Pushing Luminosity of e+e-Colliders: the SuperKEKB project

Y. Funakoshi KEK Oct. 17 2013 6th TLEP workshop@CERN

CONCEPT OF SUPERKEKB

The KEKB operation was terminated at the end of June 2010 for the upgrade toward SuperKEKB. Operation of SuperKEKB will start in Jan. 2015.

SuperKEKB Luminosity Target

Luminosity of KEKB and SuperKEKB

	KEKB Acieved		SuperKEKB Nano-Beam		$L = \frac{g_{\pm}}{2er_e \grave{e}} \stackrel{\text{\&}}{=} + \frac{S_y^* \stackrel{\text{o}}{=} I_{\pm} X_{y\pm}}{S_x^* \bigotimes} \frac{R_L}{D_{y\pm}^*} \frac{R_L}{R_{x_y}}$
	LER	HER	LER	HER	
I _{beam} [A]	1.6	1.2	3.6	2.6	< Factor 2
β _y * [mm]	5.9	5.9	0.27	0.30	< Factor 20
ξ _y	0.09	0.12	0.088	0.081	Almost same
Luminosity [cm ⁻² s ⁻¹]	2.1 x 10 ³⁴		8.0 x 10 ³⁵		< 40 times higher

Collision Scheme

Vertical beta function at IP can be squeezed to \sim 300 μ m. Need small horizontal beam size at IP.

No crab waist scheme has been assumed at SuperKEKB

 \rightarrow low emittance, small horizontal beta function at IP.

Machine Design Parameters

poromotor	KEKB		SuperKEKB		unite	
parameters	5	LER	HER	LER HER		units
Beam energy	Eb	3.5	8	4	7.007	GeV
Half crossing angle	φ	11		41.5		mrad
# of Bunches	Ν	1584		2500		
Horizontal emittance	٤x	18	24	3.2	4.6	nm
Emittance ratio	κ	0.88	0.66	0.27	0.28	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	l _b	1.64	1.19	3.6	2.6	А
beam-beam param.	ξy	0.129	0.090	0.088	0.081	
Bunch Length	σz	6.0	6.0	6.0	5.0	mm
Horizontal Beam Size	σ×*	150	150	10	11	um
Vertical Beam Size	σy*	0.94		0.048	0.062	um
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

The construction works are in full swing at SuperKEKB.

However, in this talk, instead of describing the construction status, I will focus on issues for SuperKEKB.

Issues

- IR design and dynamic aperture
- Low emittance tuning
- Magnet alignment strategy
- Beam-beam related issues
- IP orbit control
- Beam loss and beam injection
- Electron clouds
- Detector beam background

IR design and dynamic aperture

- This is one of the key issues at SuperKEKB
 - Success of SuperKEKB largely depends on how low values of IP beta-functions will be achieved with enough dynamic aperture.

Final Focus System: QCS

N. Ohuchi, Y. Arimoto

IR Optics in LER

X-LCC corrects QC2 chromaticity and Y-LCC corrects QC1 chromaticity locally.

IR Optics in HER

X-LCC corrects QC2 chromaticity and Y-LCC corrects QC1 chromaticity locally.

Corrector coils

- Dipole and skew dipole coils make a beam-line geometry and correct dispersions.
- Skew quadrupole coils correct x-y couplings.
- Sextupole and skew sextuple coils correct error field due to a misalignment of quadrupole coils. This error field affects the dynamic aperture significantly.
- Octupole coils at QC1 and QC2 enlarge a transverse aperture.
- HER cancel coils correct sextupole, octupole, decapole and dodecapole leakage field from QC1P in LER.

Touschek Lifetime

- Touschek lifetime depends on dynamic aperture.
- Efforts to widen dynamic aperture
 - Careful design of QCS magnets to minimize higher multipoles etc.
 - Careful IR design: LCC, x-y coupling correction etc.
 - Optimization of octupoles, ARC sextupoles, skew-sextupoles

w/o machine errors

Low emittance tuning

- The design vertical emittance of SuperKEKB is very small compared to those of existing colliders.
- The low vertical emittances have been achieved in SR machines. However, low emittance tuning in colliders is much more difficult.
- One of the key tuning issues at SuperKEKB will be low emittance tuning.

