Optics update for HE-LHC

Demin Zhou

Acknowledgements:

M. Benedikt, R. De Maria, S. Fartoukh, M. Giovannozzi,

Y. Nosochkov, K. Oide, D. Sagan, P. Thrane, F. Zimmermann

10th HE-LHC design meeting, CERN, Mar. 23, 2017

Outline

- ► LHC optics in SAD
- ► HE-LHC optics in SAD
- ► 60⁰ cell for HE-LHC
- ► Summary

- ► V6.503
 - V6.5.seq + V6.5.inj.str

► V6.503

• ARC12 [3 cells used for dispersion suppression]

1. LHC optics in SAD ▶ V6.503 IR1

1. LHC optics in SAD ▶ V6.503 ■ IR2

► V6.503

• Unit cell in ARC12 (simplified) [~90⁰, 23 cells per arc]

► V6.503

- ARC12 to DSL2 (simplified)
- Trim quads in the last two cells used for dispersion suppression

► V6.503

- ARC12 to IP2 (simplified)
- Trim quads in the last two cells used for dispersion suppression

Ihc_v5 (By Y. Nosochkov)

- Unit cell in arc [60⁰, 24 cells per arc]
- L=13.56m for dipoles

Ihc_v5 (By Y. Nosochkov)

3rd and 4th order RDTs canceled

Ihc_v5 (By Y. Nosochkov)

- Arc connected to dispersion suppressor
- L=14.3m for dipoles in DS

Ihc_v5 (By Y. Nosochkov)

- Arc + DS + straight section
- Matched to LHC geometry

3. 60° cell for HE-LHC

► Use Yuri's 60⁰ cell with DS+IR2 of V6.503

- DS+IR2 rematched [trim quads not used for matching]
- Strengths of quads in DS and IR2 in the same level of V6.503

3. 60° cell for HE-LHC

► 60⁰ cell with 18cells per arc +IR2 of V6.503

- Strengths of quads in DS reduced due to longer dipoles
- Strengths of quads in IR2 in the same level of V6.503

4. Discussion

► General scaling laws

• Assume ideal FODO cell [thin-lens, 100% filling factor]

$$\sin(\Phi/2) = \frac{1}{4} K_1 L_{\text{cell}}$$

$$\beta_{\pm} = \frac{2 \left(1 \pm K_1 L_{cell}/4\right)}{K_1 \sqrt{1 - \left(K_1 L_{cell}/4\right)^2}}$$

$$\mathbf{B}\rho = \mathbf{P}_0/e$$

$$\eta_{\pm} = \frac{4}{\rho K_1^2} \left(1 \pm K_1 L_{cell} / 8 \right)$$

Summary

> Optics design

- Full LHC lattice translated to SAD and simplified
- Replace arc cells of LHC by 60⁰ cells [on-going]
- Design/Matching with SAD started
- Fitting 18-cell lattice to LHC tunnel not easy, more freedoms

preferred

• Chromaticity correction and nonlinear optimization to be studied

Need inputs

- Geometric constraints [Survey of LHC tunnel?]
- Engineering constraints for magnets [Maximum fields/gradient/ dipole length/aperture/...]