Towards an optics baseline for HE-LHC

Demin Zhou

Acknowledgements:

M. Benedikt, M. Crouch, R. De Maria, S. Fartoukh, M. Giovannozzi, M. Hofer, P. Martinez, Y. Nosochkov, K. Oide, T. Risselada, L. Riesen-Haupt, D. Sagan, D. Schoerling, R. Tomas, P. Thrane, E. Todesco, D. Tommasini, F. Zimmermann

19th HE-LHC design meeting, CERN, Sep. 22, 2017

Outline

Overview of the lattices and tools developed by Thys

- Lattices with different arc schemes
- Tools for optics tuning

Comparison of various lattices

- Survey
- Magnet parameters in arcs
- Ring optics
- n1 in arcs

Summary and Future plan

1. Overview of the lattices and tools developed by Thys

Recent updates of HE-LHC lattices by Thys

- Source files: /afs/cern.ch/eng/lhc/optics/HELHC/
- Use IRs of SLHCV3.1a for all of the lattices
- HE-LHC.17x90

-rw-r--r--. 1 riss si 292071 Sep 13 19:14 merged_HE-LHC.17x90_tr.seq -rw-r--r--. 1 riss si 10436 Sep 15 11:27 merged_HE-LHC.17x90_tr.str

• HE-LHC.18x60 and HE-LHC.18x90

-rw-r--r-. 1 riss si 274907 Jul 9 16:44 merged_HE-LHC.18x60_tr.seq -rw-r--r-. 1 riss si 10276 Sep 14 11:55 merged_HE-LHC.18x60_tr.str -rw-r--r-. 1 riss si 295719 Sep 13 11:07 merged_HE-LHC.18x60_v102.seq -rw-r--r-. 1 riss si 10278 Sep 14 11:55 merged_HE-LHC.18x60_v102.str -rw-r--r-. 1 riss si 10462 Sep 13 19:18 merged_HE-LHC.18x90_v102.str

• HE-LHC.20x90

-rw-r--r-. 1 riss si 303240 Sep 13 19:12 merged_HE-LHC.20x90_v201.seq -rw-r--r-. 1 riss si 10514 Sep 14 19:28 merged_HE-LHC.20x90_v201.str

• HE-LHC.24x60

-rw-r--r-. 1 riss si 377338 Sep 10 17:04 merged_HE-LHC.seq -rw-r--r-. 1 riss si 9674 Sep 10 17:02 merged_HE-LHC.str

1. Overview of the lattices and tools developed by Thys

Some features of the above lattices

- See Massimo's talk: HE-LHC design meeting 14, May 23, 2017
- Ring separation in arcs: defined by a variable

bsep := 0.204; [current baseline]

- Use one type of dipoles for both arcs and dispersion suppressors
- Full IRs of SLHCV3.1a integrated: Crossing angle and related parameters defined as variables
- Tune (*.28, *.31) and chromaticity (+1, +1) matched to proper values [except 18x60 and 24x60]
- β* at IPs in experimental IRs matched to (10, 10) m: Injection optics

1. Overview of the lattices and tools developed by Thys

> Tools for optics tuning

- Source files: /afs/cern.ch/eng/lhc/optics/HELHC/toolkit/
- Script for chromaticity correction: chroma.madx
- Script for Twiss parameters at arc cells: GetArcPars.madx
- Matching conditions in IRs: rematch.ip*.madx
- Script for changing phase advance in arc cells: TuneCell.madx

