- Part I, Status of CEPC Accelerator (Physics) Study
- Part II, Multi-Objective Optimization with possible application in SuperKEKB

Status of CEPC Accelerator (Physics) Study

Yuan Zhang for CEPC Accelerator Team

zhangy@ihep.ac.cn

Institute of High Energy Physics, Beijing

KEK Mar, 2016

What is a (CEPC + SppC) (Q. Qin)

 Circular Higgs factory (phase I) + super pp collider (phase II) in the same tunnel
 pp collider

C E P C - S P P C

Preliminary Conceptual Design R eport

March 2015

Yan Guo47 (郭雁), Yuanyuan Guo1 (郭媛媛), Ramesh Gupta14 (古拉梅),

International Review (Feb 14-16, 2015)

International Review Committee Members:

Ralph Assmann, DESY (Germany) Ilan Ben-Zvi, BNL (USA) Marica Biagini, INFN (Italy) Mike Koratzinos, CERN/U. Geneva (Switzerland) Eugene Levichev, BINP (Russia) Katsunobu Oide (Chair), KEK (Japan) Bob Rimmer, JLab (USA) John Seeman, SLAC (USA) Zhentang Zhao, SSRC (China)

Committee wrote a 17-page detailed report.

Committee's response to the charges:

- 1. The Committee considers the CEPC-SPPC to be well aligned with the future of China's HEP program, and in fact the future of the global HEP program.
- Mike Koratzinos, CERN/U. Geneva (Switzerland)
 Eugene Levichev, BINP (Russia)
 Katsunobu Oide (Chair), KEK (Japan)
 The design goals are well defined and comprehensive. We provided remarks and recommendations to improve the design, but we definitely consider this design to be credible and with sufficiently conservative assumptions.
 - 3. The great majority of the accelerator physics issues are adequately addressed, and after addressing our recommendations, we expect that all the accelerator physics issues would be adequately addressed.
 - 4. The designs of the technical systems and conventional facilities are effective for achieving the performance goals.
 - 5. We find the CEPC design compatible with the future upgrade to the SPPC.
 - 6. Technical risks and their potential impact were presented together with mitigation measures, while in some cases more study and R&D are needed.
 - 7. <u>The R&D program is clearly defined</u>, and while we recommended a few additional R&D items, the program is adequate. We further believe that this R&D program will be highly beneficial to the science and technology infrastructure in China and will contribute to its economy.
 - 8. We made a few suggestions for improvements of the design.

CEPC-SPPC Timeline (preliminary)

CEPC Design – Top Level Parameters

Parameter	Design Goal	
Particles	e+, e-	
Center of mass energy	240 GeV	
Integrated luminosity (per IP per year)	250 fb ⁻¹	\Rightarrow one million Higgs
No. of IPs	2	from 2 IPs in 10 years

CEPC Design – Z-pole Parameters

Parameter	Design Goal
Particles	e+, e-
Center of mass energy	45.5 GeV
Integrated luminosity (peak)	>1*10^34/cm^2s
No. of IPs	2

Injectors

CEPC Lattice Layout (September 24, 2014)

CEPC Design – Main Parameters

Parameter	Unit	Value	Parameter	Unit	Value
Beam energy [E]	GeV	120	Circumference [C]	m	54752
Number of IP[N _{IP}]		2	SR loss/turn [U₀]	GeV	3.11
Bunch number/beam[n _B]		50 (48)	Bunch population [Ne]		3.79E+11
SR power/beam [P]	MW	51.7	Beam current [I]	mA 🤇	16.6
Bending radius [ρ]	m	6094	momentum compaction factor $[\alpha_p]$		3.36E-05
Revolution period [T ₀]	S	1.83E-04	Revolution frequency [f ₀]	Hz	5475.46
emittance (x/y)	nm	6.12/0.018	βıթ(x/y)	mm	800/1.2 (3)
Transverse size (x/y)	μm	69.97/0.15	ξ _{x,y} /IP	<	0.118/0.083
Bunch length SR [$\sigma_{s.SR}$]	mm	2.14	Bunch length total $[\sigma_{s,tot}]$	mm	2.65
Lifetime due to Beamstrahlung	min	47	lifetime due to radiative Bhabha scattering $[\tau_L]$	min	51
RF voltage [V _{rf}]	GV	6.87	RF frequency [f _{rf}]	MHz	650
Harmonic number [h]		118800	Synchrotron oscillation tune $[\nu_s]$		0.18
Energy acceptance RF [h]	%	5.99	Damping partition number $[J_{\mathcal{E}}]$		2
Energy spread SR $[\sigma_{\delta.SR}]$	%	0.132	Energy spread BS [σ _{δ.BS}]	%	0.096
Energy spread total $[\sigma_{\delta,tot}]$	%	0.163	nγ		0.23
Transverse damping time [n _x]	turns	78	Longitudinal damping time $[n_{\epsilon}]$	turns	39
Hourglass factor	Fh	0.68	Luminosity /IP[L]	cm ⁻² s ⁻¹	2.04E+34

