Beam dynamics issues

SuperKEKB 2021c run summary meeting, Jan. 14, 2022

Demin Zhou

Acknowledgements

Y. Funakoshi, Y. Ohnishi, K. Ohmi, T. Ishibashi, S. Terui, R. Ueki, H. Ikeda, T. Mitsuhashi, M. Masuzawa, H. Koiso, T. Nakamura, T. Miyajima, K. Nakanishi, Y. Zhang, D. Shatilov, M. Zobov, M. Migliorati, W. Bruns, A. Blednykh, I. Zagorodnov, Y.-C Chae, G. Wang, M. Blaskiewicz, BCG/KCG group members, and ITF members

Outline

- Beam-beam \bullet
 - Overview of beam-beam simulations and comparisons with observations
 - Beam-beam study on Dec. 21-22, 2021 ullet
- Resonances and tune survey \bullet
- Impedance models for LER lacksquare
 - Longitudinal impedance model and bunch lengthening simulation
 - Transverse impedance model and tune shift
- Discussion on vertical emittance blowup and reaching 1E35 luminosity
- Other talks covering beam dynamics issues: \bullet
 - Y. Ohnishi, "Operation Summary"
 - T. Ishibashi, "TMCI 関連"
 - H. Sugimoto, "Optics Issues"
 - H. Ikeda, "Bunch length、SRM測定について"
 - K. Ohmi, "Chromatic aberrations, nonlinear resonances and Head-tail instability"
 - Y. Funakoshi, "High Bunch Current Study + 今後の見通し"

- May 14, 2021: Physics run \bullet
 - With single-beam ϵ_v of 22.5 pm, BBSS simulations predict luminosity of ~3.75e34 cm⁻²s⁻¹ at bunch current product of about 0.4 mA² without obvious BBHTI. This is compared to the achieved luminosity of 3.0e34 cm⁻²s⁻¹ in 2021ab run.
 - Slope of Lsp is affected by bunch lengthening (due to potentialwell distortion) and nonlinear beam-beam effects.
 - Weak blowup in ϵ_x was observed in the control room, but not well-confirmed.

	2021.05.14		Commente
	HER	LER	Comments
I _b (A)	0.68	0.84	
# bunch	11	74	
ε _x (nm)	4.6	4.24	w/ IBS
ε _v (pm)	22.5	22.5	Estimated from XRM data
β _x (mm)	60	80	Calculated from lattice
β _y (mm)	I	L.	Calculated from lattice
σ₂ (mm)	6	6	w/ bunch lengthening by impedance
σ _y (μm)	0.15	0.15	Observed from XRM
Vx	45.52989	44.5247	Measured tune of pilot bunch
vy	43.59055	46.57279	Measured tune of pilot bunch
V8	0.02719	0.02212	Calculated from lattice
Crab waist	40%	80%	Lattice design

Operation parameter set

100 80	Spec.
60 40 20 0	Lum(10 ³⁰)

- May 14, 2021: Physics run \bullet
 - Simulations were done without using selfconsistent model of longitudinal impedance (only bunch length was varied in those simulations). Consequently, BBHTI appears in **BBSS** simulations.
 - The observed blowup of σ_v^* of both electron and positron beams was complicated (see 24 hours' history of ϵ_v). BBSS simulations cannot reproduce the trends of σ_v^* blowup.
 - Simulations showed working point (.53,.57) is better: Higher BBHTI threshold and weaker beam-size blowup.

- Jul. 01, 2021: HBCC study \bullet
 - BBSS simulations with self-consistent model of longitudinal impedance did not show strong BBHTI. The slope of Lsp is mainly affected by bunch lengthening.
 - Bunch lengthening simulated by BBSS is weaker than VFP simulations. Impedance modeling in BBSS needs to be improved.
 - Weak blowup in ϵ_x was observed in the control room. It was confirmed in beam-beam machine study on Dec. 21, 2021

	2021.07.01		Commonte
	HER	LER	Comments
l⊨ (A)	le	1.255* <u>le</u>	
# bunch	39	93	
ε× (nm)	4.6	4.0	w/ IBS
ε _y (pm)	18	18	Single beam (Estimated from XRM data)
βx (mm)	60	80	Calculated from lattice
β ₇ (mm)	I	I	Calculated from lattice
σ₂ (mm)	5.05	4.84	Natural bunch length (w/o MWI)
Vx	45.532	44.525	Measured tune of pilot bunch
Vy	43.582	46.593	Measured tune of pilot bunch
Vs	0.0272	0.0221	Calculated from lattice
Crab waist	40%	80%	Lattice design

