Arc Optics and Geometry

Yuri Nosochkov(SLAC), Thys Risselada and <u>Demin Zhou(KEK)</u>

Acknowledgements:

J. Abelleira, M. Benedikt, M. Crouch, L. Deniau, E. Forest, J. Keintzel, J.
Jowett, R. De Maria, S. Fartoukh, M. Giovannozzi, P. Martinez, K. Oide,
T. Pieloni, L. Riesen-Haupt, D. Sagan, D. Schoerling, I. Tecker, R. Tomas,
P. Thrane, E. Todesco, D. Tommasini, F. Zimmermann

HE-LHC Review meeting, CERN, Dec. 11, 2017

Outline

- Introduction
- ► Arc optics
- ► Ring geometry
- > Physical aperture
- ► Summary

1. Introduction

High Energy LHC (HE-LHC) as proton-proton collider utilizing FCC-hh magnet technology

- 26.659 km ring fitting the LHC tunnel
- Centre-of-Mass beam energy from 14 to 27 TeV
- Magnets in arcs:
 - * LHC: 8.33 T dipole, 223 T/m arc quadrupole, 4430 T/m² sextuple with 56 mm aperture * FCC-hh: 16 T dipole, 400 T/m quadrupole, 7800 T/m² sextuple with 50 mm aperture
- Simple scaling of the present LHC to 27 TeV CM energy yields the

magnet fields exceeding the FCC specifications (next page)

1. Introduction

Scale LHC to 27 TeV CM energy

- V6.503 as an example: β*=55 cm at IP 1&5
- With baseline β*=25 cm for HE-LHC, arc sextupoles will definitely
- exceed FCC specification
 - Almost no optics flexibility

Design considerations for arc optics of HE-LHC

 To fit the LHC tunnel with ring separation from 194 mm (LHC) to 204 mm (FCC-hh and HE-LHC baseline)

1

Design considerations for arc optics of HE-LHC

- To reduce quadrupole and sextupole strengths
 - * Reduce arc FODO cell phase advance μ_c and/or increase cell length L_c

90 deg → 60 deg	Longer cell L _c		
Weaker quads \rightarrow factor of $\sqrt{2}$ (~sin(µ/2))	Weaker quads $\sim 1/L_c$		
Weaker sextupoles \rightarrow factor of 3 (for arcs correction)	Weaker sextupoles ~1/L _c ³		
Lower cell chromaticity \rightarrow factor of $\sqrt{3}$ (~tan(μ /2))	Same cell chromaticity		
Similar peak β-functions	Larger peak $\beta \sim L_c$		
Larger dispersion \rightarrow factor of 2	Larger dispersion $\sim L_c^2$		

Y. Nosochkov, FCC week 2017

$$\sin(\Phi/2) = \frac{1}{4} K_1 L_{cell}$$

$$\beta_{\pm} = \frac{2 (1 \pm K_1 L_{cell}/4)}{K_1 \sqrt{1 - (K_1 L_{cell}/4)^2}} \qquad \eta_{\pm} = \frac{4}{\rho K_1^2} (1 \pm K_1 L_{cell}/8)$$

Design considerations for arc optics of HE-LHC

- To reduce sensitivity to field errors: Resonance free lattice
 - * Choose phase advance condition per arc: $N_c\mu_c=2k\pi$
 - * Cancellation of non-linear resonances => To improve dynamic aperture Cancellation condition (A. Verdier, PAC'99):
 - $N_{c}(n_{x}\mu_{xc}+n_{y}\mu_{yc})=2k\pi \& (n_{x}\mu_{xc}+n_{y}\mu_{yc})\neq 2k'\pi$
 - N_c : number of cell; μ_{xc} , μ_{yc} : Phase advance per cell
 - * 60-deg cell:
 - Lowest order resonances: n_x-n_y=0 and n_x+n_y=6
 - * 90-deg cell:

Lowest order resonances: n_x-n_y=0 and n_x+n_y=4

- To reduce sensitivity to field errors: Resonance free lattice
 - * Choose phase advance condition per arc: $N_c\mu_c=2k\pi$
 - * Cancellation of non-linear resonances => To improve dynamic aperture
 - * Example: Injection optics for E=450 GeV (by Y.N.)
 N_c=24, μ_c=60 deg with basic IRs and tune (49.28, 47.31)
 RDTs by PTC and FMA tracking by SAD

- To reduce sensitivity to field errors: Resonance free lattice
 - * Choose phase advance condition per arc: $N_c\mu_c=2k\pi$
 - * Cancellation of non-linear resonances => To improve dynamic aperture
 - * Example: Injection optics for E=450 GeV (by Y.N.)
 N_c=18, μ_c=60 deg with basic IRs and tune (37.28, 39.31)
 RDTs by PTC and FMA tracking by SAD

