Crab crossing in KEKB and nanobeam scheme in SuperKEKB

K. Ohmi, D. Zhou (KEK) EIC14, JLab Mar. 17-21, 2014

 Low emittance, low beta, low current, socalled super bunch collision

Comparison of two approach

High curent $\frac{\sqrt{\epsilon_x \beta_x}}{\theta \sigma_z} > 1$ or $\theta = 0$ Low emittance $\frac{\sqrt{\epsilon_x \beta_x}}{\theta \sigma_z} < 1$

$$L \sim \frac{N^2}{\sqrt{\varepsilon_x \beta_x \varepsilon_y \beta_y}}$$
$$\xi_x \sim \frac{N}{\varepsilon_x}$$
$$\xi_y \sim N \sqrt{\frac{\beta_y}{\varepsilon_x \beta_x \varepsilon_y}}$$
$$\beta_y > \sigma_z$$

 θ : half crossing angle

 $\theta\sigma_{-}$ Overlap factor

$$L \sim \frac{N^2}{\theta \sigma_z \sqrt{\varepsilon_y \beta_y}}$$
$$\xi_x \sim \frac{N}{\theta \sigma_z} \sqrt{\frac{\beta_x}{\varepsilon_x}}$$
$$\xi_y \sim \frac{N}{\theta \sigma_z} \sqrt{\frac{\beta_y}{\varepsilon_y}}$$
$$\beta_y > \frac{\sqrt{\varepsilon_x \beta_x}}{\theta}$$

 ξ_x is smaller due to cancellation of tune shift along bunch length

High current approach

$$L \sim \frac{N^2}{\sqrt{\varepsilon_x \beta_x \varepsilon_y \beta_y}}$$
$$\xi_x \sim \frac{N}{\varepsilon_x}$$
$$\xi_y \sim N \sqrt{\frac{\beta_y}{\varepsilon_x \beta_x \varepsilon_y}}$$
$$\beta_y > \sigma_z$$

Keep
$$\varepsilon_x$$
, β_x and $\sqrt{\frac{\beta_y}{\varepsilon_y}}$.
 $\varepsilon_y \beta_y \to 0$
 $L \to \infty$

 $\beta_y > \sigma_z$ limits luminosity

- High current, Small coupling
- Choice of operating point

$$v_x \to +0.5 \quad \xi_y \to \infty \qquad N \to \infty$$

$$\theta=0 \qquad \qquad L \to \infty$$

How ξ_y can be large

 v_x→0.5, the horizontal motion is integrated independent of y, because horizontal beam-beam force weakly depends on y.•z independent for θ_c=0.

Figure 3: Phase space plot in $x - p_x$. $y_0 = 2\mu \text{ m} \approx 3\sigma_y$. plots (a), (b), (c) and (d) is given for $\nu_x = 0.503, 0.51, 0.52$ and 0.54, respectively.

Limitation of crab and $v_x \rightarrow 0.5$ scheme

- Dynamic beta in horizontal works demerit.
- Aperture issue appears other place of IR, especially at the crab cavity. Crab β_x is reduced.
- Low crab β_x requires high crab voltage, while high IR β_x degrades luminosity.
- Crossing angle relaxes the dynamic beta ironically, $\sigma_x = (\epsilon_x \beta_x + \theta \sigma_z^2)^{1/2}$.
- We had to find the middle ground.
- Limitation of beam current for crab cavity trip.

The crab crossing works fairly well, though it is not perfect.