Operation parameter set

Luminosity history panel seen in SuperKEKB control room

56.	5
56	8
55.	5 🗟
55	<u> </u>
160	
30	5
50	°.
10	6
20	್ರ
a –	

- Jul. 01, 2021: HBCC study ullet
 - With self-consistent model of longitudinal impedance, only weak σ_x^* blowup is visible in simulations. σ_x^* blowup in LER beam is stronger than that in HER beam, somehow consistent with experimental observations.
 - The observed blowup of σ_v^* of both electron and positron beams was complicated. BBSS simulations cannot reproduce the trends of σ_v^* blowup.
 - To predict the experiments, other sources (Transverse wakes, collision offset noise, IP aberrations, etc.) are to be included in beambeam simulations.

- Jul. 01, 2021: HBCC study lacksquare
 - Horizontal tune scan using BBSS showed ν_{χ} dependence of σ_{χ}^* blowup.
 - ν_x dependent σ_x^* blowup driven by beam-beam was confirmed in the beam-beam machine study on Dec. 21, 2021.

	2021.07.01		Commonto
	HER	LER	Comments
I _{bunch} (mA)	0.80	1.0	
# bunch	1174		Assumed value
ε _x (nm)	4.6	4.0	w/ IBS
ε _y (pm)	23	23	Estimated from XRM dat
β _x (mm)	60	80	Calculated from lattice
β _y (mm)		Ι	Calculated from lattice
σ _{z0} (mm)	5.05	4.84	Natural bunch length (w/o M
Vx	45.532	44.525	Measured tune of pilot bur
Vy	43.582	46.593	Measured tune of pilot bur
Vs	0.0272	0.0221	Calculated from lattice
Crab waist	40%	80%	Lattice design

Parameter set for simulations

[2] D. Zhou, Talk presented at the 4th ITF-BB subgroup meeting, KEK, Nov. 25, 2021, https://kds.kek.jp/event/40237/.

- Jul. 01, 2021: HBCC study
 - ν_x dependent σ_x^* blowup was also seen in an independent simulation using IBB by Y. Zhang.
 - Discrepancy was also seen in blowup behavior.
 - Beam-beam simulations showed that it is hard to avoid σ_x^* blowup when ν_{χ} is chosen to be between resonances $\nu_{x} - \nu_{s} = N/2$ and $\nu_{x} - 2\nu_{s} = N/2$.
 - According to D. Shatilov [3], σ_x^* blowup will cause σ_y^* blowup due to betatron coupling. It is not well confirmed yet in experimental observations at SuperKEKB.

[2] D. Zhou, Talk presented at the 4th ITF-BB subgroup meeting, KEK, Nov. 25, 2021, https://kds.kek.jp/event/40237/. [3] D. Shatilv, Talk presented at the 3rd ITF-BB subgroup meeting, KEK, Oct. 28, 2021, https://kds.kek.jp/event/39831/.

- Jul. 01, 2021: HBCC study \bullet
 - Beam-beam simulations with inclusion of chromatic coupling in LER (using IBB by Y. Zhang) showed direct luminosity loss might appear with the current configuration of SuperKEKB (β_v^*) =1 mm with crab waist).
 - IBB simulations were done with the same $\nu_{x,y}$ for LER and HER. Only chromatic coupling in LER (extracted from TbT measurements) was considered.
 - Correction of chromatic coupling using rotatable sextupoles in LER was successfully demonstrated.

IBB simulation w/o chromatic coupling

IBB simulation w/ chromatic coupling

- Jul. 01, 2021: HBCC study lacksquare
 - Tune scan using BBWS showed that 80% crab waist ratio in LER is effective in suppressing vertical blowup caused by beam-beam resonances (mainly $\nu_x \pm 4\nu_v + \alpha = N$).
 - Moving ν_v downward to 0.57 should be better, but it was not verified in the beam-beam machine study on Dec. 21, 2021. One reason is that enough CW makes luminosity to be insensitive to ν_v . Another reason might be that σ_v^* blowup driven by transverse impedance (see talks by T. Ishibashi and K. Ohmi in this meeting) does not prefer moving ν_v downward to 0.57.