CDR Worklist (0)

General Comment:

- Pre-CDR is easy
- CDR is hard
- Why? Because we leave all hard things to CDR!
- But still, the Pre-CDR was a success:
 - made it possible to propose this project to the government in the 13th five-year plan
 - formed a CEPC-SPPC team
 - provided a baseline design
 - gave China the needed credit in the world HEP community that it is capable to carry out this project

CDR Worklist (3)

5. Dynamic aperture for L*= 1.5m, β_v^* = 3mm

6. Pretzel scheme:

to complete a consistent design including beam orbit/optics in the arcs and IRs, dynamic aperture, beam-beam, beam injection, etc.

7. Investigating alternative designs:

CEPC-SPPC Meeting, May 17-18, 2015

CDR Worklist (4)

8. Saw-tooth orbit

- 0.3% energy error within an arc
- for single-pipe design, there is no way to correct it
- various effects on the beam
- 9. To start machine errors analysis
- 10. To start corrector design
- 11. Arc lattice optimization, e.g.,
 - working point
 - horizontal emittance
 - phase advance
 - momentum compaction
 - bunch length and RF voltage

12. IR optics

- optimize β_v at the sextupoles
- including fringe field, solenoid and compensation, errors and tolerances

CDR Worklist (5)

13. Beam-beam effect:

- to study beam-beam from parasitic crossing
- this is especially important in Z operation due to large number of crossings
- compensation method

CDR Worklist (6)

14. To establish an emittance budget

- from source to linac to Booster to collider
- including machine imperfection and allowance, optics mismatch and energy errors

15. To establish a geometric aperture model for the collider

including the injection region, beam dump region, doublet, maximum beta area

16. Machine-detector interface (MDI)

- radiation shielding design
- simulation using Sullivan's code
- collimator design

CEPC-SPPC Meeting, May 17-18, 2015

CDR Worklist (7)

17. Beam instability

- to establish a realistic impedance model instead of scaling from KEKB or LEP, including separators, collimators, ferrite damper in RF, etc.
- Banana effect due to transverse wake from off-center orbit
- to study instabilities at Z-pole, which has lower energy and higher beam current
- feedback system design
- 18. Orbit stability
 - not covered in the Pre-CDR but should be in the CDR

19. Polarization

- not included for Higgs operation
- but may be needed for Z operation
- even for Higgs, we may need it for energy calibration
- to investigate the options (e.g., Gai Wei's scheme)

CDR Worklist (8)

20. Source and linac

- a complete simulation for e+ beam: from the e- beam to target to capture to transport line to re-injection into the linac to acceleration to injection into the Booster
- If the requirement of 3 nC, 0.3 mm-mrad cannot be met, then a damping ring is needed in the CDR
- e+ beam return line design
- SLAC has offered us a 15 GeV linac including klystrons as well as two damping rings. We need a decision about whether we will take the offer. If yes, when and how.
- to include the study for Z operation, which needs higher beam current

21. Booster

- to mitigate low field injection problem: earth field shielding, to add SLAC's linac, to add a pre-Booster
- To study saw-tooth effect, vacuum pipe, eddy current, machine imperfection, correctors, etc.

