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We use a Vlasov-Fokker-Planck program and a linearized Vlasov solver to study the microwave

instability threshold of impedance models: (1) a Q ¼ 1 resonator and (2) shielded coherent synchrotron

radiation (CSR), and find the results of the two programs agree well. For shielded CSR we show that only

two dimensionless parameters, the shielding parameter � and the strength parameter Scsr, are needed to

describe the system. We further show that there is a strong instability associated with CSR, and that the

threshold, to good approximation, is given by ðScsrÞth ¼ 0:5þ 0:12�. In particular, this means that

shielding has little effect in stabilizing the beam for � & 2; for larger � it is effective, with threshold

current depending on shielding aperture as h�3=2. We, in addition, find another instability in the vicinity of

� ¼ 0:7 with a lower threshold, ðScsrÞth � 0:2. We find that the threshold to this instability depends

strongly on damping time, ðScsrÞth � ��1=2
p , and that the tune spread at threshold is small—both hallmarks

of a weak instability.

DOI: 10.1103/PhysRevSTAB.13.104402 PACS numbers: 29.27.�a, 41.75.Ht

I. INTRODUCTION

In the design of electron storage rings there is often a
need to evaluate the threshold to the (longitudinal) micro-
wave instability. Several computational tools are available
that allow us, once given the wakefield representing a ring,
to numerically find the threshold current and to simulate
the development of the instability. In this work, we present
results of computer simulations using two codes recently
developed at the SLAC National Accelerator Laboratory: a
Vlasov-Fokker-Planck (VFP) solver based on an algorithm
by Warnock and Ellison [1], and a program that finds the
threshold from the linearized Vlasov equation.

We apply the programs to finding the instability thresh-
old for two models of ring impedance: (1) the Q ¼ 1
resonator and (2) shielded coherent synchrotron radiation
(CSR). The former model has often been used to represent
the impedance of a storage ring (see e.g. [2,3]), while the
latter one can describe the dominant effect in rings with
short bunches. The Q ¼ 1 model has a well-behaved wake
function, whereas the CSR wake is singular and requires
special care for its use in simulation.

The microwave instability is normally a strong instabil-
ity with a fast growth rate, whose threshold can roughly be
described by the Boussard criterion [4]. Fifteen years ago
Oide [5], and then others [6], found that, under certain
conditions, a different type, so-called weak instability, is
also possible. These authors showed that a resistive imped-
ance, one that generates an asymmetric bunch shape and
results in negligible tune spread within the beam, can be
the source of the weak instability. Unlike with the strong
instability, the threshold to the weak instability is sensitive
to the synchrotron radiation damping time, �d; for a pure

resistive impedance the threshold current varies as ��1=2
d .

The current Stanford Linear Collider (SLC) damping ring,

according to analysis, is an example of a ring that exhibits a
weak instability [7].
In this paper, we begin by describing the VFP and the

Vlasov codes that will be used for the simulations. Then,
for the two impedance models, we give and compare
simulation results of the two programs. In the VFP calcu-
lations we also vary the damping parameter, representing
synchrotron radiation damping, to spot check for instabil-
ity type (strong vs weak). Note that numerical studies of
the threshold of a Q ¼ 1 resonator wake have been per-
formed before by Oide and Yokoya [8], and others [9–11],
but the systematic study of the microwave instability
driven by shielded CSR is new.
In this paper we assume the slippage factor � is always

positive. We work in Gaussian units.

II. VLASOV-FOKKER-PLANCK SOLVER

Let us consider the longitudinal motion of a bunched
beam in an electron storage ring. When there is a collective
force induced by the bunch distribution �ð�; qÞ through the
wakefield wðqÞ, the evolution of the beam density distri-
bution (in longitudinal phase space) c ð�; q; pÞ is governed
by the Vlasov-Fokker-Planck equation,

@c

@�
� fH; c g ¼ 2�

@

@p

�
pc þ @c

@p

�
; (1)

where the Poisson bracket is defined by ff; gg ¼ ð@f@q @g
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with �ð�; qÞ ¼ R1
�1 c ð�; q; pÞdp. The independent vari-
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able � ¼ !st, with !s the (nominal) synchrotron fre-
quency and t the time. We use a normalized coordinate
system: q ¼ z=�z0, where z is longitudinal position, with
the positive z axis pointing to the front (the direction of
motion), and �z0 is nominal (zero current) rms bunch
length; p ¼ ��=��0, where � is relative energy deviation
and ��0 is nominal energy spread. We define normalized
current as