- Jul. 01, 2021: HBCC study \bullet
 - Tune scan using BBWS showed that 40% crab waist ratio in — **HER** might not be enough for suppressing vertical blowup caused by beam-beam resonances (mainly $\nu_x \pm 4\nu_v + \alpha = N$).
 - Moving ν_v downward to 0.57 should give better luminosity, and it was verified in the beam-beam machine study on Dec. 21, 2021.

[2] D. Zhou, Talk presented at the 4th ITF-BB subgroup meeting, KEK, Nov. 25, 2021, https://kds.kek.jp/event/40237/.

- Dec. 21-22, 2021: Beam-beam study overview
 - The beam-beam machine study was very successful with several important findings.
 - LER horizontal ϵ_x blowup was verified: It is driven by beam-beam and sensitive to LER ν_x . It is not simply coherent BBHTI. It can be a phenomenon of beambeam driven synchro-betatron resonance with inclusion of longitudinal impedance effect.
 - Operating LER on top of and even left side of $\nu_x \nu_{s0} = N/2$ (here ν_x is measured gated tune of pilot bunch, ν_{s0} is the nominal synchrotron tune): LER ϵ_x blowup can be relaxed and LER injection efficiency can be improved.
 - Optimization of working point (with chromatic coupling correction in LER) helped achieve a balanced collision and contributed to new luminosity record.

LER Tune Diagram on skbcons-04.kekb.kek.jp:0.0

- HBCC study immediately after physics run?
- at $I_{+}/I_{-} = 440/352$ mA with LER ν_{x} set by -0.003.

- Dec. 21-22, 2021: HBCC study \bullet
 - Compare HBCC study of Jul. 01 and Dec. 21: Specific luminosity is similar.
 - Current ratio scan showed better specific luminosity can be achieved.

 - —
 - to reduce the discrepancy between simulations and measurements of bunch length and beam phase.

	2021.12.21		Comments
	HER	LER	Comments
I _{bunch} (mA)	le	I.25*le	
# bunch	393		Assumed value
ε _x (nm)	4.6	4.0	w/ IBS
ε _y (pm)	20	35	Estimated from XRM da
β _x (mm)	60	80	Calculated from lattice
β _y (mm)			Calculated from lattice
σ _{z0} (mm)	5.05	4.60	Natural bunch length (w/o N
Vx	45.53	44.524	Measured tune of pilot bu
Vy	43.572	46.589	Measured tune of pilot bu
Vs	0.0272	0.0233	Calculated from lattice
Crab waist	40%	80%	Lattice design

Operation parameter set for BBSS simulation

With optimized working point and fine IP tuning knobs, slightly better luminosity performance can be achieved.

The discrepancy between simulated and observed luminosity became large when bunch currents increase.

Bunch lengthening is still an unclear factor. Efforts are ongoing to improve impedance model for simulations in order

- Dec. 21-22, 2021: HBCC study
 - LER σ_r^* blowup was partially mitigated by reducing LER ν_r .
 - It was hard to achieve balanced collision ($\sigma_{v+}^* \approx \sigma_{v-}^*$) when $I_{b+}I_{b-} > 0.45 \text{ mA}^2.$
 - When bunch current ratio is fixed with $I_{b+}/I_{b-}=1.25$, a "flip-flop" phenomenon appeared: At lower bunch currents, HER beam seems¹⁶ to be weaker; At higher bunch currents, LER beam is weaker (blowup due to head-tail instability? See Ohmi-san's talk). But balanced collision could be achieved by tune optimization and IP knob tunings at low bunch currents.

- Dec. 21-22, 2021: HBCC current-ratio study
 - When the LER beam current is fixed at 440 mA (393 bunches), the optimum current ratio ("optimum" means maximum Lsp with $\sigma_{v+}^* \approx \sigma_{v-}^*$) was found at $I_{b+}/I_{b-} \approx 1.7$, close to the energy transparency condition $I_{b+}/I_{b-} = \gamma_{-}/\gamma_{+}.$

• Dec. 21-22, 2021: HBCC tune-survey study

- Tune survey was done with fixed beam current $I_{\perp}/I_{=}$ =440/352 mA (393) bunches).
- With I_{b+} >1 mA, sideband of LER ν_v (-1 mode) was alway seen.
- Changing HER ν_v from 43.582 to upper side cause HER vertical blowup and luminosity loss, down side is better. HER $\nu_{\rm y}$ was set at 43.572.
- Changing LER ν_{y} toward 46.57 did not show improvement in luminosity (even worse with LER vertical blowup).

