Collective effects in SuperKEKB

Demin Zhou

Division VI, Acc. Lab, KEK

with contributions from

KEK: T. Abe, T. Ishibashi, Y. Morita, K. Ohmi, N. Ohuchi, K. Shibata, Y. Suetsugu, H. Sugimoto, M. Tobiyama, M. Yoshida SLAC: Y. Cai, G. Stupakov, R. Warnock

CLASSE Seminar, Cornell University, Ithaca, NY Aug. 06, 2014

Outline

Introduction

• Design target, features of SuperKEKB, "Nano-beam", ...

Beam-beam and luminosity

- BB simulations, luminosity calculations, ...
- Interplay of beam-beam and lattice nonlinearity

Impedance and Single-bunch effects

- Impedance calculations, impedance budget, ...
- Bunch lengthening, MWI, beam tilt, TMCI, ...

Electron cloud

Ecloud density estimation, instability simulations, ...

Space charge

• Linear tune shift, effect on luminosity, ...

Intra-beam scattering

• Emittance growth, ...

Summary

1. Introduction: Lum. trends

From N. Ohuchi, IPAC14, WEOCA01

1. Introduction: Features of SuperKEKB

From N. Ohuchi, IPAC14, WEOCA01

1. Introduction: Expected lum. gain

SuperKEKB

 Increase the luminosity by 40 times based on "Nano-Beam" scheme

- Vertical beam-beam parameter : $0.09 \rightarrow 0.09$ (× 1)
- Beam energy: 3.5/8.0 → 4.0/7.0 GeV

٠

LER : Longer Touschek lifetime and mitigation of emittance growth due to the intra-beam scattering

HER : Lower emittance and lower SR power

1. Introduction: Scaling SuperKEKB/KEKB

		LER		HER			
	SKEKB	KEKB	Factor	SKEKB	KEKB	Factor	
E(GeV)	4	3.5	1.14	7.007	8	0.876	
	I.44	1.03	I.4	I.04	0.75	I.4	
3	3.2	18	0.18	4.6	24	0.19	
3	8.64	180	0.048	11.5	240	0.048	
ß	0.032	1.2	0.027	0.025	1.2	0.021	
ß	0.27	5.9	0.046	0.3	5.9	0.051	
a	3.25	3.31	0.98	4.55	3.43	1.33	
σ	8.08	7.73		6.37	6.3	0.96	
σ	5	4.6		4.9	5.2		

*Machine parameters on Jun.17, 2009

See <u>http://www-superkekb.kek.jp/index.html</u> for details

2. Beam-beam and luminosity: LER

Lum. tune scan for LER (by BBWS)

2. Beam-beam and luminosity: HER

► Lum. tune scan for HER (by BBWS)

2. Beam-beam and luminosity: LER

Lum. scan w/o and w/ crab waist for LER (by BBWS)

1.0e + 36

9.0e+35

8.0e+35

7.0e+35

6.0e+35

5.0e+35

4.0e+35

3.0e+35

2.0e+35

1.0e+35

0.0e+00

0.75

- Crab waist creates freedom of choice. This is attractive ...
- But optics design is a challenging issue ...

0.55

0.6

Fractional v_x

w/ crab waist

0.65

0.7

- 2. Beam-beam: Lattice nonlinearity: LER
- Chromatic effect: KEKB experiences
- Mom.-dependent nonlin. controlled in lattice design
- Chromatic effect can not explain the lum. loss
- > Amplitude-dependent nonlin. more important?

Beam tail w/ BB by BBWS

Beam tail w/ BB+LN by SAD

sler_1684

- 2. Beam-beam: Lattice nonlinearity: HER
- > Chromatic effect: KEKB experiences
- Mom. nonlin. not controlled in lattice design
- > The lum. loss is mainly due to chromatic effect

3. Impedance: Modelling

LER typical (~90%) Aluminum w/ antechamber

HER typical (~70%) Copper w/o antechamber

14 From Y. Suetsugu and K. Shibata

3. Impedance: Modelling: LER

Bellows

Pumping port

From T. Abe and K. Shibata

3. Impedance: Modelling: LER

3. Impedance: Modelling: LER

Copper Piece

for Connection

Electrode [W, '0.1 mm]

[Al₂O₃, ^t0.2 mm]

Insulator

Clearing electrode

Ceramic Screw

Grooved surfaces

Fig.1. Intertion with TIN-coated groove surface

Fig. 2. Clearing electrode installed in test chamber. The electrode and the feedthrough are connected by small piece of copper.