Machine parameters (before/after crab)

Date	Nov.15 2006		Jun. 17 2009		
Date	before crab		with	with crab	
	LER	HER	LER	HER	
Current	1.65	1.33	1.64	1.19	A
Bunches	1389		1584		
Bunch current	1.19	0.96	1.03	0.750	mA
spacing	2.10		1.84		mA
emittance ε _x	18	24	18	24	nm
βx [*]	59	56	120	120	cm
β _y *	6.5	5.9	5.9	5.9	mm
σ _x @IP	103	107	147	170	μm
σ _y @IP	1.8	1.8	0.94	0.94	μm
Vx	45.505	43.509	45.506	44.511	
Vy	44.534	41.565	43.561	41.585	
Vs	-0.0246	-0.0226	-0.0246	-0.0209	
beam-beam ξ_x	0.117	0.070	0.127	0.102	
beam-beam ξ_y	0.108	0.058	0.129	0.090	
Luminosity	17	′ .6	21	.08	10 ³³ cm ⁻² s ⁻¹

7

7

Summary for KEKB crab crossing

- Beam Crabbing was realized without problems.
- Strong Dynamic beta at crab cavity.
- Tuning knobs increase, optics parameters at crab cavity, in addition of those at IP. X-y coupling at crab cavity induces y-z tilt at IP.
- Correction of chromatic coupling at IP was efficient.
- Luminosity 2.11x10³⁴ cm⁻²s⁻¹ was achieved. ξ_{y} ~0.09.
- Expectation was $3x10^{34}$, $\xi_v > 0.1$.
- Chromatic aberration between crab cavity and IP may affect the luminosity performance.

Nano-beam scheme

 KEKB with crab cavity targeted a high beambeam parameter >0.1.
 KEKB crab crossing

Machine Parameters

2011/July/20	LER	HER	unit	
E	4.000	7.007	GeV	
l	3.6	2.6	A	
Number of bunches	2,5			
Bunch Current	1.44	1.04	mA	
Circumference	3,016	m		
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/11.5(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	8	mrad		
α _p	3.25x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	8.08(7.73)x10 ⁻⁴	6.37(6.31)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ _z	6.0(5.0)	5(4.9)	mm	():zero current
Vs	-0.0247	-0.0280		
v_x/v_y	44.53/44.57	45.53/43.57		
Uo	1.87	2.43	MeV	
$\tau_{x,y}/\tau_s$	43.1/21.6	58.0/29.0	msec	
ξ_x/ξγ	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x1	cm ⁻² s ⁻¹		

2. Beam-beam and luminosity: LER

► Lum. tune scan for LER (by BBWS: weak strong with linear arc)

Choice of tune operating point v_x near half integer, keep away from synchrobeta resonance v_x , v_y =0.53,0.57

14

2. Beam-beam and luminosity: HER

► Lum. tune scan for HER (by BBWS: weak strong with linear arc)

 σ_z

2. Beam-beam and luminosity: LER

➤ Lum. scan w/o and w/ crab waist for LER (by BBWS)

The crab waist is very powerful. Degradation of dynamic aperture is inevitable, because nonlinearity between IP and crab waist sextupole is not transparent. See later.

16

φ: half crossing angle

Characteristics of the collision

- βy is small only interaction area
 - Beam particles with a large horizontal amplitude collide high beta region
 - Issues on injection, collision offset, Touschek life time
 - Crab waist recovers the issues, but...

Neglect parallel translation to x

Dynamic aperture and Touschek life time

- Dynamic aperture with beam-beam is quite narrow.
- Touschek event-> betatron amplitude -> over the aperture

Transverse aperture is reduced significantly

Crab waist

• Transformation of Effective Crab waist at IP.

 $H_I^* = \pm \frac{1}{2\phi} x p_y^2$

φ: half crossing angle

+: before collision -: after collision

- The nonlinearity is completely cancelled without beambeam, when the transformation is applied at IP.
- Particles with a horizontal amplitude collide with another beam at their vertical waist.
- The aperture issue with beam-beam is recovered, but

 $ar{y} = y \pm rac{x}{2\phi} p_y \quad ar{p}_x = p_x \mp p_y^2/2\phi$ -> next slide $M_y = \begin{pmatrix} 1 & x/2\phi \\ 0 & 1 \end{pmatrix}$ $M_y^{-1} M_{BB} M_y$ Waist shift: x/2 ϕ

- Severe dynamic aperture degradation is seen by crab sextupole installation in SAD (H. Koiso).
- We do not know how to handle the nonlinear terms of Q's and Solenoid located at very high β.
- Crab waist is not base in Super KEKB.

