Accelerator Physics Challenges for the SuperKEKB

D. Zhou

With contributions from

KEK: K. Akai, K. Ohmi, Y. Ohnishi, N. Ohuchi, H. Sugimoto, ... IHEP: Y. Zhang

Theory club, FEL & Beam Physics Department, SLAC Mar. 13, 2015

Outline

- Introduction
- ► Lattice nonlinearity (LN)
- Beam-beam (BB) effects
 - Crab waist (CW)
 - Interplay of BB and LN
- Space charge (SC) effects in LER
 - Interplay of BB, SC and LN
- Impedance issues
- Summary and Future plan

Outline

Introduction

Lattice nonlinearity (LN)
 Beam-beam (BB) effects

 Crab waist (CW)
 Interplay of BB and LN

 Space charge (SC) effects in LER

 Interplay of BB, SC and LN

 Impedance issues
 Summary and Future plan

1. Introduction

K. AKAI, Overview of Ring Construction Status and Schedule, Feb. 23, 2015 @20th KEKB Review

From K. Akai, KEKB ARC 2015

1. Introduction

From K. Akai, KEKB ARC 2015

1. Introduction: Expected lum. gain

Increase the luminosity by 40 times based on "Nano-Beam" scheme

- Vertical beam-beam parameter : $0.09 \rightarrow 0.09$ (× 1)
- Beam energy: 3.5/8.0 → 4.0/7.0 GeV

LER : Longer Touschek lifetime and mitigation of emittance growth due to the intra-beam scattering HER : Lower emittance and lower SR power

1. Introduction: Machine parameters

2013/July/29 E Į	LER 4.000 3.6	HER 7.007 2.6	unit GeV A		HOM heating Impedance-driven instability Electron cloud
Number of bunches	2,5	00		- 	Envertelenenes
Bunch Current	1.44	1.04	mA		Error tolerances
Circumference	3,010	5.315	m		Intra-beam scattering
ϵ_x/ϵ_y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm		Space charge
Coupling	0.27	0.28			
β_x^*/β_y^*	32/0.27	25/0.30	mm	j	
Crossing angle	83		mrad		Beam-beam
α _p	3.18x10 ⁻⁴	4.53x10 ⁻⁴			Dynamic aperture, Lifetime
σδ	8.10(7.73)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴			Lattice nonlinearity
Vc	9.4	15.0	MV		Background
σz	6.0(5.0)	5(4.9)	mm		
Vs	-0.0244	-0.0280			
v_x/v_y	44.53/46.57	45.53/43.57			Beam-beam
Uo	1.86	2.43	MeV		IR optics
τ _{x,y} /τ _s	43.2/21.6	58.0/29.0	msec		
ξ _x /ξ _y	0.0028/0.0881	0.0012/0.0807			
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹		Impedance budget

Outline

> Introduction

Lattice nonlinearity (LN) Beam-beam (BB) effects Crab waist (CW) Interplay of BB and LN Space charge (SC) effects in LER Interplay of BB, SC and LN Impedance issues

Summary and Future plan

2. Lattice nonlinearity

 High-order correctors added to each SC magnet
 Linear optics is OK, but IR is not transparent for offmomentum and large-amplitude particles

2. Lattice nonlinearity

► Realistic lattice

> Poincare map in y direction as function of X offset

sher-5767 vs ler-1689 in X direction

From Y. Zhang

2. Lattice nonlinearity

► Realistic lattice

Strong nonlinear X-Y coupling in LER

sher-5767 vs ler-1689 in Y direction

From Y. Zhang

2. Lattice nonlinearity: LER

Simplified LER lattice [No solenoid, QC* magnets simplified: no offset, dipole and skew-quad correctors removed]

Confirmed: solenoid and high-order terms in QC* magnets cause nonlinear X-Y coupling

From Y. Zhang

Outline

Introduction Lattice nonlinearity (LN) Beam-beam (BB) effects Crab waist (CW) Interplay of BB and LN Space charge (SC) effects in LER Interplay of BB, SC and LN Impedance issues Summary and Future plan

3. Beam-beam effects

➤ Lum. tune scan for LER by BBWS (weak-strong with linear map for arc)

Choice of tune operating point v_x near half integer, keep away from synchrobeta resonance v_x , v_y =0.53,0.57

3. Beam-beam effects

► Lum. tune scan for LER by BBWS: w/o and w/ crab waist

The crab waist is very powerful. Degradation of dynamic aperture is inevitable, because nonlinearity between IP and crab waist sextupole is not transparent.

> DA and lifetime are sensitive to beam-beam interaction

Transverse aperture is reduced significantly.

► Tune survey of DA

DA with BB and ideal CW

Stability of an initial amplitude in the horizontal and vertical plane.

CW optics

CW optics

Crab-waist sextupole reduces dynamic aperture under the influence of beam-beam effect.

CW optics

Crab-waist sextupole reduces dynamic aperture without beam-beam effect significantly.