I ¼ reNb

2�	s0
��0

; (3)

with re is the classical electron radius, Nb the bunch
population, 	s0 the nominal synchrotron tune, and 
 the
Lorentz energy factor; I has dimensions of length. The
terms on the right of Eq. (1) are the synchrotron radiation
damping and quantum diffusion terms; here � ¼ 1=!s�d,
with �d the longitudinal damping time. Note that the wake
wð�qÞ—with dimension of inverse length—represents the
effect of the entire ring, that argument �q > 0 implies the
test particle is ahead of the driving charge, and that w> 0
indicates energy loss.

To solve Eq. (1), Warnock and Ellison developed a
robust algorithm based on the Perron-Frobenius operator,
with the solution obtained on a regular grid in longitudinal
phase space [1]. We have rewritten their code in C++,
making some modifications to their grid interpolation
scheme, in order to improve detection of the threshold to
instability. In a typical run for this report, the maximum of
jqj and jpj is 8, with 300 mesh points in each direction; the
number of time steps per synchrotron period is 1024, with a
total run lasting Ns ¼ 400 synchrotron periods. The damp-
ing parameter is nominally taken to be small, � ¼ 1:25�
10�3; to check for instability type (strong vs weak) we
perform extra runs with � ¼ 2:5� 10�3.

The program initializes � with the solution to the
Haı̈ssinski equation [12], and the energy distribution with
the nominal Gaussian distribution. To find the threshold we
perform several runs at different currents. If after a short
transient interval (typically of Ns � 100) the rms of the
energy parameter, �p, damps down to almost exactly the

nominal value of 1, we consider the current to be below
threshold, else it is above threshold. We take as threshold
the current at which �p begins to deviate from the nominal

value of 1.

III. LINEARIZED VLASOV (LV) CODE

The approach described in the previous section solves a
full VFP problem and for an unstable equilibrium allows
one to find the threshold to the instability as well as the
nonlinear evolution of beam phase space above threshold.
In cases where we only want to know the threshold current,
a linearized Vlasov (LV) analysis can be used. We have
developed a computer code that numerically solves the LV
problem. The method for finding the threshold to instabil-
ity in this case begins by finding the equilibrium density

distribution, c 0ðq; pÞ, through the solution of the
Haı̈ssinski equation. We linearize the Vlasov equation
about this distribution, taking c ð�; q; pÞ ¼ c 0ðq; pÞ þ
c 1ð�; q; pÞ, and assuming that jc 1j � jc 0j. The linear-
ized Vlasov equation takes the form

@c 1

@�
þ p

@c 1

@q
� K0ðqÞ@c 1

@p
� K1ð�; qÞ @c 0

@p
¼ 0;

K0ðqÞ ¼ q� I
Z 1

�1
dq0dpc 0ðq0; pÞwðq� q0Þ;

K1ð�; qÞ ¼ �I
Z 1

�1
dq0dpc 1ð�; q0; pÞwðq� q0Þ:

(4)

Equation (4) is solved numerically on a mesh in q-p
space, starting from a randomly generated initial distribu-
tion function c 1. Typically the mesh, in each direction,
spans �6 and contains �250–300 points. If the system is
unstable, after a sufficient time the evolution becomes
dominated by the fastest exponentially growing mode.
The growth rate � of the instability is found numerically
by fitting e�� to the time evolution of the system. The code
also computes the phase portrait of the unstable mode.
Typically we take 100 time steps per synchrotron period.
The numerical algorithm is implemented in

MATHEMATICA. The wake function in the Vlasov equation

can be input as an arbitrary MATHEMATICA function, and
includes predefined resistive, inductive, and CSR wakes.
The code was tested on an SLC damping ring wake [7], and
the results compared well with results of other programs
[13].

