SuperKEKB status and outlook of reaching 1E35 peak luminosity

- Demin Zhou dmzhou@post.kek.jp
- on behalf of the SuperKEKB commissioning group

- Acknowledgements
- Y. Funakoshi, K. Matsuoka, Y. Ohnishi, K. Ohmi, Y. Suetsugu,
- and special thanks to Paolo Branchini for coordination of my talk

Belle II meeting in Italy, Dec. 16, 2021

Outline

- Status of SuperKEKB
- Near-term plan to 2024
- Scaling laws of luminosity
- Outlook of reaching 10E35 luminosity (personal viewpoint)

Status of SuperKEKB

- 2021a/b run: Feb.16 Jul.5, 2021
 - Challenges: damaged collimators, unidentified sudden beam losses, injection troubles, etc. \bullet
- 2021c run: Oct.19 Dec.23, 2021
 - Achievements: healthy collimators, less sudden beam losses, less injection troubles, etc.

Status of SuperKEKB

- Collision scheme (KEKB \rightarrow SuperKEKB)
 - SuperKEKB: A "green" collider

	KEKB (2009.06.17)		SKEKB (2021c)		SKEKB (Final design)		
	HER	LER	HER	LER	HER	LER	
I _{beam} (A)	1.2	1.0	0.79	0.98	2.6	3.6	
# bunch	15	85	1370		2500		
ε _x (nm)	24	18	4.6	4.0	4.6	3.2	
ε _y (pm)	150	150	~50	~50	12.9	8.64	
β _x (mm)	1200	1200	60	80	25	32	
β _y (mm)	5.9	5.9	I	I	0.3	0.27	
σ _z (mm)	6	6	5	6	5	6	
Vx	44.511	45.506	45.533	44.525	45.53	44.53	
Vy	41.585	43.561	43.581	46.589	43.57	46.57	
Vs	0.0209	0.0246	0.0272	0.0233	0.028	0.0245	
Crab waist	-		40%	80%	-		
Crossing angle (mrad)	0 (22)		83		83		
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	2	2.1		3.56		80	

Schematic view of collision schemes

Status of SuperKEKB

- Hardware work during summer shutdown of 2021 [1]
 - Regular maintenance (Water flow meters, Power supplies for RF and magnets, etc.
 - Collimators (see also next page)
 - Installation of new collimator heads with 3 mm Tantalum and graphite (at LER arc).
 - Robust against damages from beam.
 - Relocation of LER D02V1 collimators
 - Replacement of 2 collimator heads (HER).
 - Upgrade of driving device of 2 collimators (HER)
 - LER injection kicker
 - Exchange of all thyratrons to those with higher withstanding voltage to avoid unexpectedfiring.
 - Rewiring of trigger cables to control each kicker timing separately.
 - Exchange of the mirror and its folder of SR beam size monitor for LER.
 - Installation of a HOM absorber at RF section (HER Nikko).
 - BT •
 - Installation of beam profile monitors with OTR screen. ٠
 - Installation of a beam shutter in LER injection line.
 - Installation of a strip-line kicker into RTL line at DR •
 - Anti-aging measures
 - Replacement of HV (66 kV and 6.6 kV) power cables.
 - Repair of water leak from roof of some power stations.

Near-term plan to 2024

• Near-term luminosity profile ~2024 (official) [1]

Luminosity profile

[1] Y. Suetsugu, "Status of SuperKEKB Ring", Talk to BPAC, Nov. 09, 2021

]

	Target profile*	Base profile		
Profile until 2022b	Same profile as previous one	Modified from 2021c		
Operation efficiency	~2021c: 0.65, 2022a~: 0.4	2021c~: 0.4		
Bunch current	≤ 0.95 mA	≤ 0.9 mA		
Total current	≤1.6A	≤ 1.5A		
Specific luminosity	Fig. (1)	Fig. (2)		
Squeeze β_{y}^{*}	Squeeze to 0.8 mm at a proper timing after 2022c.			
After LS1	Need ~4 months' operation to fully recover the previous luminosity			

 $L_{sp} x \beta_{y}^{*} [E31 cm^{-2} s^{-1}/mA^{2} mm]$

Near-term plan to 2024

- Near-term operation plan ~2024 [1]
 - We decided to postpone the LS1 by a half year.
 - The LS1 will start from January, 2023.
 - shutdown 2022.

time.