Comparison of emittances of colliders

From Beam Dynamics Newsletter No. 31 Courtesy of F. Zimmermann, H. Burkhardt and Q. Qin

KEKB method of optics correction

Iteration

2008_06_19_19_06_29fop 2008_06_19_19_06_32luh 2008_06_19_19_09_12XY_Coupling MeasOptHER 2008_06_19_19_12_59Dispersion 2008_06_19_19_18_27XY_Coupling MeasOptHER 2008_06_19_19_21_34Dispersion 2008 06 19 19 22 29Dispersion 2008_06_19_19_23_29Dispersion 2008_06_19_19_31_36Global_Beta 2008_06_19_19_38_29Global_Beta 2008_06_19_20_16_46_amsad8 2008_06_19_20_34_16_amsad8

Fill-Length Optimization Beam Collision Panel MeasOptHER MeasOptHER MeasOptHER MeasOptHER MeasOptHER MeasOptHER amsad8 screen capture amsad8 screen capture

*A loop of coupling, dispersion, β corrections takes **30-60 minutes** per ring to converge. (1 correction takes 3.5 to 7 minutes)

* We do not have to solve the entire problem at once by a single big matrix.

* Although these corrections are not independent, their cross-talks are smaller than the diagonal parts, so the iteration converges quickly.

X-y coupling correction

- * Kick the beam by horizontal dc correctors at non-coupled, non-dispersive places.
- * Measure leaked closed orbit in the vertical plane.
- Correct the leak by vertical symmetric bumps at sextupole pairs and skew quads around the IP. At SuperKEKB we will use skew-quad winding at sextuples instead of bumps.
- * Only 12 correctors, with equally separated phases, are used.

Dispersion correction

- * Change rf frequency by ± 100 Hz, measure the orbit change in x and y.
- Correct the difference from the model by horizontal & vertical antisymmetric bumps at sextupole pairs.
 At SuperKEKB we will use skew-quad winding at sextuples instead of bumps.
- * Residuals: $\Delta \eta_{x, \text{rms.}} \approx 10 \text{ mm}, \quad \Delta \eta_{y, \text{rms.}} \approx 8 \text{ mm}$

β correction

- * Kick the beam by dc correctors in x and y, measure the orbit response in each plane.
- * Fit the response with β s and phases at each BPM and the kicked correctors, assuming x-y coupling to have been already corrected. 6 correctors per plane.
- * Correct the difference from the model by fudge factors of quads.

Before correction

After 1 corrrection.

Simulation for SuperKEKB with machine errors

- Simulation was done by H. Sugimoto in case of HER.
- Assumed machine errors

	$σ_x = σ_y$ [μm]	$\sigma_{ heta}$ [µrad]	∆к/к
Normal Quad	100	100	2.5 x 10 ⁻⁴
Sextu.	100	100	2.5 x 10 ⁻⁴
Bend.	0	100	0
QC1, QC2	100	0	0
BPM	0	10 x 10 ³	2μm (resolution)

Machine errors are created randomly with gaussian distributions.

- Corrections
 - Closed orbit, x-y coupling, beta-beat, dispersions (KEKB methods)
 - SVD threshold = 10⁻²

Results of simulation

Vertical emittance distribution after LET

Dynamic aperture after LET.

H. Sugimoto

Dynamic aperture with different types of errors

Rotation errors of quadruples seems most dangerous.

Each sextuple has a skew quadrupole corrector coil.

We may have to rethink tolerance of rotation errors of normal quadrupoles.

H. Sugimoto

Magnet alignment strategy at SuperKEKB

- The target positions of the initial alignment of SuperKEKB is a smoothed curve made from present (2013) magnet positions (not on a plane).
- The tolerance of magnets alignment around the target curve is the same as KEKB.
 - Position error: 100 μ m (1 σ)
 - Rotational error: 100 μ rad (1 σ)
 - We have to rethink about this?
- We will need special care for the alignment of the magnets around the local chromaticity correction.