IV. CALCULATIONS

A. Q ¼ 1 resonator wake

TheQ ¼ 1 resonator wake has often been used to model
the impedance of a ring. The resonator wake is nonzero
only for negative argument (the test particle behind the
driving charge); it is given by

wðqÞ ¼ WHð�qÞe�q=2

�
cos

� ffiffiffi
3

p
�q

2

�
þ 1ffiffiffi

3
p sin

� ffiffiffi
3

p
�q

2

��
;

(5)

with parameters amplitude W (of dimension inverse
length) and � � !r�z0=c, with !r the resonator fre-
quency; here HðxÞ is the unit step function [HðxÞ ¼ 1 for
x > 0, ¼ 0 for x < 0].
We have performed stability calculations for this model,

with � over the range [0.25, 2.0]. Analysis shows that the
dynamics described by the Vlasov equation in this case,
and hence the threshold of the instability, depend only on
two dimensionless parameters, � and Sres ¼ IW [8]. In
Fig. 1 we plot the resulting threshold value of Sres vs �,
where the VFP results are given by blue circles (that are
joined by straight lines), those of LV by red squares (an
error bar indicates uncertainty in result). In general, we see
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good agreement between the results of the two methods,
and also reasonably good agreement when compared to the
earlier results of Oide and Yokoya and others [8–11]. In
Fig. 1, at� ¼ 0:5; 1:0; 1:5, we also plot the VFP results for
the case where the synchrotron radiation damping rate is
increased by a factor of 2 (the olive diamonds). We see that
the threshold is not sensitive to the damping rate, indicating
that the instability of the Q ¼ 1 resonator is of the usual,
strong type. In Fig. 2 we present the Haı̈ssinski solution at
threshold for selected values of �.

B. CSR wake

We consider the CSR wakefield generated by an electron
moving on a circular orbit of radius � in the middle of two
(perfectly conducting) parallel plates that are separated by
a distance 2h. In the case of no shielding (h ! 1) the wake
is nonzero only for positive q (i.e. the test particle ahead of

the driving charge), and given by

w0ðqÞ ¼ � 4�

34=3
HðqÞ �1=3

ðq�z0Þ4=3
: (6)

This wake is singular and requires special care in its use. In
the simulations, we obtain the bunch wake vind by con-
volving with the bunch shape �. For such a singular wake,
however, we integrate by parts and discard the boundary
term; i.e., we let the bunch wake vindðqÞ ¼

R
sðq0Þ�0ðq�

q0Þdq0, where sðqÞ ¼ Rq
�1 wðq0Þdq0 and �0 is the derivative

of the bunch distribution (for a justification, see, e.g.,
Ref. [14]). Because of the �0 in the integral, simulation
with such a wake is more sensitive to numerical errors or
noise, and obtaining reliable results is more of a challenge.
With shielding, the wake wðqÞ ¼ w0ðqÞ þ w1ðqÞ, with

[15]

w1ðqÞ ¼ ��1=3

�
�

�z0

�
4=3

Gð�qÞ; (7)

where the shielding parameter � ¼ �z0�
1=2=h3=2, and 2h

is the separation between the two plates. The term w1ðqÞ is
the contribution to the wake of the image charges gener-
ated by the metal plates; note that it is in general nonzero
for both signs of argument. The function G is given by

Gð�Þ ¼ 8�
X1
k¼1

ð�1Þkþ1

k2
Ykð�Þ½3� Ykð�Þ�
½1þ Ykð�Þ�3

; (8)

where Yk is a root of the equation

Yk � 3�

k3=2
Y1=4
k � 3 ¼ 0: (9)

This equation has two real, positive roots and two complex
roots. We choose the smaller real root when � < 0, the
larger real root when � > 0. Normally, in the simulations,
we sum k up to 25.
It can be seen from Eqs. (6) and (7), that for the CSR

wake the beam dynamics depend only on two dimension-
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FIG. 2. For the Q ¼ 1 resonator, the Haı̈ssinski solution at
threshold, for the cases � ¼ 0:5; 1:0; 1:5; 2:0. Note that the
bunch head is to the right.
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FIG. 1. For the Q ¼ 1 resonator wake, threshold value of Sres
vs parameter �. Symbols give results of the VFP solver (blue
circles), the LV code (red squares), and the VFP solver with
twice the damping parameter: � ¼ 2:5� 10�3 (olive dia-
monds).
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FIG. 3. For the CSR wake, threshold value of Scsr vs shielding
parameter, � ¼ �1=2�z0=h

3=2. Symbols give results of the VFP
solver (blue circles), the LV code (red squares), and the VFP
solver with twice stronger radiation damping (olive diamonds).
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less parameters, the shielding parameter � and the

strength parameter Scsr ¼ I�1=3=�4=3
z0 .

