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Microwave instability in the low energy ring of KEKB was studied using a broadband impedance

model. The model gave excellent descriptions of longitudinal dynamics for both positive and negative

momentum compactions. Moreover, it predicted that the threshold of microwave instability was a factor of

2 lower than the machine nominal operating bunch current. The prediction was confirmed by a

measurement using the Belle detector. Furthermore, we integrated the longitudinal wakefield into the

beam-beam simulation and applied it to study the combined effects in KEKB. As a result, the beam-beam

simulation became truly three dimensional with emittance growth in all three dimensions simultaneously

as the beam currents increase. In addition, an observed mystery of asymmetry in the horizontal scan could

also be explained by our simulations.
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I. INTRODUCTION

Collisions with a horizontal crossing angle have become
an important feature in the design of modern colliders [1–
4], since the success of KEKB [5] in achieving the record
luminosity of 1:7� 1034 cm�2 s�1 in eþe� storage rings.
After many years of technological development, two
superconducting crab cavities were successfully installed
two years ago into two storage rings in KEKB to double its
luminosity [6]. Although the crab crossing improves the
specific luminosity at low beam currents, the luminosity so
far remains below the record of peak luminosity achieved
without the crab cavities. It is extremely important for us to
understand why. This provided the initial motivation for
our studies.

In this paper, we would like to have an independent
assessment of possible machine performance and to vali-
date or invalidate the previous results of simulation. Given
the duration of the time of our study, we limited ourselves
to studying an idealized collider. As a consequence, our
result should be considered as an upper limit for the
machine performance. Given the nature of this study, we
used different methods where possible. For example, rather
than using the Lorentz boost to treat the crossing angle, we
used a Lie transformation with an intuitively geometrical
interpretation.

There are several motivations to include the nontrivial
longitudinal beam dynamics into the beam-beam simula-
tion. First, it is well known that an electron beam lengthens
as its intensity increases in the presence of a longitudinal
wakefield either due to the potential-well distortion or the
microwave instability. Second, the bunch length affects

several important beam-beam effects including the hour-
glass effect, phase averaging, and the Piwinski angle. At
present, we use a Gaussian with a measured bunch length
to approximate these effects in the simulation. It is clear
that, in general, the longitudinal bunch shape is not a
Gaussian, especially at high intensity, and therefore one
has to include the longitudinal wake in the simulation. A
particular motivation for us is that the asymmetry in the
longitudinal distributions may lead to the other asymme-
tries observed [7] at KEKB.
In Sec. II, we will start with an introduction to the

longitudinal beam dynamics including the wakefield and
continue with a study of the potential-well distortion using
the Haissinski integral equation. To understand the micro-
wave instability, we will briefly introduce the particle-in-
cell (PIC) method for simulation and apply the simulations
to construct an impedance model for the storage rings at
KEKB. The results of simulations will be compared to
various measurements. At the end of Sec. II, we will
introduce a new method to measure the energy spreads
for the colliding beam and compare the measurement to a
prediction of the simulation.
In the second part of this paper, wewill introduce several

new features in our beam-beam simulation including a
different treatment of crossing angle and crab cavity.
Finally, we will show the results of our simulations and
their comparisons to the measurements.

II. LONGITUDINAL BEAM DYNAMICS

Let us consider an electron in a storage ring executing a
small synchrotron oscillation in a stationary rf bucket. For
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simplicity, we introduce a normalized coordinate system,
q ¼ z=�z and p ¼ ��=��, where z is the differential
position relative to the synchronized particle with energy
E0, � ¼ ðE� E0Þ=E0, and �z and �� are the standard
deviations of position and relative energy in the equilib-
rium Gaussian distribution at zero beam current. Here we
use positive q as the forward direction of the beam. It is
well known [8] that the bunch length �z ¼ �c��=!s,
where !s is the angular frequency of the synchrotron
oscillation and � is the momentum compaction factor.
The motion of the electron is that of a simple harmonic
oscillator described by the Hamiltonian, H ¼ 1

2 ðq2 þ p2Þ,
along with independent variable � ¼ !st.