- Resonances to be identified

HER tune survey done on Nov. 8, 2021

- The study was done with LER trouble with injection kickers. So the beam time of HER was available for such study.
- More details about the study can be found from shift report (2021_11_08_0900_Ueda_Funakoshi).
- Post analysis of the experimental data showed clear emittance blowup caused by chromatic couplings of $\nu_x - \nu_y + \nu_s =$ Integer and $\nu_x - \nu_y + 2\nu_s =$ Integer. Because bunch current was very low in this study, the synchrotron tune ν_s can be taken as the zero-current ν_s calculated from design lattice.
- This study showed, during physics run, the global emittance coupling of the rings might change with time.
- Because HER is operating below the second chromatic coupling resonance $\nu_x - \nu_y + 2\nu_s =$ Integer, the footprint of the beam (with collective effects from impedance and beam-beam) will overlap this line and side effects should be seen.

HER tune scan (vertical) before optics correction knob on

HER tune scan (vertical) after optics correction knob off

From Y. Funakoshi's report

HER tune survey done on Nov. 8, 2021

- The measured tune-dependent emittances were compared with simulations using ideal lattice (without machine errors) by Funakoshisan.
- The peak positions of chromatic couplings had good agreement.
- But, off from the resonances, the measured emittances were much higher than simulations. It indicated the global emittance coupling is important.
- Also, both simulations and measurements showed the existence of $3\nu_x - \nu_y = N$ resonance (to be confirmed).

Blue dots: ν_v scan before optics correction Red dots: ν_v scan after optics correction

From Y. Funakoshi's report Simulation on synchro-beta emittance (HER)

- Tune survey study on Dec. 3, 2021: Machine conditions and study items
 - Number of bunches: 783; Beam current: 50 mA
 - Tune feedback OFF; BxB FB on
 - HER/LER vertical tune survey: [nuy] $.55 \rightarrow .70$
 - HER horizontal tune survey: [nux] $.51 \rightarrow .56$

Data taking lacksquare

Beam emittances from XRMs

- Study items
 - 1) HER ν_y scan
 - 2) LER ν_y scan

- - no effects on global coupling

- Offline data analysis: HER ν_{χ} scan

- side effects on global coupling?
- and IP knobs ON. With injection and IP knobs OFF, crossing $3\nu_v = N$ did not show blowup. How to explain it?

Tune survey for rotation sextupole study on Dec. 20-21, 2021

- Rotation sextupole study by M. Masuzawa, Y. Ohnishi, et al. \bullet
 - Tune survey showed chromatic resonances $\nu_x \nu_y + k\nu_s = N$ were suppressed by rotation sextupole tuning

- HER single-beam study done on Nov. 14, 2021
 - In HER, we observe abnormal vertical emittance blowup.
 - It can be explained by overlap of beam's tune footprint with chromatic coupling resonance $\nu_x - \nu_y + 2\nu_s = N$ resonance.

Single-beam blowup in decay mode Blowup during injection 68.0 =⁸⁰ w/ and w/o collision 35.3 52.5 4.60 3.25 . 1 9^h 12^h 15^h

Longitudinal impedance model of SuperKEKB LER

- Use GdfidL wake data of 2021
 from Ishibashi-san.
- Assume collimator settings on Jun. 30, 2021.
- The table is for σ_z =5 mm.

Com
MC
Pumni
r unipi
SF
1-
Transver
Transve
Longitud
Grooved
Ţ
Clearing
Col
Resi

	Number of items	Total loss factor (V/pC)	Total Resistance (Ohm)	Total inductanc (nH)
ARES	22	10.2	601	0
b bellows	1047	1.4	83	4.7
) flange	2000	0.01	0.5	1.1
ng port (m)	2200/0.4	0	0	0
Rmask	1000	0	0	0
R duct	1	0.002	0.1	0.6
BPM	445	0.1	8.5	0.6
rse FB kicker	2	0.4	26	0
erse FB BPM	12	0.02	1.0	0.03
inal FB kicker	2	1.8	105	0
beam pipe (m)	520/0.4	0.1	6.3	0.9
apers	25	0.01	0.4	0.06
electrode (m)	150/0.8	0.1	4	11
limators	-	0.7	44	13.4
stive wall	-	3.9	230	5.7
Total	-	18.8	1112	37.6

Longitudinal impedance model of SuperKEKB LER

- Assume collimator settings at 13:30 PM, Dec. 22, 2021.
- Updates (by Ishibashi-san)
 - Welding gaps (new impedance sources)
 - Collimator wakes by ECHO3D
 - Resistive wall, using impedance with TiN coating ($\sigma_c=$ 5e4 S/m)
- The table is for $\sigma_z = 5$ mm.
- The updates do not change the longitudinal impedance budget much.