We have performed stability calculations for this model,
for shielding parameter� up to 15. Our results of threshold
strength parameter ðScsrÞth vs � are plotted in Fig. 3.
Symbols give results of the VFP solver (blue circles, con-
nected by straight lines), the LV code (red squares), and the
VFP solver with twice stronger radiation damping (olive
diamonds). In general, we find good agreement between
the VFP and LV results. With no shielding ðScsrÞth ¼ 0:50.
The rest of the results (except for those in a dip region in
the vicinity of � ¼ 0:7) closely follow the straight line
ðScsrÞth ¼ 0:5þ 0:12� (the dashes). In particular, this re-
sult means that shielding has little effect in stabilizing the
beam for� & 2; for larger�, however, it is effective, with

threshold current depending on plate spacing as h�3=2.
In Fig. 3 we also see that the nominal and stronger

damping VFP results agree well (except in the dip region),
indicating that the instability is of the strong type. In Fig. 4
we plot the Haı̈ssinski solution at threshold and the wake
induced voltage vind for selected values of shielding pa-
rameter,�. With no shielding the bunch shape is markedly
triangular; with increasing shielding it moves gradually
toward that of the unperturbed Gaussian. We see that
vind, in amplitude, drops quickly as � increases from
zero; by � * 1:5 this function, in addition, has become
largely inductive.

C. Weak instability

At � ¼ 0:7, in the dip of Fig. 3, the VFP threshold is
ðScsrÞth ¼ 0:17 for nominal damping (� ¼ 1:25� 10�3),
0.25 for twice stronger damping, and 0.12 for twice weaker
damping (result not plotted). These results are consistent

with a threshold damping time dependence of �1=2, indi-
cating that, in the region of the dip, the instability is of the
weak type. Note that with the LV formulation we did not
obtain a reliable result in the dip region.

To focus in on the dip region, we plot in Fig. 5 the value
of �p averaged over the first 400 synchrotron periods,

h�pi, vs Scsr as given by the VFP simulations (at � ¼
0:7), both for nominal damping (the blue circles) and for
twice stronger damping (olive diamonds).We see that there
are actually two thresholds to instability at this value of�:
The first (at Scsr ¼ 0:17 or 0.25) depends strongly on
radiation damping time, and thus concerns a weak type
of instability. A second instability threshold (at Scsr ¼
0:62, which incidentally lies close to the straight line of
Fig. 3) is insensitive to damping time, and concerns a
strong instability. In between the two (for Scsr ¼
0:54–0:62) there is a region of no instability. In more detail,
in Fig. 6 we plot (for � ¼ 0:7 and nominal damping) �p

over the 400 synchrotron periods of simulation, for Scsr ¼
0:23 and 0.54. The former case is clearly above threshold.
For the latter case, however, we see that after an initial
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FIG. 4. Haı̈ssinski solution at threshold and wake induced voltage for shielded CSR, for the cases � ¼ 0:0; 0:7; 1:5; 3:5; 7:5. Note
that the bunch head is to the right.
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FIG. 5. For shielded CSR with � ¼ 0:7, the value of �p,
averaged over 400 synchrotron periods, h�pi, as given by the

VFP simulations. The case of nominal damping � ¼ 1:25�
10�3 is given by blue circles (connected by straight lines), the
case of � ¼ 2:5� 10�3 by olive diamonds.
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(small) transient, �p remains very close to 1; i.e., the beam

appears to be quiet and stable.
From these results we can see that the behavior of the

beam below the strong instability threshold (below Scsr ¼
0:62) depends on the synchrotron radiation damping rate.
Another way for a weak instability to be suppressed is by
introducing incoherent tune spread in the beam (by distort-
ing the potential well) to Landau damp it [5]. We expect
our model can apply to storage rings where shielded CSR is
the dominant impedance. However, in a real machine there
are other sources of impedance, and since it only takes a
small amount of tune spread to suppress a weak instability
[5,7], even in a machine that is dominated by shielded CSR
the weak instability may not be observed.