Effects of Tunnel deformation at SuperKEKB HER Target (7.8pm)

Tunnel deformation observed at KEKB

A large subsidence has been observed:
2mm/year and still in progress.

- In the construction period of KEKB (1998), all magnets were aligned on the same plane.

-If the alignment error around the V-LCC (vertical local chromaticity correction) area is excluded, the vertical emittance can be preserved well below the target value with optics corrections.

RMS

Vertical Dispersion

Error

0.015

0.01

0.005

- As for the alignment error of V-LCC, we will need a special care. This is a remaining problem.

Beam-beam related issues

- Beam lifetime shortening with beam-beam
- Luminosity degradation
 - The design luminosity was determined based on the strong-strong beam-beam simulation.
 - Beam-beam + lattice nonlinearity and space charge effect

LER Dynamic Aperture

beam-beam

Y. Ohnishi

HER Dynamic Aperture

beam-beam

Y. Ohnishi

Tune survey (LER)

H. Sugimoto

LER Dynamic Aperture beam-beam

Y. Ohnishi

aperture study with sextupoles for crab waist

We have considered that the crab waist scheme can not be used at SuperKEKB due to the degradation of dynamic aperture. Now, we have started to study this scheme more seriously. We are collaborating with people in BINP.

SuperKEKB beam-beam simulation

K. Ohmi

L (cm⁻²s⁻¹)

Strong-weak simulation (tune survey)

1. Lum.: LER: BB + LN + SC

► SC causes lum. degradation ► BB + SC: compensate at low current?

sler_1684

BBWS SAD

NE=0.01E10

NP=0.014E10

SAD(BB+SC) -Gaussian -

100

90

80

70 60 Density

50

40

30

20 10
sler_1684

1. Lum.: LER: BB + Crab waist

Crab waist: simple map at IP

Crab waist seems to be effective to recover also the luminosity.

IP orbit control

• The IP orbit control to maintain an optimum beam collision is more difficult than the KEKB case.

	КЕКВ	SuperKEKB
ε _γ	150pm	~8.6pm (LER)
β _y *	5.9mm	0.27mm(LER)
σ_y^*	940nm	45nm

• IP orbit is very sensitive to the vibration of QCS (QC1, QC2) magnets.

QCSL vertical position oscillation (measurement) and orbit **Change** (tracking) : SuperKEKB HER

Vertical orbit at IP (simulation)

QCSL vertical position (measurement) -> QC1L (HER)

If the QC1L magnets of SuperKEKB vibrates with the same amplitude of the QCSL of the KEKB, the orbit change at IP amounts to $4\sigma_v^*$.

Countermeasures

- Reinforcement of supports for QCS magnets
- Rely on the coherency of the oscillation of QC1P and QC1E (QC2P and QC1E).
- Fast orbit feedback

Orbit change at IP with $1\mu m$ offset of **QCS** magnets

Old optics

		K1 (/m)	Distance from IP [m]	β _Q [m]	β _{IP} [mm]	Δψ _y /2π	COD@IPfor 1µm Q- offset [µm] (New optics)	
0.611	LER	-1.717	0.912	2504.3	0.27	0.24995	-0.706 (-0.7339)	
QC1L	HER	-1.142	1.390	5462.4	0.3	0.24997	-0.731 (-0.7684)	
0010	LER	-1.712	0.912	2567.7	0.27	0.24996	-0.713 (-0.7362)	
QCIR	HER	-1.070	1.430	5592.6	0.3	0.24997	-0.693 (-0.7299)	
0021	LER	0.84161	1.9099	962.2	0.27	0.25004	0.2145	
QCZL	HER	0.65023	2.6799	1923.3	0.3	0.25030	0.2470	
0020	LER	0.83924	1.9760	924.6	0.27	0.25005	0.2097	
QUZR	HER	0.55577	2.9449	1806.9	0.3	0.25004	0.2046	

$$COD \quad Dy = \frac{1}{2\sin\rho n} \sqrt{b_Q b_{IP}} \cos(\rho n - |Dy|) J$$

If QCS magnets for both rings move coherently, orbit difference of the two beam becomes much smaller $(1/10 \sim 1/20)$ than non-coherent case.