W. Chou

CEPC-SPPC Meeting, May 17-18, 2015

Pretzel Scheme

After adding pretzel orbit (with correction) :

Solution need to be improved....

GENG Huiping

Main output parameters:

Design momentum PO = 120.00000 GeV F Was 3012MV f0 = 5292.9459 HzEffective voltage Vc = 6870.0000 MV Energy loss per turn U0 = 3117.5564 MV Equilibrium position dz = 34.554035 mm Momentum compact. alpha = 3.2353E-5 Orbit dilation dl = .0000000 mm Effective harmonic # h = 122880.00 Bucket height dV/P0 = .0599503 Imag.tune:-0.0000000 0.0000000 -0.0000000 Real tune: 0.0852147 0.1789284 -0.1796644Damping per one revolution: X : -2.226889E-02 Y : -1.290562E-02 Z : -1.626322E-02 Damping time (sec): X : 8.484064E-03 Y : 1.463941E-02 Z : 1.161705E-02 - In the first state of the second 'ation: Tu Was 1.0 5 Y : -3.278430E-08 Z : 2.805327E-05 Damping partition number: Y: 1.0036 Ζ: 1.2647 X : 1.7317 Emittance X = 3.77813E-9 m = .00000000 m Was 6.28nm Emittance Z = 4.39763E-6 m = .00164455 Bunch Length Beam tilt = 2.67407981 mm = .00000000 rad Beam size xi = .58021456 mm Beam size eta .00000000 mm =

GENG Huiping

Number of PC (with lifetrac)

Beam Tilt Estimation

Interaction Region

Lattice of interaction region

- IR lattice design with local chromaticity correction with
 - $\beta x^*=0.8m$, $\beta y^*=3mm$, $\varepsilon x=6.12nm$, $\kappa=0.3\%$, L*=1.5m, 2IPs
 - latest lattice for head-on collision: FFS_3.0mm_v3.0_Nov_2015

-I break down and high order dispersion

Weak-Strong Simulation with Lattice (IRsext)

Weak-Strong Simulation with Lattice (240sext)

Partial Double Ring

THE 'BOWTIE' DESIGN by Michael Koratzinos (University of Geneva)

Figure 1: Schematic of the 'bowtie' idea (not to scale).

A solution that can accommodate O(1000) bunches while keeping more than 90% of the ring with a single beam pipe.

> IPAC'15, MITIGATING PERFORMANCE LIMITATIONS OF SINGLE BEAM-PIPE CIRCULAR e+e- COLLIDERS

Primary parameter for CEPC double ring (wangdou20160219)

	Pre-CDR	H-high	lumi.	H-low J	power		Z	
Number of IPs	2	2		2		2		
Energy (GeV)	120	120		12	0		45.5	
Circumference (km)	54	54		54	l I		54	
SR loss/turn (GeV)	3.1	2.96	5	2.9	6		0.062	
Half crossing angle (mrad)	0	14.5	15	11.5	15		15	
Piwinski angle	0	2	2.5	2	2.6		8.5	
N_e /bunch (10 ¹¹)	3.79	3.79	2.85	2.81	2.67		0.46	
Bunch number	50	50	67	40	44		1100	
Beam current (mA)	16.6	16.9	16.9	10.1	10.5		45.4	
SR power /beam (MW)	51.7	50	50	30	31.2		2.8	
Bending radius (km)	6.1	6.2	6.2	6.2	6.2		6.1	
Momentum compaction (10 ⁻⁵)	3.4	3.0	2.5	2.6	2.2		3.5	
$\beta_{IP} x/y (m)$	0.8/0.0012	0.306/0.0012	0.25/0.00136	0.22/0.001	0.268 /0.00124		0.08/0.001	
Emittance x/y (nm)	6.12/0.018	3.34/0.01	2.45/0.0074	2.67/0.008	2.06 /0.0062		0.62/0.002	
Transverse σ_{IP} (um)	69.97/0.15	32/0.11	24.8/0.1	24.3/0.09	23.5/0.088		7/0.046	
ξ_x/IP	0.118	0.04	0.03	0.04	0.032		0.005	
$\xi_{ m v}/{ m IP}$	0.083	0.11	0.11	0.11	0.11		0.084	
$V_{RF}(GV)$	6.87	3.7	3.62	3.6	3.53		0.12	
f_{RF} (MHz)	650	650	650	650	650		650	
Nature σ_{z} (mm)	2.14	3.3	3.1	3.2	3.0		3.9	
Total σ_{z} (mm)	2.65	4.4	4.1	4.2	4.0		4.0	
HOM power/cavity (kw)	3.6	3.3	2.2	1.5	1.3		0.99	
Energy spread (%)	0.13	0.13	0.13	0.13	0.13		0.05	
Energy acceptance (%)	2	2	2	2	2			
Energy acceptance by RF (%)	6	2.2	2.2	2.2	2.1		1.1	
n_{γ}	0.23	0.49	0.47	0.47	0.47		0.27	
Life time due to	47	53	36	41	32			
beamstrahlung_cal (minute)								
<i>F</i> (hour glass)	0.68	0.73	0.82	0.69	0.81		0.95	
$L_{\rm max}/{\rm IP} (10^{34} {\rm cm}^{-2} {\rm s}^{-1})$	2.04	2.97	2.96	2.03	2.01		3.61	