40 mm

Ref. Y. Suetsugu et al., NIMA 598 (2009)

Fig. 2. Cross-section of the test chamber and the experimental setup in a wiggler magnet section in the KEKB positron ring.

Ref. Y. Suetsugu et al., NIMA 604 (2009)

Tested in KEKB

3. Impedance: Results: LER

Pseudo-Green wake function

• σ_z=0.5mm

 Pumping ports and SR masks are negligible sources because of antechamber

• CSR and CWR (Wiggler radiation): CSRZ code with rectangular chamber

3. Impedance: Results: HER

Pseudo-Green wake function

- σ_z=0.5mm
- CSR: CSRZ code with rectangular chamber
- CWR (Wiggler radiation) not considered yet

3. Single-bunch effects: Longitudinal: LER

Simulations with input of Pseudo-Green wake:

- Use Warnock-Cai's VFP solver
- Collimators are important sources in bunch lengthening
- Simulated σ_z≈5.9mm @Design bunch current
- Simulated MWI threshold is around NP_{th}=1.05E11
- Interplay between CSR and conventional wakes?

3. Single-bunch effects: Longitudinal: HER

Simulations with input of Pseudo-Green wake:

- Use Warnock-Cai's VFP solver
- Simulated σ_z≈5.8mm @Design bunch current
- Simulated MWI threshold is around NP_{th}=1.7E11
- CSR and CWR are likely to be not important.

3. Single-bunch effects: Transverse: Beam tilt

► G. Stupakov's theory on transverse beam tilt:

- To be a concern in low emittance rings
- Asymmetric protrusion (if exists)

$$\Delta \epsilon_y = \frac{1}{4 \sin^2(\pi \nu_y)} \beta_y \theta_{\rm rms}^2$$
$$\theta_{\rm rms} = \frac{Ne^2}{\gamma m_0 c^2} \sqrt{\langle (W_y - \langle W_y \rangle)^2 \rangle}$$
$$\langle W_y \rangle = \int_{-\infty}^{\infty} W_y(s) \lambda(s) ds$$

TABLE II. Emittance increase in LER of SUPERKEKB

Corrugation depth h (cm)	1	0.5	0.25	
$\theta_{\rm rms}$ (nrad)	29 0	77	20	
$\Delta \epsilon ~(\mathrm{pm})$	0.45	0.03	0.002	

Submitted to NIMA

3. Single-bunch effects: Transverse: Beam tilt

► G. Stupakov's theory on transverse beam tilt:

- Symmetric 3D structure (like collimator) with orbit offset
- D02V1 in LER as an example: d=-2/2mm, βy=104.6m
- COD DY < 0.2 mm required?

$$\Delta \epsilon_y = \frac{1}{4 \sin^2(\pi \nu_y)} \beta_y \theta_{\rm rms}^2$$
$$\theta_{\rm rms} = \frac{N e^2 \Delta y}{\gamma m_0 c^2} \sqrt{\langle (W'_y - \langle W'_y \rangle)^2 \rangle}$$

3. Single-bunch effects: TMCI: LER

- We estimated the threshold of the Transverse Mode Coupling Instability using actual β value at each collimator with $\sigma_z = 6$ mm.
- The bunch current of the design value in LER is 1.44 mA/bunch.
- A kick factor in D02V1 is quite large because of the narrow aperture (±2 mm), and it limits the bunch current.
- We may need an another structure, such as long heads with gradual slope, for D02\/1