Com
MC
Pumni
SF
1:
Transvei
Transve
ongitud
Grooved
Ţ
Clearing
Col
Welc
Resi
Self- in the self-

	Number of items	Total loss factor (V/pC)	Total Resistance (Ohm)	Total inductanc (nH)
ARES	22	10.2	601	0
b bellows	1047	1.4	83	4.7
) flange	2000	0.01	0.5	1.1
ng port (m)	2200/0.4	0	0	0
Rmask	1000	0	0	0
R duct	1	0.002	0.1	0.6
BPM	445	0.1	8.5	0.6
rse FB kicker	2	0.4	26	0
erse FB BPM	12	0.02	1.0	0.03
inal FB kicker	2	1.8	105	0
beam pipe (m)	520/0.4	0.1	6.3	0.9
apers	25	0.01	0.4	0.06
electrode (m)	150/2.	0.1	4	11
limators	-	0.7	41.5	12.1
ling gaps	2000	0.1	4.8	4.7
stive wall	-	3.9	232	8.4
Total	-	18.8	1112	37.5

Simulation of bunch lengthening and microwave instability by Vlasov solver

- Use beam parameters of Dec. 22, 2021 ($\beta_v^* = 1 \text{ mm}$).
- Bunch lengthening and MWI threshold were similar to old simulations.
 - Fitted bunch lengthening is σ_{z} [mm] = σ_{z0} [mm] + 0.72 I_{b} [mA]. ulletThe slope A = 0.72/mA is still much smaller than streak camera measurement (about 2/mA, see Ikeda-san's talk in this meeting).
 - To-Do list: Benchmark simulations of bunch lengthening(VFP, pyHEADTAIL, BBSS, etc.), search of new impedance source (Ishibashi-san as the leader), etc.

	Values
RF voltage (MV)	9.12
Beam energy (GeV)	4
Natural bunch length (mm)	4.6
Momentum compaction factor (E-4)	2.9690
Longitudinal damping time (ms)	22.84954
Energy spread (E-4)	7.52596
Energy loss per turn (MeV)	1.7621609
Synchrotron tune	0.0232639

Vertical impedance model of SuperKEKB LER

- Assume collimator settings at 13:30 PM, Dec. 22, 2021.
- Updates (by Ishibashi-san)
 - Welding gaps (new impedance sources)
 - Collimator wakes by ECHO3D
 - Resistive wall, using impedance with TiN coating ($\sigma_c=$ 5e4 S/m)
- $\beta_y \kappa_y$ of IR duct was underestimated according to Ishibashi-san's new calculation.
- The table is for σ_z =6 mm.

	ļ
С	om
	MO
Pu	mpi
	SF
	-
Tran	sver
Trar	isve
Longi	itudi
Groo	ved
	Ta
Clea	ring
	Welc
	lesis
	CY STA

	Number of items	Average β _y (m)	β _y *κ _{yD} (V/pC)	β _y *κ _{yQ} (V/pC)
ARES	22	17.7	-455	0
b bellows	1047	19.1	-816	178
) flange	2000	19.1	-86	-2
ng port (m)	2200/0.4	19.1	0	0
Rmask	1000	19.1	0	0
R duct	1	20.8	-545	141
BPM	445	28.0	-74	4.5
rse FB kicker	2	7.9	-39	0
erse FB BPM	12	19.3	-8	0
inal FB kicker	2	20.2	-168	0
beam pipe (m)	520/0.4	19.0	-166	-159
apers	25	19.1	0	9
electrode (m)	150/2.	15.7	-534	-452
ding gaps	2000	19.1	-147	19
stive wall	-	19.1	-1206	-
Total	-	_	-4244	-261

Vertical impedance model of SuperKEKB LER

- Assume collimator settings at 13:30 PM, Dec. 22, 2021.
- The table is for $\sigma_z = 6$ mm.
- Resistive wall of collimators NOT taken into account (GdfidL calculations showed it is not important).
- Collimators contribute about 90% of total $\beta_y \kappa_y$ w/o considering IR duct.