- To reduce sensitivity to field errors: Resonance free lattice
 - * Choose phase advance condition per arc: $N_c\mu_c=2k\pi$
 - * Cancellation of non-linear resonances => To improve dynamic aperture
 - * Example: Injection optics for E=450 GeV (by Y.N.)
 N_c=20, μ_c=90 deg with basic IRs and tune (56.28, 57.31)
 RDTs by PTC and FMA tracking by SAD

- To reduce sensitivity to field errors: Resonance free lattice
 - * Choose phase advance condition per arc: $N_c\mu_c=2k\pi$
 - * Cancellation of non-linear resonances => To improve dynamic aperture
 - * Example: Injection optics for LHC (V6.503)
 N_c=23, μ_c=~90 deg with basic IRs and tune (64.28, 59.31)
 RDTs by PTC and FMA tracking by SAD

> Details in talk "Dynamic aperture" by Y. Nosochkov

General features for arcs of HE-LHC lattice model

- C = 26658.8832 m same as in LHC
- Same quad and sext. lengths as in LHC
- Same magnet-to-magnet distances as in LHC cell
- Similar layout of dispersion suppressors as in LHC
- Odd and even arcs with opposite quad polarity same as in LHC
- Arc length close to LHC with adjustment in better fitting tunnel geometry

2. Arc optics> Options for arc cells

> Parameters for arc cells of injection optics

• FCC: 16 T dipole, 400 T/m quad., 7800 T/m² sext. with 50 mm aperture

	LHC	17x90	18x60	18x90	20x90	24x60
Arc cell phase	~90/90	90/90	60/60	90/90	90/90	60/60
Arc cell length [m]	107	144.4	137.2		124.8	102.9
K1 [m ⁻²]	0.009	0.0064	0.0048	0.0068	0.0076	0.0064
β _{max/min} [m]	181/32	241/43	234/80	229/41	208/37	175/61
η _{max/min} [m]	2.2/1.1	4/2	6.9/4.1	3.6/1.8	3.0/1.5	3.8/2.3
Dipole length [m]	14.3 [x6]	14.6 [x8]	14.18 [x8]		12.625 [x8]	13.56 [x6]
Dipole field [T] @13.5TeV	16.06	15.94	15.59		15.92	16.3
Quad. grad. [T/ m] @13.5TeV	405	289	215	304	340	288
Sext. grad. [T/ m²] @13.5TeV	4826	2035	~870	2470	2943	1997
Filling factor	0.802	0.809	0.827		0.809	0.791

► Global parameters for injection optics

- C=26658.8832 m
- Matching of 18x60 and 24x60 lattices not optimized

	LHC	17x90	18x60	18x90	20x90	24x60
Tune [x/y]	64.28/59.31	49.28/47.31	37.23/36.06	50.28/49.31	54.28/53.31	46.1/45.8
Nat. Chrom. [x/y]	-86.2/-81.5	-67.9/-68.0	-48.7/-48.4	-68.7/-70.5	-73.9/-74.9	-57.3/-57.7
Cor. Chrom. [x/y]	2/2	1/1	-	0.6/1	1/1	-
Mom. Compact.	3.22E-04	6.2E-04	1.14E-03	5.71E-04	4.75E-04	6.51E-04
β* (m) [x/y]	11/11	10/10	10/10	10/10	10/10	10/10
Beam separation at arcs (mm)	194	204	204	204	204	204

► 18x90 arc scheme chosen as the baseline with respect to overall performance

 Best filling factor and consequent lowest dipole field => Gain in operational margin

- Quadrupole strengths well below FCC limit
- Acceptable sextupole strengths (though exceed FCC limit)
- Physical aperture (To be discussed in next pages. Also details in

talk by F. Zimmermann)

- Dynamic aperture (Details in talk by N. Nosochkov)
- Matching to IRs (Details in talks by M. Hofer and L. Riesen-Haupt)

► HE-LHC collision optics at 27 TeV CM energy

- V0.2 as an example:
 - * 18x90 arcs, β*=25 cm at IP 1&5
- Dipoles/quadrupoles below FCC specifications
- Sextupoles exceed FCC specification
 - * Natural chrom.: (-69.8, -71.1)_{injection} => (-246.6, -263.4)_{collision}
 - * Solutions: Longer sext./Smaller μ_c per cell/Larger β^*

► HE-LHC collision optics at 27 TeV CM energy

- V0.2 as an example:
 - * 18x90 arcs, β*=25 cm at IP 1&5
- Dipoles/quadrupoles below FCC specifications
- Sextupoles exceed FCC specification
 - * Natural chrom.: (-69.8, -71.1)_{injection} => (-246.6, -263.4)_{collision}
 - * Solutions: Longer sext./Smaller μ_c per cell/Larger β^*

3. Ring geometry

Compare the survey of LEP and (HE-)LHC

- Comparison of "average" ring
- Use similar strategy as in LHC for geometry optimization by T.