Luminosity degradation due to QC1 vibration (simulation)

Y. Funakoshi

Model		QC1 R-side									
	f (Hz)	24.85	38.93	69.34	99.60						
Model-A	∆y _{ıP} * (nm)	18.63	1.72	8.29	3.14						
	L/L ₀ (%)	95.4	99.8	QC1 R-side 38.93 69.34 99.60 1.72 8.29 3.14 99.8 99.7 99.7 38.94 69.24 99.59 0.97 1.08 1.57 99.8 99.8 99.8 99.8	99.7						
	f (Hz)	24.75	38.94	69.24	99.59						
Model-F	∆y _{ıP} * (nm)	16.7	0.97	1.08	1.57						
	L/L ₀ (%)	96.1	99.8	99.8	99.8						

*RMS

IP feedback can resume luminosity up to 10 - 70 Hz.

Reinforcement of Bridge Structure

Model-B

Model-A (baseline)

H. Yamaoka

Orbit feedback at IP : Algorism

• Beam-beam deflection (SLC, KEKB vertical)

• Luminosity feedback (dithering)(PEP-II)

When we shake the beam at around the peak of the luminosity, there appears twice of the frequency of the dithering frequency.

Beam size feedback (KEKB horizontal)

-uminosity

At KEKB before installation of crab cavities, the vertical beam of LER was used for the horizontal orbit feedback at IP.

Rejection gain by fast orbit feedback

H. Fukuma

Electron cloud issues

- The single bunch instability is main concern.
 - Leads to increase in emittance
 - Coupled bunch instabilities will be cured by feedback system.
- Simulation and calculation by Ohmi, et al. K. Ohmi, KEK Preprint 2005-100 (2006)

Y. Suetsugu

Latest simulation result on the threshold value of instability

- Simulation with PEHTS2 by D. Zhou and K. Ohmi
 - With uniform beta functions and uniform electron cloud density along the ring, the threshold for electron cloud density is about 5.E11 m⁻³.
 - With realistic beta functions and uniform electron cloud density along the ring, the threshold reduces to about 1.6E11 m⁻³.
 - With realistic beta functions and estimated sdependent electron cloud density along the ring, the threshold is about 5.E11 m⁻³.

Countermeasures

Y. Suetsugu

- For the upgrade of the vacuum system for SuperKEKB, the electron cloud is a key issue.
- Countermeasures are carefully chosen based on the various studies.

Drift section	Antechamber +Solenoid +TiN Coating
Q and Sx mag.	Antechamber +Solenoid +TiN Coating
Bend section	Antechamber +Groove+ TiN Coating
Wiggler section	Antechamber +Electrode (Cu)

Countermeasures for electron clouds

Drift section: Antechamber + TiN coating

Wiggler section: Antechamber + Clearing electrode

Y. Suetsugu

Expected electron density

Y. Suetsugu

- n_e after applying countermeasures: estimated from experiments (Red)
- Compared with results of CLOUDLAND (Blue)
 - δ_{max} =1.2, Solenoid field=50G (→ n_e =0), Antechamber; photoelectron yield =0.01 (1/10)
- n_e of approx. 1/5 of the target value is expected.

Condition	ne [m ⁻³]	Target value for ne: ~1x10 ¹¹
Circular Cu chamber [KEKB beam pipe]	5.2E12	
+Solenoid at Drift (1/50)	4.7E11	KEKB~3x10 ¹¹
+Antechamber (1/5)+TiN (3/5)	5.7e10	
+Electrode in Wiggler (1/100)	3.5e10	
+Groove in Bend (1/4)	2.0E10	
	1x	x10 ⁹ 1x10 ¹⁰ 1x10 ¹¹ 1x10 ¹² 1x10 ¹³ Average Ne [e ⁻ /m ³]

If the latest simulation result on the threshold is true, there is a margin of a factor 25!