3. Beam-beam effects: BB+LN

- Interplay of BB and LN causes significant lum. loss
- > LER: Lum. loss is attributed to amplitude-dependent nonlin.
 - Vertical emittance is very sensitive to beam-beam perturbation
 - Hard to suppress
- ► HER: Lum. loss is attributed to chromatic nonlin.
 - Controllable if skew-sextupoles installed

3. Beam-beam effects: BB+LN

- ► Realistic lattice: lum. drops at low beam currents
- **Crab-waist:**
 - To cancel beam-beam driven resonances
 - Work well at high currents, but not well at low currents

3. Beam-beam effects: BB+LN: LER

Beam tail distribution for LER

- CW not work well when LN exists
- Beam tail => Collimation => Impedance budget => Instability => commissioning

24

3. Beam-beam effects: BB+LN: LER

Simplified lattice

• No solenoid

• QC* magnets simplified: no offset, dipole and skew-quad correctors removed

- ► No significant lum. degradation at low current
- Solenoid and high-order terms in QC* are the main sources of lattice nonlinearity

Outline

Introduction Lattice nonlinearity (LN) Beam-beam (BB) effects Crab waist (CW) Interplay of BB and LN Space charge (SC) effects in LER Interplay of BB, SC and LN Impedance issues Summary and Future plan

► Linear tune shift

- Same order for SC and BB
- But have opposite signs

	Super	(EKB ^{I)}	KEKB ⁴⁾			
	LER ²⁾	HER ³⁾	LER	HER		
ε _x (nm)	3.2	4.6	18	24		
ε _y (pm)	8.64	11.5	180	240		
ξx	0.0028	0.0012	0.127	0.102		
ξγ	0.0881	0.0807	0.129	0.09		
Δv_x	-0.0027	-0.0004	-0.0005	-3E-05		
Δν _y	-0.0943	-0.0121	-0.0072	-0.0004		

¹⁾Main paraperters from Y. Ohnishi et al., Prog. Theor. Exp. Phys. 2012; ²⁾sler_1682; ³⁾sher_5753; ⁴⁾Lattice used on Jun.17, 2009.

➤ FMA shows betatron tunes of particles at the beam core are close to half-integer with only SC considered.

W/O SCE

W/ SCE

4th order 5th order 6th order 7th order

Detailed Studies are now ongoing.

- Optics matching
- Checking simulation code including SAD code itself.

From H. Sugimoto

FMA with beam distribution: $10\sigma_x \times 10\sigma_y$

sler_1684

29

Luminosity: Tune scan w/ and w/o SC

30

- First try: optics matching w/o SC
- Compensate linear SC tune shift => Not successful
- Next try: optics matching w/ SC => Ongoing

Outline

> Introduction

- > Lattice nonlinearity (LN)
- Beam-beam (BB) effects
 - Crab waist (CW)
 - Interplay of BB and LN
- Space charge (SC) effects in LER
 Interplay of BB, SC and LN

► Impedance issues

Summary and Future plan

5. Impedance issues: Impedance budget

\blacktriangleright Impedance budget with $\sigma_z = 5/4.9$ mm:

 Loss factors, resistance and inductance are calculated at nominal **bunch** lengths

• Bellows, flanges and pumping ports contribute more impedance in HER than in LER

		Component	LEK			HER			
			Component	$k_{ }$	R	L	$k_{ }$	R	L
Table 1. The PEP-	II HER in	ductive impedance	ARES cavity	8.9	524	-	3.3	190	-
Parameter	L (nH)	$k_l ~(V/pC)$	SC cavity	-	-	-	7.8	454	-
Dipole screens	0.10		Collimator	1.1	62.4	13.0	5.3	309	10.8
BPM	11	0.8	Res. wall	3.9	231	5.7	5.9	340	8.2
Are bellow module	11.	1.41	Bellows	2.7	159	5.1	4.6	265	16.0
Collimators	10.0	1.41	Flange	0.2	13.7	4.1	0.6	34.1	19.3
Commators Dump alata	18.9	0.24	Pump. port	0.0	0.0	0.0	0.6	34.1	6.6
Pump slots	0.8	0.02	SR mask	0.0	0.0	0.0	0.4	21.4	0.7
Flange/gap rings	0.47	0.03	IR duct	0.0	2.2	0.5	0.0	2.2	0.5
Tapers oct/round	3.6	0.06	RPM	0.0	8.2	0.6	0.0	0.0	0.0
IR chamber	5.0	0.12	ED kieker	0.1	26.2	0.0	0.0	26.2	0.0
Feedback kickers	29.8	0.66	FB KICKER	0.4	20.5	0.0	0.5	20.2	0.0
Injection port	0.17	0.004	FB BPM	0.0	1.1	0.0	0.0	1.1	0.0
Abort dump port	0.23	0.005	Long. kicker	1.8	105	1.2	-	-	-
			Groove pipe	0.1	5.7	0.9	-	-	-
Total	83.3	3.4	Electrode	0.0	2.2	2.3	-	-	-
From slac-nub-6798			Total	19.2	1141	33.4	29.0	1677	62.1

Ref. D. Zhou et al., IPAC14, TUPRI021

I DD

TIPD

5. Impedance issues: MWI: LER

- Simulations with input of Pseudo-Green wake:
 - Use Warnock-Cai's VFP solver
 - Collimators are important sources in bunch lengthening
 - Simulated σ_z≈5.9mm @Design bunch current
 - Simulated MWI threshold is around NP_{th}=1.2E11
 - Interplay between CSR and conventional wakes?