	1000
	D
And the second second	10000
	D
	-
	D
	D
The states and	
	Ľ
	Ľ
	D
	Ľ
1970 - A A A A	

	Half gap (mm)	Average β _y (m)	β _y *κ _{yD} (V/pC)	β _y *κ _{yQ} (V/pC)
06H1	13.85	5.6	-64	3
06H3	10.8	5.6	-60	32
06V1	2.79	67.3	-11475	-3985
06V2	2.71	20.6	-3682	-1260
03H1	11.95	3.0	-33	10
03V1	8	17.0	-500	-292
02H1	8	24.7	-315	421
02H2	11.95	13.2	-145	42
02V1	1.12	11.9	-7762	-1886
02H3	13.95	55.4	-634	25
002H4	8.07	13.3	-169	223
Fotal	-	-	-24838	-6669

Betatron tune shift

- Assume collimator settings at 13:30 PM, Dec. 22, 2021.
- Use beam parameters and lattice on Dec. 22, 2021.
- See Ishibashi-san's talk for measurements of tune shift.

Ver. Dipolar Collimators Vert. Dipolar. Others No. σ_z =5 mm -0.00541276 -0.000947807 -0. σ_z =6 mm -0.00497163 -0.000849563 -0.

Estimate of vertical tune shift (Unit: /mA)

Estimate of horizontal tune shift (Unit: /mA)

	Hor. Dipolar Collimators	Hor. Dipolar. Others	Hor. Quad Collimators	Hor. Quad. Others	Total
σ _z =5 mm	-0.00211063	-0.00072972	0.0010495	0.0000843841	-0.00170647
σ _z =6 mm	-0.0017785	-0.000667095	0.000874458	0.000066171	-0.00150497

 $\frac{dvdI[\beta\kappa_{-}] := \frac{\beta\kappa * 10^{12} * 10^{-3}}{4\pi * (c0 / Cir) * (Ep * 10^{9})};$

/ert. Quad Collimators	Hor. Quad. Others	Total
00160797	-0.0000682918	-0.00803683
00133485	-0.000052172	-0.00720822

Discussion on candidates for vertical emittance blowup

• LER

- Beam-beam driven synchro-betatron resonance (it means single-beam effect, not BBHTI or X-Z instability which means coherent blowup of both beams. Potential-well distortion cause ν_s spread and increase width of $2\nu_x k\nu_s = N$ resonances.).
- "TMCI": Interplay of beam-beam, impedance and lattice nonlinearity.
- Imperfect CW (imperfect phase-advance between SLY* magnets, non-perfect CW for off-momentum particles)
- Others?

Discussion on candidates for vertical emittance blowup

• HER

- Chromatic coupling ($\nu_x \nu_y + \nu_s = N$ and $\nu_x - \nu_y + 2\nu_s = N$)
- $3\nu_x \nu_y = N?$
- Insufficient CW (now 40%, limited by SLY* strengths).
- Imperfect CW (imperfect phase-advance between SLY* magnets, non-perfect CW for off-momentum particles)
- Others?

Scaling laws of luminosity

- Beam-beam parameter (tune shift)
 - Under balanced collision ($\sigma_{y+}^* \approx \sigma_{y-}^*$), the two methods for beam-beam parameter (tune shift) are almost equivalent.
 - values of ~0.09 (w/o crab waist). This is the most important challenge at SuperKEKB.

The currently achieved beam-beam parameters are $\xi_{v+}pprox 0.04$ and $\xi_{v-}pprox 0.03$ (w/ crab waist), which are much lower than the design

Scaling laws of luminosity

- Specific luminosity
 - Specific luminosity L_{sp} is "the last piece of the puzzle" for discussion of reaching 1E35 luminosity at SuperKEKB.
 - The best scenario is: L_{sp} is a constant. It means there are no beam-size blowup.
 - But in the realistic machine, L_{sp} drops when bunch currents increase due to "collective effects".

Outlook of reaching 1E35 luminosity

- Scenario-1: Constant beam-beam parameter
 - observation based on experiences from colliders.
 - find the necessary beam currents to achieve 1E35 luminosity. The results are summarized in the table.
 - Note that we achieved 3.815E34 luminosity wit $\beta_v^*=1$ mm (Dec. 23, 2021).