Risselada

NOTE (T.R.):

- 1) Maximum offset in radial direction:
 - <~11cm comparing to LEP survey
- 2) Good ring geometry for all candidates

3. Ring geometry

Compare the survey of LEP and (HE-)LHC

- Ring separation at arcs: 204 mm
- The effort of geometry optimization was the price to pay for using

the same main bends in the arcs and in the dispersion suppressors.

NOTE (T.R.):

 Maximum offset in radial direction:
 <~11cm comparing to

LEP survey

2) Good ring geometry for all candidates

Estimate of physical aperture using "1-D" model

- Ref. J.B. Jeanneret and T. Risselada, LHC Project Note 66, 1996
- n1 method: Indicate the geometrical acceptance
- Assumed parameters:
 - * Tolerances in hardware misalignment and orbit distortion: t_x=(2+1) mm
 - * Tolerance for beta beating: k_{β} =1.05
 - * Tolerance for dispersion distortion: f_{arc}=0.14
 - * Momentum spread: δ_p=8.6*10-4
 - * Normalized emittance: ε_x=2.5 μm
 - * Half beam screen width: L_x=15 mm(FCC-hh), 19 mm(scaled-LHC), 22 mm(LHC)

$$n1_x = \frac{L_x - t_x - (1 + f_{\rm arc})D_x\delta_p}{k_\beta\sigma_x}$$

$$\sigma_x = \sqrt{\beta_x \epsilon_x}$$

$$\sin(\Phi/2) = \frac{1}{4} K_1 L_{cell}$$
$$\beta_{\pm} = \frac{2 (1 \pm K_1 L_{cell}/4)}{K_1 \sqrt{1 - (K_1 L_{cell}/4)^2}}$$

$$\eta_{\pm} = \frac{4}{\rho K_1^2} \left(1 \pm K_1 L_{cell} / 8 \right)$$

► n1 at QF for N-cell arcs at E_{inj}=450 GeV

- Phase advance per cell: 90 deg [Assume fixed arc length: 2460 m]
- t_x=(2+1) mm, f_{arc}=0.14, δ_p=8.6*10⁻⁴, ε_x=2.5 μm, k_β=1.05

► n1 at QF for N-cell arcs at E_{inj}=450 GeV

- Phase advance per cell: 60 deg [Assume fixed arc length: 2460 m]
- $t_x=(2+1) \text{ mm}, f_{arc}=0.14, \delta_p=8.6*10^{-4}, \epsilon_x=2.5 \mu m, k_\beta=1.05$

In the number of the number

- n1=13.3/18.9/22.7 @E_{inj}=0.45/0.9/1.3 TeV @90 deg/cell
- $t_x=(2+1) \text{ mm}, f_{arc}=0.14, \delta_p=8.6*10^{-4}, \epsilon_x=2.5 \mu m, k_\beta=1.05$

► n1 for 18-cell arcs with scaled-LHC screen: L_x=19 mm

- n1=10.7/15.2/18.3 @E_{inj}=0.45/0.9/1.3 TeV @90 deg/cell
- t_x=(2+1) mm, f_{arc}=0.14, δ_p=8.6*10⁻⁴, ε_x=2.5 μm, k_β=1.05

► n1 for 18-cell arcs with FCC-hh beam screen: L_x=15 mm

- n1=7.3/10.3/12.4 @Einj=0.45/0.9/1.3 TeV @90 deg/cell
- t_x=(2+1) mm, f_{arc}=0.14, δ_p=8.6*10⁻⁴, ε_x=2.5 μm, k_β=1.05

5. Summary

> Arc optics

• Reduce dipole field by increasing filling factor

• Reduce quad and sext. strengths by increasing cell length and/or reduce phase advance per cell

• 18x90 arc scheme chosen as the baseline with respect to overall performance

Ring geometry

• Geometry is not a limit in choosing arc scheme

• Further refinement can be done but should not change beam dynamics

> Physical aperture

• Can be a concern when reducing number of arc cells

• Increasing injection beam energy and/or reducing beam emittance is preferred in the current baseline design (18x90)