In general, the electron also experiences a collective
force induced by the bunch distribution �ðqÞ. Using the
notion of an integrated wakefieldWðqÞ [9] in a single turn,
the dynamics can be described by a Hamiltonian

H ¼ 1

2
ðq2 þ p2Þ � In

Z q

�1
dq00

Z 1

�1
dq0�ðq0ÞWðq00 � q0Þ;

(1)

where

In ¼ reNb

2��s���

(2)

is the normalized current, which was introduced by Oide
and Yokoya [10]. Nb represents the number of electrons in
the bunch, �s is the synchrotron tune, re is the classic
radius of electron, and � ¼ E0=mc2. Here, the bunch
distribution �ðqÞ has been normalized, namelyR1
�1 �ðqÞdq ¼ 1.
It is worth noting that the dynamics effect of the wake-

field is scaled by the normalized current In. Its dependence
on the parameters in Eq. (2) clearly shows that we prefer a
higher energy, faster synchrotron oscillation, or larger
relative energy spread to reduce the effects of the wake-
field. Although, it does not explicitly depend on the mo-
mentum compaction factor �, for a negative �< 0, one
needs to use a negative normalized current as well, namely
In < 0. Moreover, if WðqÞ is given in terms of V=pC, one
should convert In from meter to pC=V.

Furthermore, it can be shown that the evolution of beam
density distribution �ðq; pÞ is governed by the Vlasov-
Fokker-Planck (VFP) equation

@�

@�
� fH;�gPB ¼ 2	

@

@p

�
p�þ @�

@p

�
; (3)

where 	 ¼ 1=!s
d and 
d is the longitudinal damping
time. We use the subscript PB to indicate the Poisson
bracket. Actually, H is the Hamiltonian defined in Eq. (1)
with the substitution of �ðqÞ ¼ R1

�1 �ðq; pÞdp. As a re-

sult, the VFP equation is a nonlinear integral and partial
differential equation. In general, it can only be solved by
numerical methods [11]. In fact, it is a special form of the
Fokker-Planck equation since the damping and diffusion

terms on the right-hand side involve only the partial de-
rivatives of p. This is a consequence of the fact that the
synchrotron radiation causes loss and quantum diffusion
only in the energy of the radiating electron not in its time of
flight.

A. Haissinski distributions

Historically, it was Haissinski who discovered that the
VFP equation [Eq. (3)] has a static solution in the form of
[12]

�0ðq; pÞ ¼ 1

�
ffiffiffiffiffiffiffi
2�

p expð�H0Þ ¼ �0ðqÞ exp
�
�p2

2

�� ffiffiffiffiffiffiffi
2�

p
:

(4)

Here the subscript ‘‘0’’ indicates that the solution does not
explicitly depend on � or @�=@� ¼ 0. Since �0 is a
function of the Hamiltonian H0 only, it commutes with
H0 in the Poisson bracket; therefore the right-hand side of
the equation vanishes by itself.
On the other hand,�0 is also factorized into a product of

a Gaussian distribution in p and �0ðqÞ, which makes the
right-hand side of the equation vanish separately. Using
Eq. (1) for H0 and eliminating the dependence of p in
Eq. (4), we find the well-known Haissinski integral equa-
tion,

�0ðqÞ ¼ exp

�
�q2

2
þ In

Z q

�1
dq00

Z 1

�1
dq0�0ðq0Þ

�Wðq00 � q0Þ
��

�; (5)

where � is a constant determined by the normalization
condition,

R1
�1 �0ðqÞdq ¼ 1. At zero current, In ¼ 0, so

the solution becomes a Gaussian. In general, this nonlinear
integral equation can be solved numerically using
Newton’s iteration starting from the Gaussian distribution.
Haissinski solutions, due to the wakefield of a broadband
resonance model (Q ¼ 1, xr ¼ !r�z=c ¼ 3, wake ampli-
tude w0 ¼ 5� 105 m�1), are shown in Fig. 1.
In practice, we know that the Haissinski distribution is

not just a possible solution but also the equilibrium distri-
bution of the VFP equation at a sufficiently low current.
Above a threshold of In, the Haissinski distribution is no
longer a stable solution. In the literature, the associated
instability is commonly referred to as the microwave
instability.

B. Simulation with macroparticles

In general, we have to solve the VFP equation numeri-
cally. The equation can be solved [11] using a two-
dimensional grid to represent the distribution in phase
space. Since we need to deal with distributions in six-
dimensional phase space in the beam-beam simulation,
we have to introduce macroparticles to represent the
phase-space distribution,
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�ðq; pÞ ¼ 1

Np

XNp

i¼1

�ðq� qiÞ�ðp� piÞ; (6)

where qi, pi are the canonical coordinates of the particles
so that the evolution of �ðq; pÞ can be carried out by
tracking the particles.