A detailed leak check of QCSR cryostat vacuum tank is scheduled in summer

			2023		
	3	2	1	12	
Total ~3.5M/v	OP exchange)				
			2024		_
	3	2	1	12	
Total	2024a			1	3c
~6.2M/y	~1.7M	2/8		12/22	iΜ

- Items to be considered ٠
 - Influence of Covid-19
 - Fabrication of a new IP chamber
 - Integrated luminosity until LS1
 - QCSR leak
 - Availability of expertise especially in PXD.
- Requested budget is compatible with 6 months operation.

• The schedule will be discussed again in May 2022, considering the situation at that

 Simple formula of luminosity for "nano-beam" scheme:

$$L \approx \frac{N_b N_+ N_- f}{2\pi \sqrt{\sigma_{y+}^{*2} + \sigma_{y-}^{*2}} \sqrt{\sigma_{z+}^2 + \sigma_{z-}^2} \tan \frac{\theta_c}{2}}$$

• In terms of total beam currents I_{+} and I_{-} :

$$L \approx \frac{I_{+}I_{-}}{2\pi N_{b} f e^{2} \sqrt{\sigma_{y+}^{*2} + \sigma_{y-}^{*2}} \sqrt{\sigma_{z+}^{2} + \sigma_{z-}^{2}} \tan \frac{\theta_{c}}{2}}$$

 Specific luminosity: Efficiency of extracting luminosity from given beam currents:

$$L_{sp} = \frac{L}{N_b N_+ N_- (ef)^2} \approx \frac{1}{2\pi e^2 f \sqrt{\sigma_{y+}^{*2} + \sigma_{y-}^{*2}} \sqrt{\sigma_{z+}^2 + \sigma_{z-}^2} \tan \frac{\theta_c}{2}}$$

• "Easy" ways of achieving high luminosity:

- Increasing number of colliding bunches
- Increasing the total beam currents
- But challenges will arise from: \bullet
 - Tolerances of hardwares on high beam currents and lacksquarenumber of bunches
 - Injection power of linac
 - Beam-size blowup due to collective effects (jargon of beam physics)

Beam physics behind the luminosity at SuperKEKB lacksquare

• The incoherent beam-beam tune shifts are • The luminosity is discussed in accelerator side in different ways. One concept is the so-called calculated from beam sizes and "beta "beam-beam parameter". For SuperKEKB, functions": vertical beam-beam parameters ξ_{v+} and ξ_{v-} are most essential, and are calculated from luminosity by:

$$L = \frac{1}{2er_e} \frac{\gamma_+ I_+}{\beta_{y+}^*} \xi_{y+} = \frac{1}{2er_e} \frac{\gamma_- I_-}{\beta_{y-}^*} \xi_{y-}$$

• For a "balanced" collision: $\sigma_{v+}^* = \sigma_{v-}^*$, Another concept, so called "incoherent beam- $\sigma_{z+} = \sigma_{z-}$, there are $\xi_{v+} \approx \xi_{v+}^i$ and $\xi_{v-} \approx \xi_{v-}^i$. beam tune shift" ξ_{v+}^{i} and ξ_{v-}^{i} (they measure the When the collision is out of balance, $\xi_{v+} \neq \xi_{v+}^{i}$ strengths of beam-beam forces), is used to discuss the beam-beam driven beam-size and $\xi_{v-} \neq \xi_{v-}^{l}$. blowup.

$$\xi_{y+}^{i} \approx \frac{r_{e}}{2\pi\gamma_{+}} \frac{N_{-}\beta_{y+}^{*}}{\sigma_{y-}^{*}\sqrt{\sigma_{z-}^{2}\tan^{2}\frac{\theta_{c}}{2} + \sigma_{x-}^{*2}}}$$
$$\xi_{y-}^{i} \approx \frac{r_{e}}{2\pi\gamma_{-}} \frac{N_{+}\beta_{y-}^{*}}{\sigma_{y+}^{*}\sqrt{\sigma_{z+}^{2}\tan^{2}\frac{\theta_{c}}{2} + \sigma_{x+}^{*2}}}$$

 To target high luminosity, a "balanced" collision is necessary. We assume it in the following discussions.

- "Balanced" collision was fairly achieved in 2021c run.
 - - $\epsilon_{v+/-} \approx 50/50$ pm (Single-beam emittances $\epsilon_{v+/-} \approx 20/20$ pm).
 - Keeping "balanced" collision is one of the challenges while the machine condition changes day by day.