Arc redesign-ultra low emittance

- Length of FODO cell: 37.2m
- Phase advance of FODO cells: 90/60 degrees
- \blacktriangleright Emittance: 2.52nm, α p=1.05E-5
- Bunch length: 1.5168mm

Dispersion supressor:
 Angle(BDIS1)=3.5816546264E-3
 Angle(BDIS2)=-8.59314326219E-4
 Angle(B0)=2.72235074352E-3

CEPC Local Double Ring Lattice (F. Su et al)

Using Septum Dipole after separator to acquire 13 mrad

2015.12.24-new

Orbit (RING3_DR_IP1) Version 1.1 + FFS(test20160115-2-Wangdou)

Dynamic Aperture

Booster

CEPC booster lattice

- > 47.2 meter FODO structure.
- > Non-interleaved sextupole scheme.
- I0 FODOs make up a cell to cancell off-momentum particle's beta beat effect.
- > 8 folds symmetry
- > 16 families sextupole are used to cancell second order chromaticity.
- > DA of on-mumentum and off-mumentum are good enough for booster.
- > 94.4 meter FODO structure is also trying

Tianjian Bian, Xiaohao Cui

Wiggling Bend Scheme

- ➤ The inject energy is 6GeV.
- ▶ If all the dipoles have the same sign, 33Gs@6GeV may cause problem.
- In wiggling bend scheme, adjoining dipoles have different sign to avoid the low field problem.
- > Shorten the Damping times greatly.
- > The picture below shows the FODO structure.

Booster Parameters (T.J. Bian et al)

Main difference in parameters between Pre-CDR booster (old) and the alternating field booster (new)

	Old@6GeV	New@6GeV
Parameter		
U0 [MeV/turn]	0.019	0.70
Damping times(x/y) [s]	115.61	3.12
Emittances(x) [pi nm]	0.015	0.11
Strength of dipole [Gs]	33	-164.3/+229.9
Beam offset in dipole[cm]	0	2.3
Length of dipole [m]	19.6*1	4.9*4
Length of FODO [m]	47.2	47.2

Error

CEPC field error

- The multipole errors in the main ring seems to have a large effect on the 2% off-momentum DA.
- The field errors in the FFS seems to have a large effect on the vertical on-momentum DA.
- With all B,Q,S multipole errors in CEPC whole ring including FFS, the 2% off-momentum DA reduced to about 1/3~1/2.
- With correctors and BPMs adding in the beam line, SAD hash table has no space. SAD can not deal with large ring.

Method 1: Optimization of DA (precondition: best DA without error)

> orbit correction (for misalignment errors)

tune correction (for quad B*L error)

Cure DA

- S TRANSPOLISTIC CONTRACTOR STRATEGICS
- FMA analysis , add octupole, decapole, dodecapole......
 - Although could be corrected in simulation, may not the case in real situation.....