ß (mm)	3.5E+34		6E+34		1E+3	
Py (IIIII)	HER	LER	HER	LER	HER	
1	0.77	1.01	I.32	I.73	2.20	
0.8	0.61	0.81	1.05	1.38	1.76	
0.6	0.46	0.61	0.79	1.04	1.32	
0.4	0.31	0.4	0.53	0.69	0.88	
0.3	0.23	0.3	0.40	0.52	0.66	

When the machine hits a "beam-beam limit", the beam-beam parameter will saturate and cannot increase furthers. This is an empirical

Let us tentatively accept $\xi_{v+} pprox 0.04$ and $\xi_{v-} pprox 0.03$ which are taken from the current SuperKEKB observation. Then we can simply

Outlook of reaching 1E35 luminosity

- Scenario-2: Given specific luminosity slope
 - From the observed specific luminosity slope (see page.13), we can estimate the total luminosity with given beam currents.
 - We can assume $L_{sp}[10^{31} \text{ cm}^{-2}\text{s}^{-1}/\text{mA}^2] = 8.8 5.8I_{b+}I_{b-}[\text{mA}^2]$. Note that this scaling law is only valid for for $\beta_y^*=1$ mm.
 - Also I assume bunch current ratio of $I_{b-}/I_{b+} = 0.8$ which is currently used at SuperEKKB. The possible bunch current products and number of bunches are listed in the table and resulting luminosity [scaled by 1E35].
 - Squeezing β_v^* is effective to increase L_{sp} , but has many other side effects (not discussed here).

Pupph pupphor	l _{b+} l _{b-} [mA ²]				
Bunch number	0.5	0.7	1		
1270	0.41	0.49	0.53		
1370	0.44	0.53	0.57		
1565	0.51	0.61	0.6		
2000	0.65	0.78	0.83		
2500	0.81	0.97	1.04		

Backup

Status of SuperKEKB

- Collision scheme (KEKB \rightarrow SuperKEKB)
 - SuperKEKB: A "green" collider

	KE (2009.	KEKB (2009.06.17)		SKEKB (2021.12.16)		EKB design)
	HER	LER	HER	LER	HER	LER
I _{beam} (A)	1.2	1.0	0.79	0.98	2.6	3.6
# bunch	15	85	13	70	25	00
ε _x (nm)	24	18	4.6	4.0	4.6	3.2
ε _y (pm)	150	150	~50	~50	12.9	8.64
β _x (mm)	1200	1200	60	80	25	32
β _y (mm)	5.9	5.9	I	I	0.3	0.27
σ _z (mm)	6	6	5	6	5	6
Vx	44.511	45.506	45.533	44.525	45.53	44.53
Vy	41.585	43.561	43.581	46.589	43.57	46.57
Vs	0.0209	0.0246	0.0272	0.0233	0.028	0.0245
Crab waist		_	40%	80%		
Crossing angle (mrad)	0 (22)	83		83	
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	2	2.1		56	8	0

Schematic view of collision schemes

• LER TMCI study done on Oct. 26, 2021

- A TMCI study in LER was done on Oct. 26, 2021.
- More details about the study can be found from later reports by Ishibashi-san (for example, see Ref. [6]).
- Post analysis of the experimental data showed clear emittance blowup caused by chromatic couplings of $\nu_x \nu_y + \nu_s =$ Integer and $\nu_x \nu_y + 2\nu_s =$ Integer. Synchrotron tune ν_s depends on bunch current because of potential-well distortion caused by longitudinal coupling impedance. So data analysis needs to take into account this factor.
- This study showed a possible interplay between localized transverse impedance from collimators and machine imperfections (including linear coupling and chromatic couplings) (See Ohmi-san's report Ref. [7] and this talk in this meeting).

Blue dots: ν_y scan with $\nu_x = 44.535$ and $I_{bunch} = 0.91$ mA Red dots: ν_y scan with $\nu_x = 44.535$ and $I_{bunch} = 0.31$ mA Green dots: ν_y scan with $\nu_x = 44.527$ and $I_{bunch} = 0.31$ mA Black dots: ν_y scan with $\nu_x = 44.527$ and $I_{bunch} = 0.91$ mA

[6] <u>https://kds.kek.jp/event/39972/contributions/199971/attachments/149042/186732/2021c_tmci_study_report.pptx</u>
 [7] <u>https://kds.kek.jp/event/39972/contributions/200040/attachments/149061/186596/SBR_ChromCoup_Wake.pdf</u>