For each step of��, we use three integration steps based
on the technique of splitting operators. First, we apply a
kick generated by the wakefield WðqÞ:

�pi ¼ In
Z 1

�1
dq0�ðq0ÞWðqi � q0Þ��: (7)

To speed up the calculation, we deposit the charge of every
particle onto two adjacent grid points with a linear weight-
ing to accumulate �ðqÞ on a one-dimensional mesh. The
integration is replaced by a summation over the grid and
the kicks on all the grid points are calculated and stored.
For the kick on the particle, we use a linear interpolation of
kicks on the two adjacent grids. In the second step, we
simply have a rotation

qi ¼ cosð��Þqi þ sinð��Þpi;

pi ¼ � sinð��Þqi þ cosð��Þpi;
(8)

which is a solution of the free harmonic oscillator. In the
final step, we apply the radiation damping and quantum
excitation [13]

�pi ¼ �2	pi��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12	��

p
�ðiÞ; (9)

where � is a random number generated by a uniform
distribution between �1 to 1. As an example shown in
Fig. 2, we make a direct comparison between the VFP
solver [11] and our PIC simulation. One can see from the
figure that there is not much difference and both give a

good description of the saw-tooth instability including its
periodicity.

C. Impedance models

In general, one needs to collect all possible impedance
sources, such as bellows, masks, and collimators, and
calculate their impedance, and construct a wakefield
WðqÞ by adding up all contributions in the entire storage
ring. Clearly, this task is very demanding, could take a long
time to complete, and often some impedance is left un-
counted. Nevertheless, a detailed impedance model is
being built but is yet to be completed.
For the purpose of the beam-beam simulations, we are

not so interested in the detail of impedance sources as
much as the effective longitudinal distributions so that
they can be correctly modeled. Therefore, we will take
an alternative and construct a broadband impedance model
from the measured beam profiles at various beam currents.
For simplicity, we choose the Q ¼ 1 broadband resonance
model.
For a broadband impedance model with a parallel LRC

circuit, the nonvanishing wakefield, for q < 0, is given by
[9]

WðqÞ ¼ w0½cosðAqÞ þ sinðAqÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2 � 1

q
� expðxrq=2QÞ;

(10)

where A ¼ xr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=4Q2

p
and xr ¼ !r�z=c. One can

easily convert three dynamical parameters Q, xr, w0 to
their engineering counterparts L, R, C by using

L ¼ w0ð�z=xrcÞ2; (11)
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FIG. 2. (Color) A comparison between VFP and PIC codes using
the impedance of SLC damping ring [21]. The number of
macroparticles is chosen to be the same as the number of grid
points in the VFP solver.
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FIG. 1. (Color) Haissinski distributions at various positron
bunch currents in the low energy ring of KEKB.
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R ¼ Qw0ð�z=xrcÞ; (12)

C ¼ 1=w0: (13)

It has been known from previous work by Ieiri and Koiso
[14] that both rings, like many modern storage rings, were
rather inductive. By fitting to a pure inductance impedance
model, they found that L ¼ 96 nH in the LER and L ¼
104 nH in the HER, respectively. These inductances more
or less fix another parameter in the broadband model.
However, there is still a tradeoff between xr and w0 to be
made according to Eq. (11). The necessary information is
provided by the measurement of the positron beam profiles

using a streak camera. The data is shown in the plot on the
left of Fig. 3. It is clear that the measured shapes are
essentially Gaussians; we have to choose xr � 2 to avoid
a shoulder in the distributions at high currents. In the plot
on the right of Fig. 3, we show the Haissinski distributions
times the beam currents at the corresponding currents.
The final selection of the parameters xr and w0 are

actually made using a compromise between the fitting to
the measured bunch lengths shown in Fig. 4 and the
matching to the beam profiles. We settle on the values of
xr ¼ 3 and w0 ¼ 5� 105 m�1. The results of the fitting to
the measurements are shown in the plot on the left of Fig. 4.
Note that the PIC simulations are necessary to fit the
measured bunch lengths.
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FIG. 3. (Color) Comparisons of bunch profiles of the measurement using a streak camera and products of the Haissinski distributions
and the corresponding beam currents.
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the right for the HER.
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As one can see from the plot for the LER, the simulated
distributions start to deviate from the Haissinski distribu-
tions beyond the value 0.5 mA of the bunch current.
According to the theory of microwave instability, the
threshold is Ith ¼ 0:5 mA. At the operating current of
1.0 mA, we have a 20% increase of energy spread in the
simulation as shown in Fig. 5. However, we are puzzled by
the fact that there is no obvious turning of the bunch length
at the threshold. This puzzle is one of the exceptions and
may be explained by the particular impedance we used in
the simulation. Because of this kind of exception, we
defined the threshold using the change of the energy spread
and tried to validate the threshold by the measurement of
the energy spread. Also, as one can see in Fig. 4, the bunch
lengths obtained by simulations and solving the Haissinski
integral equation start to deviate above the threshold.