 Method 2: Reduce errors (maybe high level requirement in magnet manufature) reduce the errors to the DA that we can accept

MDI

MDI Status

- Develop MDIToolkit –uniform computing platform to established the environment for MDI study on IHEP computing cluster
- Background study: SR, Radiative Bhabha scattering, Beamstrahlung
- With 2cm aperture collimator, lost particles of radiative Bhabha and beamstrahlung in IR after several machine turns can be effectively prevented, but need to be optimized.
- SC magnets are designed preliminarily. Conceptual design and magnetic field calculation.
- Anti-solenoid design is optimizing, set up solenoid model in accelerator software.

Local double ring MDI layout

Detectors (including silicon tracker, vertex detector, TPC etc on....) which are "far" from this region, should be same as in the single ring.

Summary

- We've made much progress after pre-CDR.
- Many problems have been "touched".
- All work should converge to a self-consistent design.
- It is urgent to finish the CDR in the end of 2016.

• This page is blank

Multi-Objective Optimization with possible application in SuperKEKB

> Y. Zhang and D. Zhou Mar. 9th, 2016

Introduction

- This work was firstly excited by Oide's talk.
 K. Oide, "A design of beam optics for FCC-ee", 2015-09
 "255 sextupole pairs per half ring"
- Downhill Simplex is a local optimization algorithm
- We use a global optimization algorithm: Differial Evolution (Suggested by Ji Qiang@LBNL)
- Other popular algorithm: Genetic Algorithm, Particle Swarm

Differential Evolution

- The "DE community" has been growing since the early DE years of 1994 1996 (new)
- DE is a very simple population based, stochastic function minimizer which is very powerful at the same time.
- There are a few strategies, we choose 'rand-to-best'. Attempts a balance between robustness and fast convergence. $v(i,j) = \begin{cases} x(i,j) + F \times [x(b,j) - x(i,j)] + F \times [x(r1,j) - x(r2,j)], & If rand(j) < CR \\ x(i,j), & Otherwise \end{cases}$
- Different problems often require different settings for NP, F and CR
- F is usually (0.5,1) but according to our experience, maybe (0.1~0.5) better

Optimization with Algorithm - Objective function

$$\bullet \, \frac{x^2}{20^2} + \frac{z^2}{16^2} = 1$$

- z for energy deviation in unit of σ_p
- x for transverse amplitude in unit of σ
- For z =Range[-15,15,3],
 objective function =
 ^{0,} if aperture boundary is outside the ellipse distance between the boundary and the ellipse, otherwise

The first test, with 240 sextupoles, 100turns

V1, 100 turns

da=DynamicApertureSurvey[{{0,25}, {0,1.369}, Range[-15,15,3]}, 100, Output->6]	DynamicApertureSurvey[{{0,25},{0,1.369},z},100,Output->6]
Turns =100 Maximum number of particles =330	Turns =100 Maximum number of particles =330
Range Xmin: 0.000 Xmax: 25.000	Range Xmin: 0.000 Xmax: 25.000
(Ymin: 0.000 Ymax: 1.369)	(Ymin: 0.000 Ymax: 1.369)
Zmin: -15.000 Zmax: 15.000	Zmin: -15.000 Zmax: 15.000
Display: 10 turns/character	Display: 10 turns/character
NZ 0!1!3!45	NZ 0!12!3!4!5
-15.00 1 A110000000000000000000000000000000	-15.00 4 AAAA321100000000000000000000000000000000
-12.00 3 AAA98322111000000001000000000000000000000000	-12.00 8 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
-9.00 7 AAAAAAA545631111110000001110000000000000000000000	-9.00 13 AAAAAAAAAAAA3261310000000000000000000000000000000000
-6.00 12 AAAAAAAAAAAAAAAA6432111111000100110000000000000000000000	-6.00 17 **AAAAAAAAAAAAAA32221100000000000000000000
-3.00 15 AAAAAAAAAAAAAAAAA34221131111122222262111111111853221	-3 00 20 *****ΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔ633ΔΔ11110000000000000000
0.00 51 **********************************	Ω ΩΩ 51 ********************************
3.00 12 AAAAAAAAAAAAAAAA39358222222311135331110111100000000	
6.00 15 AAAAAAAAAAAAAAAA552221100001000000000000	
9.00 9 AAAAAAAAAA6648110000000000000000000000000000000000	
12.00 3 AAA3221111110000000000000000000000000000	9.00 12 AAAAAAAAAAAAA7321112210000000000000000000000000000000
15.00 1 A110000000000000000000000000000000	
NZ 0!1!3!4!5	15.00 5 AAAAA2110000000000000000000000000000000
Score: 129	NZ 0!2!3!4!5
	Score: 182

