## Beam-beam simulations and analysis of lattice nonlinearity using PTC

#### **Demin Zhou**

Acknowledgements: F. Zimmermann, K. Ohmi, K. Oide, E. Forest, D. Sagan (Cornell)

FCC-ee Optics meeting, Apr. 04, 2016

## Outline

### Introduction

• FCC-ee design lattices provided by K. Oide

#### Beam-beam simulations

- BBWS: beam-beam + simple linear map
- SAD: beam-beam + design lattice
- At present, only consider average turn-by-turn radiation damping/excitation lumped at one point, no quadrupole radiation and no "saw-tooth" effects in orbit

## > Analysis of lattice nonlinearity (LN)

- Lattice translation: SAD => Bmad => PTC [Straightforward]
- Resonance driving terms (RDTs) calculations using PTC

#### > Summary

## 1. Interplay of BB and latt. nonlin.

## ► The idea

• Method demonstrated in D. Zhou et al, TUPE016, IPAC13

• One-turn map:

 $M = M_{\rm RAD} \circ M_{\rm BB} \circ M_0$ 

•  $M_0$  can be simple matrix or IP-to-IP realistic map from a design lattice

• Interplay of BB, lattice and other issues reflected in luminosity, DA, beam tail, particle loss, etc.

• Separated simulation/analysis of BB and LN help understand the mechanisms of their interplay

## 1. Parameters for simulations (half ring)

|                                                             | Z                 | t           |
|-------------------------------------------------------------|-------------------|-------------|
| <b>C (km)</b>                                               | 49990.9           | 49990.9     |
| E (GeV)                                                     | 45.6              | 175         |
| Number of IPs                                               | 1                 | 1           |
| №ь                                                          | 90300             | 78          |
| N <sub>p</sub> (10 <sup>11</sup> )                          | 0.33              | 1.7         |
| Full crossing angle(rad)                                    | 0.03              | 0.03        |
| ε <sub>x</sub> (nm)                                         | 0.09              | 1.3         |
| ε <sub>y</sub> (pm)                                         | 1                 | 2.5         |
| β <sub>x</sub> * (m) [optional]                             | 1 [0.5]           | 1 [0.5]     |
| β <sub>y</sub> * (mm) [optional]                            | 2 [1]             | 2 [1]       |
| σ <sub>z</sub> (mm) <sup>sr</sup>                           | 2.7               | 2.1         |
| σ <sub>δ</sub> (ΙΟ <sup>-3</sup> ) <sup>SR</sup>            | 0.37              | 1.4         |
| Betatron tune $v_x/v_y$                                     | .55/.57           | .54/.57     |
| Synch. tune Vs                                              | 0.0075            | 0.0375      |
| Damping rate/turn (10 <sup>-2</sup> ) [x/y/z]               | 0.019/0.019/0.038 | 1.1/1.1/2.2 |
| Lum./IP(10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 68                | 1.3         |

Ref. F. Zimmermann, FCC-ee design meeting, Dec. 9, 2015

#### 2. BB simulations: Lum.: t

- $\succ \beta_x^* = 1m, \beta_y^* = 2mm$ 
  - Lattice ver. FCCee\_t\_65\_26\_1\_2



#### 2. BB simulations: Lum.: t

β<sub>x</sub>\*=0.5m, β<sub>y</sub>\*=1mm
 Lattice ver. FCCee\_t\_65\_26



#### 2. BB simulations: Lum.: Z

## β<sub>x</sub>\*=1m, β<sub>y</sub>\*=2mm [Ver. FCCee\_z\_65\_36] Lattice ver. FCCee\_z\_65\_36



### 2. BB simulations: Particle loss: t

#### Particle losses in tracking

- Threshold observed
- Nominal N<sub>p</sub>=1.7E11
- Loss rate depend on  $\beta^*_{x,y}$ ,
- Slipping out of RF bucket?
- Improper setting of simulations? Mismatch in transverse beam sizes, No crab waist for the strong beam





FCCee\_t\_65\_26

## 3. RDTs

# Resonance driving terms (RDTs) indicate lattice nonlinearity

The effective Hamiltonian of a ring can be normalized in resonance bases [Ref. E. Forest, *Beam Dynamics – A New Attitude and Framework*, 1998].

For a ring with *n* elements, one can normalize the one turn map  $\mathcal{M}_{1 \rightarrow n}$  as [Ref. L. Yang *et al.*, Phys. Rev. ST Accel. Beams 14, 054001 (2011)]

$$\mathcal{M}_{1\to n} = \mathcal{A}_1^{-1} e^{:h:} \mathcal{R}_{1\to n} \mathcal{A}_1,$$

with  $\mathcal{R}$ : rotation,  $e^{:h}$ : nonlinear Lie map,  $\mathcal{A}_1$ : normalizing map. Assume no coupling (the theory can be generalized for nonzero coupling),  $\mathcal{A}_i$  in xplane at the *i*th element can be approximated in perturbation theory as

$$\mathcal{A}_i x = \sqrt{\beta_{x,i}} x + \eta_{x,i} \delta,$$

$$\mathcal{A}_i p_x = \frac{-\alpha_{x,i} x + p_x}{\sqrt{\beta_{x,i}}} + \eta'_{x,i} \delta.$$

## 3. RDTs

#### **RDTs indicate lattice nonlinearity**

In the resonance basis, using action-angle variables  $(J, \phi)$  one can write

$$h_x^{\pm} \equiv \sqrt{2J_x}e^{\pm i\phi_x} = X \mp iP_x,$$

$$\mathcal{R}_{i \to j} h_x^{\pm} = \mathcal{R}_{i \to j} \sqrt{2J_x} e^{\pm i\phi_x} = e^{\pm i\mu_{i \to j,x}} h_x^{\pm},$$

where  $\mu_{i \to j,x}$  is the phase advance of  $i \to j$ . Consequently, the potential of a multipole magnetic field can be expanded in the resonance bases of  $h_{abcde}$  as

$$h = \sum h_{abcde} h_x^{+a} h_x^{-b} h_y^{+c} h_y^{-d} \delta^e.$$

Each  $h_{abcde}$  (a complex number in general) drives a certain resonance, and is an explicit function of magnet strengths, beta functions and dispersions.