Study with a simple model

Strong nonlinearity in drift space, chromatic effects.
Quadrupole edge at very high β

 $\mathcal{M}_{IR} = e^{-H_{QF}} e^{-H_{L1}} e^{-H_{QD}} e^{-H_{L0}} e^{-H_{L0}} e^{-H_{QD}} e^{-H_{L1}} e^{-H_{QF}}$

- Dynamic aperture is strongly degraded by installation of crab waist sextupoles.
- More nonlinear components in IR actually.

super KEKB

Crab-waist optics in LER

Dynamic aperture using SAD

• On momentum aperture

Ohnishi, SKEKB MAC14

Initial momentum deviation is zero. (synchrotron motion is included.)

Dynamic aperture i

- Crab waist sextupole reduces dynamic aperture significantly.
- The results is independent The x³ term does not affect DA. of (effective) crab sextupole location outside of IR (A. $\Delta x_0 = \frac{45}{\sigma_x} = \frac{45}{40}$

Strategy for crab waist in SuperKEKB

- We understand efficiency of the crab waist on luminosity in simple model.
- However the side effect, which reduces dynamic aperture, is too severe in very low β^* IP.
- Crab waist scheme is not adopted in SuperKEKB at present.
- Efforts to enlarge dynamic aperture with crab waist sextupole are continued. (BINP collaboration)

Luminosity simulation in realistic lattice

- Weak-strong beam-beam simulation using SAD.
- Crosscheck is began using other codes, Acceleraticum (Levichev, Piminov in BINP), BMAD(Sagan), SCTR (K.Ohmi).

Weak-strong Simulation for LER lattice

- Even low current, luminosity loss ~20% is seen.
- > 30% loss at the design current.
- Chromatic effect can not explain the lum. Loss.

Beam tail distribution LER, $A=J/\epsilon$

0 ò

• Ne=6.53x10¹⁰,

SAD +weak-strong BB

A_x

Other experiences on beam-beam in realistic lattice

No crab

KEKB crab, EPAC08

30 **KEKB LER: Specific lum.** Err 2.0 Speaific Lum./bunch [10³¹cm⁻²s⁻¹mA⁻²] Err, IP correct □ SAD ×BBWS 25 linear lattice BBWS 1.5 L/I+I_ 10⁻³⁰ 20 15 With IR solenoid 1.0 10 With IR solenoid 0.5 HER 24nm 1% 5 $\theta_h p_x z$ 0.8 0 02 1.2 14 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 1 $I_{\text{bunch}}(e^+) \times I_{\text{bunch}}(e^-) [\text{mA}^2]$ 0 $I_I_ (mA^2)$

 No clear degradation due to lattice nonlinearity is seen in KEKB, except high beam-beam parameter.

BEPC-II

- SCTR code showed 15% loss at 6 & 8 mA.
- SAD does not show clear difference

SuperKEKB

• Simplified IR model for SuperKEKB

SCTR Including WS Beam-beam

Note: bunch length 5.3mm (design 6mm)

Include Space charge

Space charge: LER

Weak-strong model for space charge
 "Strong" beam: Emittance growth due to IBS included
 Remarkable luminosity loss is seen (65%).

Summary for SuperKEKB studies

- Touschek life time is severe when beam-beam interaction is taken into account.
- Crab waist degrade the dynamic aperture due to IR strong nonlinearity.
- Beam-beam effect in realistic Lattice has been studied using weak-strong & SAD.
- Clear luminosity loss (30%) has been seen.
- In KEKB, BEPC, the loss is small.
- Crosscheck is began using several codes. Understanding of mechanism will be performed.
- Solenoid and IR complex may degrade the luminosity. (preliminary)
- Further loss (60-70%) is seen in taking account of space charge. Crosscheck and understanding will be performed.