-rwaraakoa.	1	riss	si	411	Sep	13 13:49	chroma.madx = 3
-nwananan	1	riss	si	1140	Sep	14 17:11	GetArcPars.madx = 0
- ŗw_s6 _ ₽6	1	riss	si	554	Sep	13 11:46	<pre>rematch.ip1.b1.madx</pre>
-rw-rr	1	riss	si	3186	Sep	13 13:48	<pre>rematch.ip2.b1.madx</pre>
+rw-r++r++C	1 1 x	riss	si	2886	Sep	13 11:57	rematch.ip3.b1.madx
-rw-rrC	1 1 ×	riss	si	2989	Sep	13 12:09	rematch.ip4.b1.madx
-rw-rr	1	riss	si	3098	Sep	13 11:52	<pre>rematch.ip5.b1.madx</pre>
-rw-rr	1	riss	si	2645	Sep	13 12:00	<pre>rematch.ip6.b1.madx</pre>
-rw-rr	1	riss	si	2696	Sep	13 15:44	<pre>rematch.ip7.b1.madx</pre>
-rw-rr	1	riss	si	3059	Sep	13 12:04	<pre>rematch.ip8.b1.madx</pre>
-rw-rr	1	riss	si	794	Sep	16 19:39	TuneCell.madx - 🗛

► Ring survey

- Refer to Massimo's talk: HE-LHC design meeting 14, May 23, 2017
- Likely two lattices do not close in survey? merged_HE-LHC.18x60_tr.seq and merged_HE-LHC.20x90_v201.seq
- 17x90 and 24x60: well optimized
- 18x60 and 20x90: Further optimizations (similar to 17x90) possible?

Ring survey

• Ring separation in arcs set to zero as suggested by This

0;
0;
0;
0;
0;
0;

> Parameters for arc cells

• LQ=3.1 m, LS=0.369 m

	LHC	17x90	18x60	18x90	20x90	24x60
Arc cell phase	~90/90	90/90	60/60	90/90	90/90	60/60
Arc cell length [m]	107	144.4	137.2		124.8	102.9
K1 [m ⁻²]	0.009	0.0064	0.0048	0.0068	0.0076	0.0064
β _{max/min} [m]	181/32	241/43	234/80	229/41	208/37	175/61
η _{max/min} [m]	2.2/1.1	4/2	6.9/4.1	3.6/1.8	3.0/1.5	3.8/2.3
Dipole length [m]	14.3 [x6]	14.6 [x8]	14.18 [x8]		12.625 [x8]	13.56 [x6]
Dipole field [T] @13.5TeV	16.06	15.94	15.59		15.92	16.3
Quad. grad. [T/ m] @13.5TeV	405	289	215	304	340	288
Sext. grad. [T/ m²] @13.5TeV	4826	2035	~870	2470	2943	1997
Filling factor	0.802	0.809	0.827		0.809	0.791

► Global parameters for injection optics

- Circumference=26658.8832 m
- Matching 18x60 and 24x60 lattice not successful

	LHC	17x90	18x60	18x90	20x90	24x60
Tune [x/y]	64.28/59.31	49.28/47.31	37.23/36.06	50.28/49.31	54.28/53.31	46./45.8
Nat. Chrom. [x/y]	-86.2/-81.5	-67.9/-68.0	-48.7/-48.4	-68.7/-70.5	-73.9/-74.9	-57.3/-57.7
Cor. Chrom. [x/y]	2/2	1/1	?	0.6/1	1/1	1.5/9.4
Mom. Compact.	3.22E-04	6.2E-04	1.14E-03	5.71E-04	4.75E-04	6.51E-04
β* (m) [x/y]	11/11	10/10	10/10	10/10	10/10	10/10
Beam separation at arcs (mm)	194	204	204	204	204	194

► Ring optics: LHC V6.503

2. Comparison of various lattices > Ring optics: HE-LHC 17x90

2. Comparison of various lattices > Ring optics: HE-LHC 18x90

2. Comparison of various lattices > Ring optics: HE-LHC 20x90

Ring optics: HE-LHC 24x60

Check n1

- "1-D" aperture [Ref. J.B. Jeanneret and T. Risselada, LHC Project Note 66, 1996]
- Parameters [Ref. F. Zimmermann, 12th HE-LHC meeting, Apr.16, 2017]: $t_x=(2+1) \text{ mm}, f_{arc}=0.14, \delta_p=8.6*10^{-4}, \epsilon_x=2.5 \mu \text{m}, k_\beta=1.05$
- See my talk in 18th HE-LHC design meeting for the analytic theory, Aug. 22, 2017