• HER single-beam study done on Nov. 14, 2021

- The study was done with LER trouble with injection kickers. So the beam time of HER was available for such study.
- More details about the study can be found from shift report (2021_11_14_0900_Suetsugu_Sugimura.pptx) and study report presented by D.Zhou at the KCG meeting of Nov.15, 2021.
- Post analysis of the experimental data showed clear emittance blowup caused by the second chromatic coupling $\nu_x - \nu_y + 2\nu_s =$ Integer. Because HER's working point (fixed by tune feedback) is close to this resonance, when the bunch current was increased, the synchrotron tune ν_s will decrease. Consequently, the overlap of beam's tune footprint with $\nu_x - \nu_y + 2\nu_s =$ Integer caused emittance blowup.

- LER ν_y scan: compare data of 2021.10.26 $(\beta_y^*=8 \text{ mm}) \text{ and data of } 2021.12.03 \ (\beta_y^*=1 \text{ mm})$
 - The tune survey of 2021.10.26 was done with bunch current $I_{b+} = 0.31$ (red ($\nu_x = 44.535$) and green ($\nu_x = 44.527$) dots of the upper figure) and 0.91 (blue ($\nu_x = 44.535$) and black ($\nu_x = 44.527$) dots of the upper figure) mA. The lattice gives synchrotron tune $\nu_{s0} = 0.0227$.
 - The tune survey of 2021.12.03 was done with very low bunch current (beam current \leq 50 mA and bunch number 783). The lattice gives synchrotron tune $\nu_{s0} = 0.0233$.
 - The incoherent synchrotron tune depend on bunch current be of $\nu_s \propto 1/\sigma_z$ due to potential-well distortion due to longitudinal coupling impedance. For data analysis of 2021.12.03, bunch-current dependency of ν_s was neglected ($\nu_{s0} = 0.0233$ was used for the plot).
 - Strength of $\nu_x \nu_y + 2\nu_s = N$ with $\beta_y^* = 8$ mm seems to be stronger than that with $\beta_y^* = 1$ mm. Effects of rotating sextupoles? To be confirmed by machine study.

Effects of BxB FB system \bullet

- For tune survey with fractional ν_{v} >0.6, one concern is effects of BxB FB. _
- In this study, when ν_{v} >0.6, injection was difficult, BxB FB had to be turned on to improve injection.
- Further investigations are necessary.

Courtesy of M. Tobiyama

Horizontal impedance model of SuperKEKB LER

- Assume collimator settings at 13:30 PM, Dec. 22, 2021.
- The table is for $\sigma_z = 6$ mm.

	Number of items	Average β _x (m)	β _x *κ _{xD} (V/pC)	β _x *κ _{xQ} (V/pC)
ARES	22	17.1	-439	0
Comb bellows	1047	15.8	-385	-74
MO flange	2000	15.8	-69	1.7
Pumping port (m)	2200/0.4	15.8	-1.4	0
SR mask	1000	15.8	0	0
IR duct	1	0.34	-11	-3.2
BPM	445	18.9	-53	-3
Transverse FB kicker	2	18.8	-17	-68
Transverse FB BPM	12	24.4	-10	0
ongitudinal FB kicker	2	35.5	-294	0
Grooved beam pipe (m)	520/0.4	11	-461	36
Tapers	25	15.8	-7	-7
Clearing electrode (m)	150/2.	15.6	-64	468
Welding gaps	2000	15.8	-517	-19
Resistive wall	-	15.8	-1003	_
Total	-	-	-3333	331

Horizontal impedance model of SuperKEKB LER

- Assume collimator settings at 13:30 PM, Dec. 22, 2021.
- The table is for $\sigma_z = 6$ mm.
- Resistive wall of collimators NOT taken into account

D
D
D
D
D
D

	Half gap (mm)	Average β _x (m)	β _x *κ _{xD} (V/pC)	β _x *κ _{xQ} (V/pC)
06H1	13.85	24.2	-233	-13
06H3	10.8	24.2	-397	-138
06V1	2.79	14.6	-826	856
06V2	2.71	10	-584	602
03H1	11.95	29	-377	-93
03V1	8	10.4	-114	178
02H1	8	20.8	-774	-356
02H2	11.95	36.5	-475	-117
02V1	1.12	26.2	-3878	4578
02H3	13.95	50.8	-483	-23
002H4	8.07	20.4	-744	-343
Fotal	-	-	-8885	4369