Beam lifetime

	KEKB (design)	KEKB (op	peration)	SuperKEKB			
	LER	HER	LER	HER	LER	HER		
Radiative Bhabha	21.3h	9.0h	6.6h	4.5h	28min.	20min.		
Beam-gas	45h ^{a)}	45h ^{a)}			24.5min. ^{b)}	46min. ^{b)}		
Touschek	10h	-			10min.	10min.		
Total	5.9h	7.4h	~133min.	~200min.	6min.	6min.		
Beam current	2.6A	1.1A	1.6A	1.1A	3.6A	2.6A		
Loss Rate	0.12mA/s	0.04mA/s	0.23mA/s	0.11mA/s	10mA/s	7.2mA/s		

a) Bremsstrahlung

b) Coulomb scattering, sensitive to collimator setting

As for loss rate, beam loss accompanied with the beam injection should be added.

Linac

- RF low-emittance gun for 5 nC
- Improve positron source for 4 nC
- Low-emittance transport
 - alignment error tolerance is 0.1 mm locally (0.3 mm global).
- Simultaneous and top-up injection (accompany PF and PF-AR)

Table 1: The required injection beam parameters

SuperKEKB

(e+/e-)

4/5

10/20

KEKB

(e+/e-)

1/1

2100/300

Charge [nC]

Emittance

[mm-mrad]

Continuous injection

- At SuperKEKB, the continuous injection (top-up injection) is indispensable, since the beam lifetime is very short.
 - Max. 50 Hz (e- + e+)
 - Azimuthal VETO (at KEKB not azimuthal 3.5msec after injection)

Gain in integrated luminosity at KEKB: ~30%

Beam background

 At SuperKEKB with x40 larger Luminosity, beam backgrou Beam-origin o increase drastically. Touschek scattering - Beam-gas scattering - Synchrotron radiation Luminosity dependent - Radiative Bhabha event: emitted γ $\sigma \sim 50 \text{ nb}$ Radiative Bhabha event: spent e+/e-- 2-photon process event: $e+e-\rightarrow e+e-e+e-$ – etc... e

Vertical collimator

Collimators

- Horizontal collimators are effective to reduce Touschek BG in IR area
- To reduce IR loss of beam-gas Coulomb BG, very narrow (~2mm half width) vertical collimator is required
- TMC instability is an issue, low-impedance design of collimator head is important
- Should withstand ~100GHz loss (tungsten)
- Precise control of collimator width is important (otherwise IR loss rapidly increase)

Life time	Touschek	Beam-gas Coulomb	Rad. Bhabha	IR loss s <4m	Touschek	Beam-gas Coulomb	Rad. Bhabha
LER	10 min.	25 min	28 min.	LER	250 MHz	90 MHz	0.6GHz^*
HER	10 min.	46 min.	20 min.	HER	30 MHz	<10 MHz	0.5GHz*

*Effective rate

Put as much tungsten as possible around the beam pipe to stop showers generated by beam loss

Impact on detector

- Assuming design luminosity, BG impact on detector performance(occupancy, tracking/PID performance etc..) is tolerable.
- Assuming 10 years operation at design luminosity, most of our detector components are safe for radiation damage/neutron flux.
 - except for TOP PMT photocathode lifetime, which needs further x2 reduction.

Gammas in BGshower reach TOP quartz bar and generate electrons by Compton scattering and etc.. Those electrons emit Cerenkov photons and those photons reach PMT photocathode.

TOP: Time-of-Propagation counter, detect ring image Cerenkov radiation for particle ID

SCHEDULE

We are here.

SuperKEKB luminosity projection

Backup slides

Commissioning Schedule: Baseline

Final Focus System: QCS

	Dipole	Skew dipole	Quad	Skew quad	Sextupole	Skew sext	Octupole
QC1LP	√	√	2013 Aug. 23	✓			✓
QC2LP	2013 Sep. 3	√		2013 Sep. 3			2013 Sep. 3
QC1RP							
QC2RP							
QC1RP-QC2RP							
QC1LE	√	√		✓			√
QC2LE	2013 Dec. 18	2013 Dec. 18		2013 Dec. 18			2013 Dec. 18
QC1RE							
QC2RE							
QC1RE-QC2RE							

Final Focus System: QCS (cont'd)

8 main coils and 35 corrector coils, 8 cancel coils (HER)

Main coils are made by KEK. Corrector and cancel coils are made by BLN.

fabrication of coils	schedule (2013)								
QC1LP	done								
QC1LE	June 24	July 5							
QC2LE	July 10	July 19							
QC2LP	July 22	August 9							

cancel coil in HER

sextupole octupole decapole dodecapole

L-side will be done until September 11.