One pleasant surprise is that the impedance model also
gives a good agreement to the measurement when �
switches to be negative. Furthermore, the simulation with
negative � shows an unstable and periodically bursting
mode above 0.6 mA, which is consistent with the observa-
tion. The threshold is nearly doubled if we double the value
of negative � ¼ �6:66� 10�4.

For the HER, there are no measurements of bunch
shapes so we chose xr ¼ 2 and w0 ¼ 1:6� 105 m�1.
The result of the fitting is shown in the plot on the right
of Fig. 4. The parameters of the impedance models are
tabulated in Table I. The values of the inductances in the
table are slightly higher than those given by Ieiri and
Koiso. They are consistent with the calculated inductance
[15] in PEP-II if we scale them with the ratio of their
circumferences. However, they are nearly a factor of 4
larger than those given in the KEKB design report [5].
The discrepancy indicates that there are missing sources of

impedance or the coherent synchrotron radiation may play
a role in the longitudinal dynamics when �z ¼ 5 mm.

D. �ð2SÞ and energy spreads

It is well known that there are many narrow �ðnSÞ
resonances in the B �B system. In particular, �ð2SÞ has a
mass ofm2s ¼ 10:023 30� 0:000 31 GeV and a full width
of � ¼ 44� 7 keV, which is much less than the nominal
energy spreads of �þ

E ¼ 2:54 MeV and ��
E ¼ 5:34 MeV

in the positron and electron beams, respectively. This
narrow resonance allows us to extract the change of the
energy spread in the beams.
In a high energy eþe� collider such as KEKB, the total

energy Ec:m: in the center-of-mass and the available energy

is given by Ec:m: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EþE�p

, where Eþ and E� are the
energy of the colliding positron and electron, respectively.
To generate the �ð2SÞ, one needs to set the energies Eþ

0

and E�
0 of the rings such that

m2sc
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Eþ

0 E
�
0

q
; (14)

for the on-momentum particles. Furthermore, for any pair
of off-momentum particles with their energy off by �Eþ
and �E�, they should satisfy the condition

m2sc
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðEþ

0 þ �EþÞðE�
0 þ�E�Þ

q
; (15)

here we have ignored the width of the resonance. Dividing
Eq. (14) from Eq. (15) and then squaring, we obtain

ð�þ þ 1Þð�� þ 1Þ ¼ 1; (16)

where �� ¼ �E�=E�
0 . Since �

� � 1, Eq. (16) essentially
reduces to �þ þ �� ¼ 0. Now, let us consider two collid-
ing beams with Gaussian energy distributions

ð��Þ ¼ e�ð��Þ2=2ð��
�
Þ2=

ffiffiffiffiffiffiffi
2�

p
��

� ; (17)

and calculate a probability of all colliding pairs that can
generate the �ð2SÞ. One easily sees that the probability is
proportional to a double integral

Z 1

�1
d�þ Z 1

�1
d��ð�þÞð��Þ�ð�þ þ ��Þ

¼ 1ffiffiffiffiffiffiffi
2�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��

� Þ2 þ ð�þ
� Þ2

q : (18)

It is clear that smaller energy spreads of the colliding

TABLE I. Parameters of the LRC impedance model for both
rings.

Parameter Description LER HER

L (nH) Inductance 116.7 109.1

R (K�) Resistance 22.9 12.5

C (fF) Capacitor 0.22 0.69
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FIG. 5. (Color) Normalized energy spread as a function of the
bunch current in the LER of KEKB. It shows that the threshold
of microwave instability is about 0.5 mA.
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beams generate more events on the extremely narrow
resonance. This result allows us to measure the energy
spread of the beam from the hadron events that are
uniquely associated with the �ð2SÞ resonance. For-
tunately, KEKB was operated at this resonance for its
physics run and therefore provided us an excellent oppor-
tunity to measure the change of the energy spread as a
function of the beam current in the LER using the Belle
detector.

We started the positron beam current at half of its
nominal operating value for the measurement. The corre-
sponding bunch current was 0.5 mA, which is the predicted
threshold of the microwave instability. Further reduction of
the current was possible but with a significant reduction of
the luminosity. The electron beam current was kept at its
nominal value throughout the experiment. The result of the
measurement and the comparison to the simulation are
shown in Fig. 6. We have excellent agreement. Since the
luminosity changed as we changed the beam current, it is
necessary to take the ratio to the number of the Bhabha
events, which has a very weak dependence on the energies
and is proportional to the luminosity. In the simulation, we
used the impedance models tabulated in Table I. In order to
make the comparison to the measurement, we also used the
energy spreads at zero beam currents listed in Table III.