5. Impedance issues: MWI: LER

Concern of MWI in LER:

- Unknown impedance source in KEKB LER
- Lum. inversely proportional to bunch length for SuperKEKB

Outline

> Introduction

- Lattice nonlinearity (LN)
- Beam-beam (BB) effects
 - Crab waist (CW)
 - Interplay of BB and LN
- Space charge (SC) effects in LER
 - Interplay of BB, SC and LN
- > Impedance issues
- Summary and Future plan

6. Summary

Interplay of various issues

Luminosity <= Emittance <= Beam-beam, Lattice nonlinearity,

Space charge, Impedances, Electron cloud, Intra-beam scattering, etc.

• => Dynamic aperture and lifetime => Beam commissioning => Injection, Detector back ground, Alignments, etc. => Tolerances for hardwares => ...

7. Future plan

Detailed analysis of lattice nonlinearity under an international collaboration program

- Cornell Univ.: D. Sagan (Bmad+PTC)
- SLAC: Y. Cai
- IHEP: Y. Zhang
- KEK: E. Forest, A. Morita, K. Ohmi, Y. Ohnishi, K. Oide, H.

Sugimoto, D. Zhou, etc.

- Collaboration with CEPC and FCC-ee teams
- ► High-priority tasks:
 - Global or local correction schemes for latt. nonlin.
 - SC compensation schemes
 - Better understand the interplay of BB and LN
 - More careful study for crab waist scheme

•

Recommendations are welcome!

Thanks for your attention!

Lum. calculation: Detuned lattice

- > Assume: $\varepsilon_x = 1.75$ nm, coupling = 2%
- Space-charge is not important
- Lattice nonlinearity is not very important
- ► L=1×10³⁴cm⁻²s⁻¹ is promising
- ► L=10×10³⁴cm⁻²s⁻¹ is possible by increasing beam currents

Lum. calculation: Detuned lattice

- > Assume: $\varepsilon_x = 1.75$ nm, coupling = 1%
- Space-charge is not important at low currents
- Lattice nonlinearity is not very important
- Decreasing coupling => Lum. gain but beam-beam limit appears at lower beam currents

Space charge: LER: Tune shift

► Linear SC tune shift along the ring

Intra-beam scattering: LER: SAD simulation

- > Emittance growth due to IBS (w/ errors in sext.)
 - ϵ_x decrease with increasing errors in sext.
 - Tolerance: $\sigma_{\Delta y} < 0.06$ mm w/o IBS, $\sigma_{\Delta y} < 0.05$ mm w/ IBS

Intra-beam scattering: LER: SAD simulation

Bunch lengthening and energy spread increase due to IBS (w/ errors in sext.)

- \bullet Both σ_z and σ_z slightly increase due to IBS
- Not negligible in LER

Bellows

- Bellows chamber with comb-type RF shield will be used in SKEKB.
 - There is no radial step on the inner surface.
 - (There is a small step (~1 mm) in a conventional bellows chamber.)
 - RF is shielded by nested comb teeth.

length : 10 mm

radial thickness : 10 mm

• Loss factor ($\sigma_z = 6 \text{ mm}$)

k = 2.2×10⁻³ V/pC ↓ 1000 pieces in one ring k_total = 2.2 V/pC

Impedance

It was found that there are trapped modes at 7.5 GHz and 25 GHz (over cut-off frequency (2.5GHz)). Effects of these trapped modes on the beams will be investigated.

• TMCI in LER (pointed out in last KEKB Review)

- We estimated the threshold of the Transverse Mode Coupling Instability using actual β value at location of each collimator with $\sigma_z = 6$ mm.
- D02V1 is the main impedance source because it would be used with the narrow aperture ($d = \pm 2$ mm).
- The threshold is about 1.71 mA/bunch (Design value: 1.44 mA/bunch) in the latest collimator design.

TMC threshold (mA/bunch)

	All Closed	Actual apertures		Bunch current (design)	
Horizontal	1.41	13.15	>	1 . 1.1	
Vertical	1.32	1.71		1.44 mA/bunch	

$C_1 f_s E/e$	Collimator Aperture List (mm)							
$T_{thresh} = \frac{1}{\sum_{i} \beta_i \kappa_{\perp i}(\sigma_z)}$	D06H1	-16.0/+17.0	D03H1	-21.0/+20.0	D02H1	-10.6/+12.0		
C_1 : constant ≈ 8	D06H2	-16.0/+16.0	D03H2	-18.0/+20.0	D02H2	-16.0/+20.0		
f _s : synchrotron frequency E : beam energy	D06H3	-16.0/+15.0	D03V1	-9.0/+9.0	D02H3	-18.0/+21.0		
β : beta function k : kick factor	D06H4	-13.0/+13.0	D03V2	-9.0/+9.0	D02H4	-13.0/+9.0		
A ₁ . KICK lactor					D02V1	-2.0/+2.0		