Final Focus System: QCS (cont'd)

	2013					2014					2015					2016					
	3	5	7	9	11	1	3	5	7	9	11	1	3	5	7	9	11	1	3	5	7
Construction of QCSL magnets and cryostat	\uparrow					_						0	~~								
Cold tests of QCSL at experimental lab.												Q	C3	-L							
Construction of QCSR magnets and cryostat				4													с г				
Cold tests of QCSR at experimental lab.												4					3-r	1			
Installation of QCSL/QCSR cryostats on the beam lines														<	⇒						
Cold tests, excitation and field measurements of QCSL/R on beam lines															\$		>				
SuperKEKB-Phase1 commissioning																					
SuperKEKB-Phase2 commissioning											P	ha	se	-1							
																	P	'na	se	-2	

Magnet System

- Installation of LER new dipoles(100) has been finished. Preliminary alignment done.
- LER new wigglers(280) at OHO and NIKKO have been installed. Preliminary alignment done.
- HER wigglers(36) at OHO (reused those from KEKB-LER) have been installed. Preliminary alignment done.
- New IR magnets at Tsukuba straight section: Surveyed and marked on the floor. The magnets have been installed about 40 %.

Vacuum System

Beam pipes

- Measures for e- cloud issues:
- Antechamber + TiN coating
- >+ electrode (wiggler sections)
- >+ groove (bent pipes)

>+ solenoids

Copper beam pipes for LER and HER wigger sections

Aluminum antechamber beam pipes for LER arc sections

Aluminum-alloy flange

TiN Coating and Baking at OHO Lab.

TiN and Baking for Beam Pipes (MR)

Movable Masks

Ver.4: KEKB type

Ver.5: Fit antechambers. The loss factor is smaller by a factor of 2 compared with Ver.4. Total length ~1500 mm.

Ver.6: The latest version. Part of the movable heads are placed in the antechambers. The total length is shorten with the same loss factor as Ver.5. Total length ~ 1000 mm.

RF System

- Upgrade of RF for twice beam currents and 2.5 times beam power
- 1 klystron to 1 ARES cavity scheme
 - KEKB: 1 klystron to two ARES cavities
- HOM power in SCC
- New low level RF control system

Damping Ring

M. Kikuchi, N. lida

Linac Schedule

Winter 2013	DR switchyard DR tunnel	construction
Spring 2013	RF gun (A1)	alignment
Summer 2013	ECS, FC(2nd), DC solenoid, klystron modulators, wire scanners, etc.	installation
Autumn 2013	e-/e+ commissioning (half linac, current is limited.)	Day: construction Night: commissioning
Spring 2014	pulsed steering	installation and alignment
Summer 2014	Summer 2014 cooling water, FC(3rd), BPM, pulsed magnets, new PF-AR BT, etc	
Autumn 2014	Autumn 2014 e-/e+ commissioning (full)	
Winter 2015	MR injection at Phase-1	

RF Gun Development

- Photo cathode : stability, longer life, efficiency
 - At first LaB₆, then $Ir_5Ce \rightarrow 5nC$ / bunch
- Laser : higher power, pulse width control
 - Nd:YAG medium, LD excitation \rightarrow ~1.5mJ / 30ps / pulse at 266nm
 - Polarization control for slant irradiation
 - In parallel, fiber laser is under development
- Cavity : better focusing field, higher gradient
 - DAW (Disk and washer) type cavity
 - Development of quasi-travelling-wave side-coupled cavity as well
- Test stands
 - RFgun at A-1 will be constructed this autumn for SuperKEKB
 - RFgun at 3-2 was used to inject into PF with proper synchronization
 - Long-period demonstration will be carried during this autumn

Comparison of emittances of colliders [cont'd]