## 3. RDTs

#### **RDTs indicate lattice nonlinearity**

| h <sub>abcde</sub>                                                                                                                                                                                                                                                                                                                            | Driving effects                                                                                                                                                                                                                                                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| h <sub>11001</sub> , h <sub>00111</sub>                                                                                                                                                                                                                                                                                                       | Linear chromaticity $\zeta_x$ , $\zeta_y$                                                                                                                                                                                                                                                                                                    |  |
| $\begin{array}{l} h_{21000}, h_{12000} \  h_{10110}, h_{01110} \\ h_{30000}, h_{03000} \  h_{00300}, h_{00030} \\ h_{10020}, h_{01200} \  h_{10200}, h_{01020} \\ h_{20010}, h_{02100} \  h_{20100}, h_{02010} \\ h_{00210}, h_{00120} \  h_{11100}, h_{11010} \end{array}$                                                                   | $\nu_{x} [(J_{x})^{3/2}]    [(J_{x})^{1/2} (J_{y})]  3\nu_{x} [(J_{x})^{3/2}]    3\nu_{y} [(J_{y})^{3/2}]  \nu_{x} - 2\nu_{y}    \nu_{x} + 2\nu_{y} [(J_{x})^{1/2} (J_{y})]  2\nu_{x} - \nu_{y}    2\nu_{x} + \nu_{y} [(J_{x}) (J_{y})^{1/2}]  \nu_{y} [(J_{y})^{3/2}]    [(J_{x}) (J_{y})^{1/2}]$                                           |  |
| $h_{22000}, h_{00220}, h_{11110}$<br>$h_{40000}, h_{04000}    h_{00400}, h_{00040}$<br>$h_{31000}, h_{13000}    h_{20110}, h_{02110}$<br>$h_{00310}, h_{00130}    h_{11200}, h_{11020}$<br>$h_{20020}, h_{02200}    h_{20200}, h_{02020}$<br>$h_{30010}, h_{03100}    h_{30100}, h_{03010}$<br>$h_{10030}, h_{01300}    h_{10200}, h_{01020}$ | $ \frac{d\nu_x/dJ_x, d\nu_y/dJ_y, d\nu_{x,y}/dJ_{y,x}}{4\nu_x [(J_x)^2]  4\nu_y [(J_y)^2]} \\ 2\nu_x [(J_x)^2]  [(J_x)(J_y)] \\ 2\nu_y [(J_y)^2]  [(J_x)(J_y)] \\ 2\nu_x - 2\nu_y   2\nu_x + 2\nu_y [(J_x)(J_y)] \\ 3\nu_x - \nu_y   3\nu_x + \nu_y [(J_x)^{3/2} (J_y)^{1/2}] \\ \nu_x - 3\nu_y   \nu_x + 3\nu_y [(J_x)^{1/2} (J_y)^{3/2}] $ |  |

Table : Low-order driving terms.

## 3. RDTs: PTC calculation

#### > PTC applied to SuperKEKB: an example

• 2v<sub>x</sub>-v<sub>y</sub> [(J<sub>x</sub>)(J<sub>y</sub>)<sup>1/2</sup>] resonance

• 3D fields near IP [Solenoid and FF quad fringe fields] generate lots of low-order nonlinearities, hard to be compensated using arc multipoles [global correction]

Simplified lattices show less nonlinearity



Figure :  $|h_{20010}|$  accumulated along the ring.

## 3. RDTs: PTC calculation

- > PTC applied to FCC-ee t lattice: an example
  - $2v_x v_y [(J_x)(J_y)^{1/2}]$  resonance for latt. ver. FCCee\_t\_65\_26
  - In general, no significant 3rd resonances in FCC-ee lattices



#### 3. RDTs: PTC calculation

- > PTC applied to FCC-ee t lattice: an example
  - 4th order RDTs for latt. ver. FCCee\_t\_65\_26
- Residual 4th order RDTs exist, and depend on lattice design/optimization



## 4. Summary

#### Beam-beam simulations

• Small loss [order of a few percent] of luminosity due to BB+Lattice [No limit in luminosity performance, and should be controllable via optics optimization]

Particle loss in SAD simulations [to be understood]

#### ► Lattice analysis using PTC

- PTC is ready for RDTs calculations
- Identify sources of nonlinearity
- Identify dominant nonlinear terms in one-turn-map
- Evaluate lattice designs and optimizations

## **To do list**

- Understand macro-particle losses in beam-beam simulations with
- lattices
  - Simulations for FCC-ee Z lattices with  $\beta_x^*=0.5m$ ,  $\beta_y^*=1mm$

• Simulations with quadrupole/distributed radiation and "sawtooth" effects