- Recent optimum machine condition: Collision at $I_{+/-}=800/640 \rightarrow 980/790$ mA with balanced vertical emittances of

- Beam-beam parameter (tune shift)
 - Under balanced collision ($\sigma_{y+}^* \approx \sigma_{y-}^*$), the two methods for beam-beam parameter (tune shift) are almost equivalent.
 - values of ~0.09 (w/o crab waist). This is the most important challenge at SuperKEKB.

The currently achieved beam-beam parameters are $\xi_{v+}pprox 0.04$ and $\xi_{v-}pprox 0.03$ (w/ crab waist), which are much lower than the design

- Specific luminosity
 - Specific luminosity L_{sp} is "the last piece of the puzzle" for discussion of reaching 1E35 luminosity at SuperKEKB.
 - The best scenario is: L_{sp} is a constant. It means there are no beam-size blowup.
 - But in the realistic machine, L_{sp} drops when bunch currents increase due to "collective effects".

Outlook of reaching 1E35 luminosity

- Scenario-1: Constant beam-beam parameter
 - observation based on experiences from colliders.
 - find the necessary beam currents to achieve 1E35 luminosity. The results are summarized in the table.
 - Note that we achieved 3.5E34 luminosity wit $\beta_y^*=1$ mm today (Dec.16, 2021).

β _y (mm)	3.5E+34		6E+34		1E+3	
	HER	LER	HER	LER	HER	
1	0.77	1.01	I.32	I.73	2.20	
0.8	0.61	0.81	1.05	1.38	I.76	
0.6	0.46	0.61	0.79	1.04	I.32	
0.4	0.31	0.4	0.53	0.69	0.88	
0.3	0.23	0.3	0.40	0.52	0.66	

When the machine hits a "beam-beam limit", the beam-beam parameter will saturate and cannot increase furthers. This is an empirical

Let us tentatively accept $\xi_{v+} pprox 0.04$ and $\xi_{v-} pprox 0.03$ which are taken from the current SuperKEKB observation. Then we can simply

Outlook of reaching 1E35 luminosity

- Scenario-2: Given specific luminosity slope
 - From the observed specific luminosity slope (see page.13), we can estimate the total luminosity with given beam currents.
 - We can assume $L_{sp}[10^{31} \text{ cm}^{-2}\text{s}^{-1}/\text{mA}^2] = 8.8 5.8I_{b+}I_{b-}[\text{mA}^2]$. Note that this scaling law is only valid for for $\beta_v^*=1$ mm.
 - Also I assume bunch current ratio of $I_{b-}/I_{b+} = 0.8$ which is currently used at SuperEKKB. The possible bunch current products and number of bunches are listed in the table and resulting luminosity [scaled by 1E35].
 - Squeezing β_v^* is effective to increase L_{sp} , but has many other side effects (not discussed here).

l _{b+} l _{b-} [mA²]	0.5	0.7	1
1270	0.41	0.49	0.53
1370	0.44	0.53	0.57
1565	0.51	0.61	0.65
2000	0.65	0.78	0.83
2500	0.81	0.97	I.04

Outlook of reaching 10E35 luminosity

- Topic not covered in this talk
 - Belle II background
 - Beam lifetime
 - Injection
 - Hardware issues at high-current operation

Discussion on candidates for vertical emittance blowup

LER lacksquare

- Beam-beam driven synchro-betatron resonance (here I mean single-beam effect, not BBHTI or X-Z instability which means coherent blowup of both beams. Potential-well distortion cause ν_s spread and increase width of $2\nu_x - k\nu_s = N$ resonances.)?.
- TMCI: Interplay of beam-beam, impedance and lattice nonlinearity.
- Imperfect CW (imperfect phase-advance between SLY* magnets, non-perfect CW for off-momentum particles)
- Others?

Discussion on candidates for vertical emittance blowup

• HER

- Chromatic coupling ($\nu_x \nu_y + \nu_s = N$ and $\nu_x - \nu_y + 2\nu_s = N$)
- $3\nu_x \nu_y = N$? Can it be excluded according to Ohmi-san's study?
- Insufficient CW (now 40%, limited by SLY* strengths).
- Imperfect CW (imperfect phase-advance between SLY* magnets, non-perfect CW for off-momentum particles)
- Others?