		TMC Thresh	nold (mA/bunch)			
	Ī	All Closed	Actual Apertures		τ	$C_1 f_s E/e$
	Horizontal	1.41	13.15	5	¹ thresh	$-\frac{1}{\sum_i \beta_i \kappa_{\perp i}(\sigma_z)}$
	Vertical	0.96	1.25	5		
Collimator No.	d [mm]	k [V pC ⁻¹]	k_{\perp} [V pC ⁻¹ m ⁻¹]	$\beta_x [m]$	β _v [m]	-
D06 H1	-16.0 / +17.0	0.036	8	24.28	5.5043	_
D06 H2	-16.0 / +16.0	0.036	8	24.28	5.5042	
D06 H3	-16.0 / +15.0	0.036	9	24.28	5.5043	
D06 H4	-13.0 / +13.0	0.037	15	24.28	5.5042	[•] Lattice version:
D03 H1	-21.0 / +20.0	0.036	6	28.97	3.021	
D03 H2	-18.0 / +20.0	0.036	7	28.97	3.021	
D03 V1	-9.0 / +9.0	0.058	40	10.38	17.05	
D03 V2	-9.0 / +9.0	0.058	40	10.38	17.05	-
D02 H1	-10.6 / + 12.0	0.038	25	33.20	19.06	
D02 H2	-16.0 / +20.0	0.036	8	81.01	22.01	
D02 H3	-18.0 / +21.0	0.036	7	31.09	173.3	
D02 H4	-13.0 / +9.0	0.04	40	45.63	6.236	
D02 V1	-2.0 / 2.0	0.098	600	21.79	104.6	
			24	4	From	T Ishihashi and Y Suets

From I. Ishibashi and Y. Suetsugu

4. Electron cloud: Density estimation

SuperKEKB: Improvements in vacuum chambers

 Antechamber, Solenoid winding, TiN coating, Grooved surfaces, Clearing electrodes, ... => Expected low ecloud density (data extracted from KEKB experiments)

• J. Crittenden is helping simulate cloud density in the IR ...

4. Electron cloud: Instability threshold

Ecloud instability theory:

- $\rho_{e,th} \propto v_s$ $\rho_{e,th} \propto 1/\beta$
- ρ_{e,th}=2.2E11 m⁻³ for SuperKEKB LER
- > Average ecloud density:
 - Expected: $<\rho_e>=2.2E10 \text{ m}^{-3}$
 - Weighted by β_y : $\langle \rho_e \beta_y \rangle / \langle \beta_y \rangle = 1.1E11 \text{ m}^{-3}$

Constant cloud density and constant beta function

- Simulation: ρ_{e,th}=3.8E11 m⁻³
- Coherent instability dominates the emittance growth above threshold

27 Ref. K. Ohmi and D. Zhou, IPAC14, TUPRI020

> s-dependent cloud density and beta function

- Split the ring into ~40 slices
- Two cases: high and low ecloud density at the high beta sections

28

Ref. K. Ohmi and D. Zhou, IPAC14, TUPRI020

> s-dependent cloud density and beta function

 \bullet Simulation: $\rho_{e,th}\text{=}4x$ and 6x of estimated cloud density for the two cases in the previous page

- Supposed that the estimated density is reasonable ...
- Ecloud at high-beta section makes difference ...

S-dependent cloud density and beta function

- Treat the ecloud in the IR and arc sections separately
- Look at the case of high cloud density in high-beta regions
- It is found that ecloud in the IR region dominates the instability

30

> s-dependent cloud density and beta function

- Incoherent emittance grow is observed below inst. threshold
- Turn on radiation damping and excitation
- Detect equilibrium emittance as a function of cloud density

Turn-by-turn beam sizes varying ecloud density w/o radiation damping for low cloud density in high-beta region Turn-by-turn beam sizes varying ecloud density w/o radiation damping for high cloud density in high-beta region Ref. K. Ohmi and D. Zhou, IPAC14, TUPRI020

31

> s-dependent cloud density and beta function

- Incoherent emittance growth is also important
- Ecloud density should be lower than 3x of estimated density, especially in the IR region

5. Space charge: LER: Tune shift

► Linear SC tune shift along the ring

5. Space charge: LER: Luminosity

Weak-strong model for space charge
"Strong" beam: Emittance growth due to IBS included

5. Space charge: LER: Beam tail

Beam tail w/ LN+SC by SAD

sler_1689

Note: No optics correct with space charge

5. Space charge: LER: FMA

➤ FMA shows betatron tunes of particles at the beam core are close to half-integer with only SC considered.

W/O SCE

W/ SCE

4th order 5th order 6th order 7th order

Detailed Studies are now ongoing.

- Optics matching
- Checking simulation code including SAD code itself.

6. Intra-beam scattering: LER: SAD simulation

- > Emittance growth due to IBS (w/ errors in sext.)
 - ϵ_x decrease with increasing errors in sext.
 - Tolerance: $\sigma_{\Delta y} < 0.06$ mm w/o IBS, $\sigma_{\Delta y} < 0.05$ mm w/ IBS

6. Intra-beam scattering: LER: SAD simulation

Bunch lengthening and energy spread increase due to IBS (w/ errors in sext.)

