4 QDXA_3L BXW_F4L MOXC.3F MOXD.A: TASC.1R BXW_A4F QFXA_1R BDS MCBXD BDS. B.21 B.20 QFMC BRC_4L MOML. MBRD.4 QFM_A7I B.24 QFH.3 õ QFML_ QDML_5 MQYL.5 ğ IQ.9R5 .DS.L5

► IR6

- To be used as beam dump and for tune matching
- More quads necessary in matching sections?
- To be reviewed by beam dump group?

LHC V6.503

► IR7

- Betatron collimation section
- Keep features of LHC IR7 (preferred by collimation group?)
- Dispersion functions acceptable?
- To be reviewed by collimation group

LHC V6.503

► IR8

- Injection for beam 2
- To be improved by injection group (?)

LHC V6.503

► Quad. gradient

- E=13.5 TeV, β*=25cm @IP#1&5
- Quadrupole: L=3.1m in arcs [Typical]
- Some quads in IR3&7 exceed FCC tech. limit
- Some quads in IR2&8 critical (to be reviewed by injection group?)

FCC specification: B⁽¹⁾max≈400 T/m^[1] with aperture φ=50 mm

^[1]A. Chance, FCC-hh magnet-beam dynamics coordination meeting, Mar. 17, 2017

Sext. gradient

- E=13.5 TeV, β*=25cm @IP#1&5
- Sextupole: L=0.369m in arcs [Typical]
- Sext. gradient well below FCC tech. limit

$$K_n L = \frac{B^{(n)}L}{B\rho}$$

15

FCC specification: B⁽²⁾max≈7800 T/m^{2[2]} with aperture φ=50 mm

^[2]D. Schoerling, FCC-hh magnet-beam dynamics coordination meeting, Apr. 28, 2017

3. Future plan

Strategy for optics developments and beam dynamics simulations using SAD

- Assume ring layout fixed
- Translate MADX sequence file to SAD format
- Do matching/optimizations and simulations using SAD
- Use SAD to print strength file in MADX format

Optional optics for HE-LHC

- Improve ring geometry for 17x90 and 20x90 (manually)
- Adapt MADX scripts developed for 18x90 to 17x90 and 20x90 => Create sequence file
 - Optics matching in SAD => Create strength file