$$n1_x = \frac{L_x - t_x - (1 + f_{\rm arc})D_x\delta_p}{k_\beta\sigma_x}$$

$$\sigma_x = \sqrt{\beta_x \epsilon_x}$$

General scaling laws

• Assume ideal FODO cell [thin-lens, 100% filling factor]

$$\sin(\Phi/2) = \frac{1}{4} K_1 L_{\text{cell}}$$

$$\beta_{\pm} = \frac{2 \left(1 \pm K_1 L_{cell}/4\right)}{K_1 \sqrt{1 - \left(K_1 L_{cell}/4\right)^2}}$$

$$B\rho = P_0/e$$

$$\eta_{\pm} = \frac{4}{\rho K_1^2} \left(1 \pm K_1 L_{cell} / 8 \right)$$

Note:

$$K_{2\pm} = \frac{K_1}{\eta_{\pm}}$$

Sextupole strength for chromaticity correction ONLY in arc cells. IRs and DSs require higher K₂

Check n1 at QF for 18-cell arcs

- FCC-hh beam screen: L_x=15 mm
- t_x=(2+1) mm, f_{arc}=0.14, δ_p=8.6*10⁻⁴, ε_x=2.5 μm, k_β=1.05
- n1=4.6/6.8/7.3 @60/80/90 deg @E_{inj}=0.45 TeV

Check n1 at QF for 18-cell arcs

- LHC beam screen: L_x=22 mm
- t_x=(2+1) mm, f_{arc}=0.14, δ_p=8.6*10⁻⁴, ε_x=2.5 μm, k_β=1.05
- n1=10.6/12.9/13.3 @60/80/90 deg @E_{inj}=0.45 TeV

Check n1 at QF for 18-cell arcs

- Scaled LHC beam screen: L_x=19 mm
- $t_x=(2+1) \text{ mm}, f_{arc}=0.14, \delta_p=8.6*10^{-4}, \epsilon_x=2.5 \mu m, k_\beta=1.05$
- n1=8.0/10.3/10.7 @60/80/90 deg @E_{inj}=0.45 TeV

Check n1 at QF for N-cell arcs

- Phase advance per cell: 90 deg [Assume fixed arc length: 2460 m]
- t_x=(2+1) mm, f_{arc}=0.14, δ_p=8.6*10⁻⁴, ε_x=2.5 μm, k_β=1.05

Check n1 at QF for N-cell arcs

- Phase advance per cell: 60 deg [Assume fixed arc length: 2460 m]
- t_x=(2+1) mm, f_{arc}=0.14, δ_p=8.6*10⁻⁴, ε_x=2.5 μm, k_β=1.05

Check n1 at QF in arcs

- Further gain could be achieved by:
 - * controlling COD distortion and mechanical misalignment: 3 => 2 mm?
 - * Reducing injection beam emittance: 2.5 => 1.5 μm?
 - * Increasing injection beam energy: 0.45 => 1 TeV?

3. Summary and future plan

> Lattice files and tools for HE-LHC

• Thanks to Thys' excellent work, full lattice files in madx format are available now

• Thanks to Thys and Michael Hofer, tuning tools are available now

> Toward an optics baseline for HE-LHC

- Upgrade of IRs: see Leon's talk
- Installation of tuning magnets, collision optics, optics corrections

with errors, etc.: see Michael's talk

- 18x60 (poor n1 in arcs) and 24x60 (strong dipole field) rolled out?
- 18x90 lattice as the baseline?
 - * Good DA: see Yuri's talk for the first comparison
 - * Good margins for magnet strengths in arcs
 - * Good matching to IRs (?)
 - * Ring geometry needs to be improved? Possible?
 - * n1 in arcs is good enough?

3. Summary and future plan

> Toward an optics baseline for HE-LHC (cont'd)

- 17x90 and 20x90 as the optional choices?
 - * 17x90 by Thys: Good fit to LHC geometry
 - * 20x90: better n1 in arcs, but need improvement in geometry?

► Future plan

- Further optics tuning and announce optics versions periodically
- for collaborators
 - Detailed DA simulations and optimizations with errors
 - Request and feedback from collaborative groups