- Both σ_z and σ_z slightly increase due to IBS
- Not negligible in LER

6. Intra-beam scattering: HER: SAD simulation

Emittance growth due to IBS (w/ errors in sext.)

- ϵ_x slightly decrease with increasing errors in sext. $\Delta \epsilon_x < 3\%$
- Negligible in vert. direction
- Effects of IBS in HER almost negligible

6. Intra-beam scattering: HER: SAD simulation

Bunch lengthening and energy spread increase due to IBS (w/ errors in sext.)

- Both σ_z and σ_z slightly increase due to IBS
- Effects of IBS in HER is negligible

7. Summary

Beam-beam and luminosity

- Interplay of BB and LN is important issue in SuperKEKB
- We need to optimise the optics design

Impedance and single-bunch effects

- Pseudo-Green function wakes are available
- Beam tilt and TMCI are potentially important
- Electron cloud
 - Simulations of instability vs. varied $\beta_{x,y}$ and density were done
 - High-beta sections can be important
 - Ecloud density data need to be verified

► Space charge

- A surprise to SuperKEKB and to be verified
- Consider compensation scheme via optics correction

Intra-beam scattering

• To be an issue in LER and interplay with other collective effects

7. Summary

Interplay of various issues

• Luminosity <= Emittance <= Beam-beam, Lattice nonlinearity, Space charge, Impedances, Electron cloud, Intra-beam scattering, etc.

 => Dynamic aperture and lifetime => Beam commissioning => Injection, Detector back ground, Alignments, etc. => Tolerance for hardwares => ...

More details in the backup slides and my webpage: http://research.kek.jp/people/dmzhou/

Thanks for your attention!

AND Welcome to KEK!

Simple map for crab waist at IP

$$p_{x1} = p_{x0} - \frac{1}{2\operatorname{Tan}(2\phi)}p_{y0}^2 \qquad y_1 = y_0 + \frac{1}{\operatorname{Tan}(2\phi)}x_0p_{y0}$$

Beam tail w/ BB+CW by BBWS

Beam tail w/ BB+CW+LN by SAD

sler_1684

Simple map for crab waist at IP

$$p_{x1} = p_{x0} - \frac{1}{2\operatorname{Tan}(2\phi)}p_{y0}^2 \qquad y_1 = y_0 + \frac{1}{\operatorname{Tan}(2\phi)}x_0p_{y0}$$

Beam tail w/ BB by BBWS

2. Beam-beam: Lattice nonlinearity: HER ^{sher_5755}

Beam tail w/ BB+LN by SAD

Beam tail w/ BB+CW by BBWS

2. Beam-beam: Lattice nonlinearity: HER ^{sher_5755}

Beam tail w/ BB+CW+LN by SAD

2. Lum. calculation: Detuned lattice

Detuned lattice: sler_1689_d4-8/sher_5767_d4-8

From Y. Ohnishi

D	1.1	Phas	e 2.x	Phas	•.	
Parameters	symbol	LER	HER	LER	HER	unit
Energy	Е	á	7.007	4	7.007	GeV
#Bunches	nb	25	00	25		
Emittance	ε _x	2.2	5.2	3.2	4.6	nm
Coupling	ϵ_y/ϵ_x	2	2	0.27	0.28	%
Hor. beta at IP	βx°	128	100	32	25	mm
Ver. beta at IP	βy°	2.16	2.4	0.27	0.30	mm
Beam current	$I_{\rm b}$	1.0	0.8	3.6	2.6	А
Beam-beam	ξ_{y}	0.0240	0.0257	0.088	0.081	
Hor. beam size	σ_x°	16.8	22.8	10	11	μm
Ver. beam size	σ_y°	308	500	48	62	nm
Luminosity	L	1×10^{34}		8x10 ³⁵		cm ⁻² s ⁻¹

LER

β_{x} at IP	128	mm
β_{y} at IP	2.16	mm
Ι _b	1	А
n _b	2500	
ε _x	1.75	nm
ε _γ /ε _χ	2	%

HER

β_{X} at IP	100	mm
β_y at IP	2.40	mm
Ι _b	0.8	А
n _b	2500	
ε _x	4.5	nm
ε _γ /ε _x	2	%

2. Lum. calculation: Detuned lattice

- > Assume: ε_x =1.75nm, coupling = 2%
- Space-charge is not important
- Lattice nonlinearity is not very important
- ► L=1×10³⁴cm⁻²s⁻¹ is promising
- ► L=10×10³⁴cm⁻²s⁻¹ is possible by increasing beam currents?

