Beam-beam simulations with lattice for FCC-ee

Demin Zhou

Acknowledgements: K. Ohmi, K. Oide, D. Shatilov

39th FCC-ee Optics design meeting, CERN Sep. 16, 2016

Outline

► Lattices for tt (by K. Oide)

Compare two versions

% FCCee_t_82_by2_1a_nosol_DS_2

- *** FCCee_t_65_26_1_2**
- Error seeds in vertical offsets of S{DF}* [sextupoles in arc

sections) to generate vertical emittance

► FMA

• DA, beam-beam and lattice resonances

> Luminosity

- BBWS
- SAD: beam-beam + lattice

> Summary

1. Machine parameters (for half ring)

Lattice version	82_by2*	65_26_1_2
C (km)	49988.8	49990.9
E (GeV)	175	175
Number of IPs	1	1
Νь	81	78
N _p (10 ¹¹)	1.7	1.7
Full crossing angle(rad)	0.03	0.03
ε _x (nm)	1.26	1.3
ε _y (pm)	2.52	2.5
β _x * (m) [optional]	1	1
β _y * (mm) [optional]	2	2
σ _z (mm) ^{sr}	2.4	2.1
σ _δ (ΙΟ ⁻³) ^{SR}	1.4	1.4
Fractional betatron tune v_x/v_y	.56/.61	.54/.57
Synch. tune Vs	0.0329	0.0375
Damping rate/turn (10 ⁻²) [x/y/z]	1.06/1.06/2.09	1.1/1.1/2.2
Lum./IP(10^{34} cm ⁻² s ⁻¹)	1.3	1.3

*Ref. K. Oide et al., "Design of beam optics for the FCC-ee collider ring", Submitted to PRAB.

- 1. Lattice properties
- Chromatic nonlinearity
 - Similar except higher 3rd chromaticity in Ver. 82_by2

4

From K. Oide

1. Lattice properties

> Dynamic aperture

- 6D Tracking: 50 turns
- Element-by-element rad. damping

From K. Oide

1. Lattice properties

> Dynamic aperture

- 6D Tracking: 50 turns
- Turn-by-turn lumped rad. damping

From K. Oide

► Effects of RF

- Strong X-Y to Z coupling
- Strong impact of synch. motion on FMA
- On-momentum DA decrease significantly due to SR

- **Conditions:**
- 1) Bare lattice
- 2) 6D tracking
- 3) SAD + NAFF
- 4) No rad. damping
- 5) 1024 half turns
- 6) BB OFF
- 7) <mark>δ=0</mark>

Effects of RF

- Strong X-Y to Z coupling
- Strong impact of synch. motion on FMA

- **Conditions:**
- 1) Bare lattice
- 2) 6D tracking
- 3) SAD + NAFF
- 4) No rad. damping
- 5) 1024 half turns
- 6) BB OFF
- **7) δ=2σ**_p

Effects of tracking turns

- Poor resolution of diffusion in FMA
- Weak impact on size of DA w/o BB

- **Conditions:**
- 1) Bare lattice
- 2) 6D tracking
- 3) SAD + NAFF
- 4) No rad. damping
- 5) 128 half turns
- 6) BB OFF
- **7) δ=2σ**_p

Beam-beam effects

- Extend footprint in tune space and drive resonances
- Reduce DA

- **Conditions:**
- 1) Bare lattice
- 2) 6D tracking
- 3) SAD + NAFF
- 4) No rad. damping
- 5) 1024 half turns
- 6) RF & BB ON
- 7) Np=0.85E11

- Effects of errors in vertical offsets of S{DF}*
 - Modify footprint in tune space
 - Reduce DA

Conditions:

- 1) Error seed #25
- 2) 6D tracking
- 3) SAD + NAFF
- 4) No rad. damping
- 5) 1024 half turns
- 6) RF & BB ON
- 7) Np=0.85E11

Effects of errors in vertical offsets of S{DF}*

- Modify footprint in tune space
- Reduce DA

• Tracking in the order of damping time: Better surviving rate

Conditions:

- 1) Error seed #25
- 2) 6D tracking
- 3) SAD + NAFF
- 4) No rad. damping
- 5) 128 half turns
- 6) RF & BB ON
- 7) Np=0.85E11

3. Luminosity

> Weak-strong simulation w/ and w/o lattice

- Lum. loss due to interplay of BB+Lattice => a few per cent
- Lum. is sensitive to working point

3. Luminosity

► Weak-strong simulation w/ and w/o lattice

 Errors in S{DF}* also generate dispersion at RF (longer bunch), and dispersion/linear coupling at IP

- Lum. loss with errors in S{DF}* is not due to lattice nonlinearity
- Local linear coupling at IP => Additional lum. loss

Conditions:

- 1) Bare lattice + Errors
- 2) Lumped rad. damping/excitation, CW & BS ON

4. Lifetime

Particle losses in tracking

Mechanism: Beamstrahlung effects + Finite DA

• DA is determined by rad. damping/excitation, Lattice nonlinearity and BB

4. Lifetime

Particle losses in tracking

- Translate loss rate into lifetime
- CW improves lifetime via suppressing beam-beam tail
- Need more careful simulations: Larger number of macro-particles and tracking turns

4. Lifetime

> Effects of rad. damping/excitation

• Distributed (element-by-element) vs. Lumped (one-turn, to speed up simulation)

• Case: FCCee_t_82_by2_1a_nosol_DS_2 with Error seed #25

• Small effect if BB dominates DA (?)

5. Summary

► FMA

• Rad. damping/excitation: not considered in FMA but very important at FCC-ee

• SAD+NAFF+BB almost agree with D. Shatilov's results except much worse resolution in my simulations

- Synch. motion (X-Y to Z coupling) is very important at FCC-ee
- Beam-beam is an important factor in determining DA
- Errors in vert. offsets of S{DF}* affect DA (w/ BB) [likely tolerable?]

Luminosity and lifetime

• BB+Lattice causes lum. loss in the order of a few per cent

• Errors in vert. offsets of S{DF}*: almost no lum. loss, might affect lifetime with BB

• BS+DA defines lifetime, likely not serious