R. Bartolini

Emittance in 3rd GLS, DR and B-factories

Difference between SR rings and colliders

• IR

- Detector solenoid and its compensation
- Low beta insertion
- Local chromaticity correction
- Size of rings
 - In larger rings, orbit drift tends to be large.
 - Accuracy of optics measurement with orbit drifts
- Beam-beam interaction
 - Beam-beam blowup
 - Restriction on choice of working point

Belle II Detector

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

f =24.75Hz (Model F)

24.75Hz (Model A)

IP machine parameters

	КЕКВ		SuperKEKB		
	LER	HER	LER	HER	
ε _x	18nm	24nm	3.2	5.0	
ε _y	0.15nm	0.15nm	8.6pm	13.5pm -	~1/4
к	0.83 %	0.62%	0.27%	0.25%	
β , *	120cm	120cm	32mm	25mm	
β _y *	5.9mm	5.9mm	0.27mm	0.31mm ~	1/4.5
σ_x^*	150µm	150µm	10µm	11µm	
σ _x '*	120µrad	120µrad	450µrad	320µrad	
σ _y *	0.94 μm	0.94µm	48nm	56nm ^	1/20
σ _y ΄*	0.16mrad	0.16mrad	0.18mrad	0.22mrad	
iBump horizontal offset		+/- 500µm		+/- 30µm?	
iBump vertical offset		+/- 150µm		+/- 7.5µm?	
iBump vertical angle		+/- 0.4mrad		+/- 0.4mrad?	

- Storage and staging areas needed for magnet and vacuum components.
- Need increased cooling water for klystrons and magnets:
 - 24 klystrons for ARES cavities, 8 klystrons for SCC
 - Magnet cooling water needs double (4 plants -> 8)
- Electricity:

Electricity Consumption: June-09

KEKB/KEK total

(Design option)	KEKB:MW	ΔMW	KEK:MW	ΔMW
Present(Average)	45		64	
Nano Beam: June-09	70.7	24.3	96	32
Upgrade: Feb09	94.8	49.8	120	56
Super: '07-July	102.6	57.6	128	64

Recent Design(Feb.-10): Add 2 ARES units--> +(3~4)MW

Overall budget (original)

• Budget

- Total construction budget is 314 Oku-Yen for Rings, Injector, and Belle-II.
- Most of the budget comes year-by-year based.
- Operation budget is expected in FY2014 and later.

	JFY2010	JFY2011	JFY2012	JFY2013	JFY2014	JFY2015	JFY2
	Very Advanc	ed Research SP	(100 Oku-Yen)		SuperKEKB c	ommissioning	
		Other bud	gets for const <mark>r</mark> u	ction (214 Oku-	Yen)		
			Weare	here	Operation	budget (continue	es)
Unit: Oku-Ye	en (~1.1M\$)		weare	licite			
	JFY2010	JFY2011	JFY2012	JFY2013	JFY2014	Total	
VARSP	75.0	10.5	14.5	0	0	100.0	
Others	0	41.6	40.2	61.6	46.7	190.0	
Buildings	0	4.5	12.4	7.2	0	24.1	
Total	75.0	56.6	67.1	68.8	46.7	314.1	
Status	Supplied	Supplied	Supplied				

Walls to prevent a landslide .

Beam Envelope for Design Parameters

IR Design Features

Natural chromaticity:

	Super	KEKB	KEKB		
	LER	HER	LER	HER	
ξ _{x0}	-105	-171	-72	-70	
ξ _{y0}	-776	-1081	-123	-124	

- Approximately 80 % of the natural chromaticity in the vertical direction is induced in the Final Focus. A "*local chromaticity correction*" is adopted to correct it.
- The angle between Belle II Solenoid(1.5 T) and beam-axis is 41.5 mrad. Anti-solenoids are overlaid with QC1 and QC2 to compensate the Belle II solenoid field. The vertical emittance (about 1.5 pm) is generated due to the solenoid fringe field. To reduce them, skew coils and/or rotation of QC1 and QC2 are used.

SC correctors by BNL

Revised corrector scheme in the right side:

QCS-L Cryostat

QCS-R Cryostat