Bellows

- Bellows chamber with comb-type RF shield will be used in SKEKB.
 - There is no radial step on the inner surface.
 - (There is a small step (\sim 1 mm) in a conventional bellows chamber.)
 - RF is shielded by nested comb teeth.

length : 10 mm

radial thickness : 10 mm

• Loss factor ($\sigma_z = 6 \text{ mm}$)

k = 2.2×10⁻³ V/pC

1000 pieces in one ring

*k*_total = 2.2 V/pC

Impedance

It was found that there are trapped modes at 7.5 GHz and 25 GHz (over cut-off frequency (2.5GHz)). Effects of these trapped modes on the beams will be investigated.

KEKB Review

3. Impedance: Modelling: HER

From T. Abe, Y. Morita, and K. Shibata

3. Impedance: Modelling: HER

58 From K. Shibata and M. Tobiyama

3. Impedance calculations: Impedance budget

> Impedance budget with $\sigma_z = 5/4.9$ mm:

• Loss factors, resistance and inductance are calculated at nominal bunch lengths

Bellows, flanges and pumping ports contribute more impedance in HER than in LER

Table 2: Key parameters of SuperKEKB main rings for MWI simulations.

Parameter	LER	HER
Circumference (m)	3016.25	3016.25
Beam energy (GeV)	4	7.007
Bunch population (10 ¹⁰)	9.04	6.53
Nominal bunch length (mm)	5	4.9
Synchrotron tune	0.0244	0.028
Long. damping time (ms)	21.6	29.0
Energy spread (10 ⁻⁴)	8.1	6.37

Ref. D. Zhou, IPAC14, TUPRI021

Component		LER			HER	
component	$k_{ }$	R	L	$k_{ }$	R	L
ARES cavity	8.9	524	-	3.3	190	-
SC cavity	-	-	-	7.8	454	-
Collimator	1.1	62.4	13.0	5.3	309	10.8
Res. wall	3.9	231	5.7	5.9	340	8.2
Bellows	2.7	159	5.1	4.6	265	16.0
Flange	0.2	13.7	4.1	0.6	34.1	19.3
Pump. port	0.0	0.0	0.0	0.6	34.1	6.6
SR mask	0.0	0.0	0.0	0.4	21.4	0.7
IR duct	0.0	2.2	0.5	0.0	2.2	0.5
BPM	0.1	8.2	0.6	0.0	0.0	0.0
FB kicker	0.4	26.3	0.0	0.5	26.2	0.0
FB BPM	0.0	1.1	0.0	0.0	1.1	0.0
Long. kicker	1.8	105	1.2	-	-	-
Groove pipe	0.1	3.8	0.5	-	-	-
Electrode	0.0	0.7	5.7	-	-	-
Total	19.2	1137	36.4	29.0	1677	62.1

3. Impedance: Results: LER

> Wake potential with nominal bunch length

- σ_z=5mm
- Main sources: Collimators, Resistive wall, ARES cavity,

Bellows, MO flanges, Clearing electrodes

• CSR and CWR are not strong if no microbunching happens

3. Impedance calculations: Results: HER

> Wake potential with nominal bunch length

- σ_z=5mm
- Main sources: Movable masks, Resistive wall, Flange
- gaps, Bellows, SCC cavities, ARES cavities, Pumping port
 - CSR is weak if no microbunching happens

3. Single-bunch effects: Longitudinal: LER

Simulations with input of Pseudo-Green wake:

• BUT, pseudo-Green wakes for CSR, CWR and RW are not good choices. => To be improved.

 Potential-well distortion => Longitudinal beam tilt => Impact on luminosity to be evaluated

3. Single-bunch effects: Longitudinal: HER

Simulations with input of Pseudo-Green wake:

• BUT, pseudo-Green wakes for CSR, CWR and RW are not good choices. => To be improved.

 Potential-well distortion => Longitudinal beam tilt => Impact on luminosity to be evaluated

5. Space charge: LER: Luminosity

- ► Test by inserting a map of H=K*x²y into the LER lattice
- Skew-sext. map:
 - to cancel the nonlinear term from solenoid
 - work well at both low and high currents
 - interplay of SC and lattice nonlin. also mitigated partially