A weak instability should only appear when there is a
small tune spread. To test this with the CSR wake we
compute the incoherent tune, given by

	sðJÞ ¼ 	s0

�
1ffiffiffi
2

p
�

Z qe

qb

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðqbÞ � uðqÞp

��1
; (10)

with J the action. Here the potential well energy of the
Haı̈ssinski solution uðqÞ ¼ � ln�ðqÞ; qb and qe are posi-
tions on opposite sides of the minimum of u, with uðqbÞ ¼
uðqeÞ; and J ¼ uðqbÞ �minðuÞ. In Fig. 7 we plot 	s at
threshold for cases � ¼ 0, 0.7, and 1.5 (the solid curves).
The rms of the tune—normalized by 	s0 and weighted by
the bunch distribution—�	=	s0 ¼ 0:19; 0:02; 0:06, for the
cases � ¼ 0; 0:7; 1:5, respectively. We see that the case
� ¼ 0:7, the case that experienced a weak instability, also
has the smallest (by far) tune spread of the three. This
result thus, at least qualitatively, supports our expectation
that a weak instability is consistent with a small tune
spread. Further quantification of the connection between
tune spread and instability strength is beyond the scope of
this report.
Finally, how can we understand the phenomenon shown

in Fig. 5 of first a weak instability and then a strong
instability, with a quiet region in between? To try to answer
this question we have also calculated the incoherent tune
for � ¼ 0:7 and Scsr ¼ 0:54 (at the beginning of the quiet
region). The result is shown in Fig. 7, the dashed curve.
Here the rms tune spread �	=	s0 ¼ 0:09, which is quite
large compared to what it was at threshold, at Scsr ¼ 0:17
(compare the red dashed curve with the red solid curve in
Fig. 7). So our explanation of the phenomenon of Fig. 5 is:
at threshold to the weak instability there is little tune
spread; as the current increases, both the instability growth
rate and tune spread increase; eventually, for a current in
the quiet region, we believe that the tune spread overpow-
ers the instability and completely suppresses it.

V. CONCLUSION

For the task of finding the microwave threshold, we have
shown that our Vlasov-Fokker-Planck and linearized
Vlasov solvers agree quite well when applied to impedance
models of (1) a Q ¼ 1 resonator and (2) the more difficult

FIG. 6. For shielded CSR with� ¼ 0:7 and nominal damping, rms of p coordinate, �p, vs synchrotron period number, Ns, for cases
Scsr ¼ 0:23 and 0.54.
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FIG. 7. Shielded CSR: incoherent tune at threshold due to the
distorted potential well, as a function of action, J, for cases� ¼
0, 0.7, and 1.5. The dashed curve is explained in the text below.

THRESHOLD STUDIES OF THE MICROWAVE . . . Phys. Rev. ST Accel. Beams 13, 104402 (2010)

104402-5



to compute CSR wake between two parallel plates. For
shielded CSR we have shown that only two dimensionless
parameters, the shielding parameter � and the strength
parameter Scsr are needed to describe the system. We have,
in addition, shown that there is a strong instability associ-
ated with CSR, one insensitive to the synchrotron radiation
damping time, and that its threshold is, to good approxi-
mation, given by ðScsrÞth ¼ 0:5þ 0:12�. In particular, this
means that shielding has little effect in stabilizing the beam
for � & 2; however, for larger � it is effective, with

threshold current depending on plate spacing as h�3=2.
For shielded CSR we have, in addition, found a weak

instability, located in the vicinity of � ¼ 0:7, where the
threshold drops to ðScsrÞth � 0:2. With VPF simulations we
have demonstrated that the threshold to this instability is
sensitive to synchrotron radiation damping time �p, vary-

ing as ðScsrÞth � ��1=2
p , and that the tune spread at threshold

is small—both hallmarks of a weak instability. In our VFP
simulations at � ¼ 0:7 we have found a weak instability
starting at Scsr � 0:2, a strong instability beginning at
Scsr ¼ 0:6, and a stable region in between the two.
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