CEPC: Dynamic Aperture Optimization with 240 sextupoles in ARC (v1-IR)

0,463292, 20,3240

Tune

Multi-Objective Optimization

The multiple objective algorithm based on differential evolution is implemented referencing J. Qiang, IPAC'13.

Deb, Kalyanmoy - Natural selection: Non-dominated sorting in N-dimension space

Yongjun Li, IAS Program on HEP Conference, 2016

More Objective in CEPC test

- DA with PhaseX->0,PhaseY->0
- DA with PhaseY->Pi/2, PhaseY->Pi/2
- Qx in [0, 0.5]
- Qy in [0, 0.5]
- ChromaticityX in [0, 5]
- ChromaticityY in [0, 5]

• DA:
$$\frac{x^2}{20^2} + \frac{y^2}{50^2} + \frac{z^2}{16^2} = 1$$
, for $z = 0$

• DA:
$$\frac{x^2}{20^2} + \frac{y^2}{50^2} + \frac{z^2}{16^2} = 1$$
, for $z = -5$

• DA:
$$\frac{x^{-}}{20^{2}} + \frac{y^{-}}{50^{2}} + \frac{z^{-}}{16^{2}} = 1$$
, for $z = +5$

A solution (not good enough, just a test)

2. Lattice nonlin.: LER: DA and lifetime

- Test by inserting a map of H=K*x²y into the LER lattice
- Skew-sext. map:
 - cause loss in DA and lifetime (to be understood)

sl

We have to suppress the skew sextupole resonance, and enlarge the DA in the mean time This is a multiple

objective task.

sler_1689

Objective

- DA: $\frac{x^2}{50^2} + \frac{z^2}{26^2} = 1$ with PhaseX->0, PhaseY->0, for z=-26:2:26
- DA: $\frac{x^2}{50^2} + \frac{z^2}{26^2} = 1$ with PhaseX->pi/2, PhaseY->pi/2, for z=-26:2:26
- $\frac{\langle y \rangle}{\sigma_y}$ for a particle with initial coordinate (5 σ_x ,0,0,0,0,0)
- $\frac{|y-\langle y\rangle|}{\sigma_y}$ for a particle with initial coordinate (5 σ_x ,0,0,0,0,0)
- Coupling Chromaticity: $\sum |R_1R_4 R_2R_3|$, for $\delta = (-0.018, +0.018)$

To correct the skew sextupole nonlinear terms, the skew sextupole strength symmetry in one pair is broken. Totally we use 24 skew sextupole.

Status of Optimization (1)

Status of Optimization (2)

Status of Optimization (3)

Status of Optimization (4)

It's evolving

Other way to be tried

- Insert a skew sextupole pair before/after IP, the pair could cancel each other and help compensate the nonlinear resonance at IP. It is like the crab-waist scheme. This may need to change the linear optics.
- If the DA with suppressed skew sextupole resonance is not good enough, we may need to optimize the sextupole strength further.

Summary

- DA optimization is a complicated problem
- DA is not the only objective. Chromaticity, coupling and even nonlinearity should also be well controlled. We have a multiple objective task.
- The multi-objective optimization has been used in light source machine (not only storage ring based) for a few years
- SuperKEKB team has developed powerful optimization tool.
- We wish the Multi-Objective-Differential-Evolution could also help the optimization of SuperKEKB
- The MODE is just a tool, no physics. Physics exist in the definition of objective function.
- The tool could only help us find the 'ceiling' of a design. But the 'ceiling' is determined by the design itself.