III. TREATMENT OFA CROSSING ANGLE

A common treatment of crossing angle is to use the
‘‘Lorentz boost’’ introduced by Hirata [16] in the context
of the strong-weak approximation and later by Ohmi [17]
in the strong-strong simulation. Here we will introduce a
different method based on Lie operators.

A. Rotation around y axis

Let us use x, px, y, py, �, and l to denote the canonical

coordinates of a charged particle, where x, y are the trans-
verse displacements, � is the relative momentum deviation,
and l is the time of flight (in unit of length) relative to the
synchronous particle. To handle colliding beams with a
horizontal crossing angle, we need a transformation that
rotates the particles in a single slice (s ¼ 0) to the head-on
frame (s� ¼ 0) as illustrated in Fig. 7. It is clear that
the axis of the rotation is the y axis. It is well known
[18] that this transformation can be generated by the Lie

operator: Ryð�Þ ¼ expð:xps:�Þ, where ps ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �Þ2 � p2

x � p2
y

q
.

The explicit transformation can be obtained by solving
the Hamiltonian’s equations with H ¼ �xps and � as the
independent variable. It can be written as follows:

x� ¼ xps

cos�ðps � px tan�Þ ;
p�
x ¼ px cos�þ ps sin�;

y� ¼ yþ xpy tan�

ðps � px tan�Þ ;
p�
y ¼ py; �� ¼ �;

l� ¼ lþ xð1þ �Þ tan�
ðps � px tan�Þ :

(19)

Since it is the exact solution of the Hamiltonian’s equa-
tion, it is symplectic. In addition to the rotation operator,
we need the horizontal shift operator Sxð�xÞ ¼
expð:px:�xÞ and the drift operator Dzð�sÞ ¼ expð:ps:�sÞ.

φ

x
x*

z*

z

s = 0
s*=0

FIG. 7. A rotation around the y axis presented by a Lie
operator.
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FIG. 6. (Color) Ratio of hadron events to Bhabha was measured
as a function of positron bunch current using the Belle detector.
The data is normalized to the measured value at 0.5 mA. The
result of simulation is plotted according to Eq. (18) and the
energy spreads at zero currents are used for the normalization.
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B. Colliding process

For every collision, the macroparticles are assigned to
the slices according to their longitudinal positions. Since
the beam distributions are dynamically evolved during the
collision, the sequence of the colliding slices is identical to
the time sequence.

For a given pair of colliding slices at z� ¼ �l�, we
need to compute where the collision actually occurs: s� ¼
ðz� � z�Þ=2. Since the reference point for all particles is
the interaction point, we first need to transport the particles
in the slices to the actual collision point by the drift
operator D�

z ðs�Þ ¼ Dzðs�Þ so that the hourglass and
phase-average effects due to a finite bunch length are
properly included in the simulation.

As illustrated in Fig. 8, in order to transport the particles
to the coordinate system where the beam-beam force is
computed, we need to perform three additional transfor-
mations. First, we make a rotation R�

y ð�Þ ¼ Ryð��Þ to
an upright coordinate and then follow up with a trans-
formation to make a horizontal shift to the side of the
opposing beam using the shift operator S�

x ðs�; �Þ ¼
Sxð�2s� sin�Þ. Finally, we make another rotation
R�

y ð�Þ.
Using the particle distributions of the opposing beam at

the collision point, we compute the beam-beam force by
solving the two-dimensional Poisson equation [19]. The
integrated beam-beam kick is applied as

�p�
x ¼ � e

E�
0

Z
slice

E�
x ds; (20)

�p�
y ¼ � e

E�
0

Z
slice

E�
y ds (21)

where Ex and Ey are the transverse electric fields and E0 is

the energy of the synchronous particle. Here we have
assumed that the particles are ultrarelativistic and E0 ¼
cp0.

After the beam-beam (BB) kick, we reversed the opera-
tions to move the particles back to the interaction point.

The whole process can be summarized as

T �ðs�; �Þ 	O�
BBðx�; y�Þ 	T �ðs�; �Þ�1; (22)

where

T �ðs�; �Þ ¼ D�
z ðs�Þ 	R�

y ð�Þ 	 S�
x ðs�; �Þ 	R�

y ð�Þ;
(23)

and O�
BBðx�; y�Þ represents the operator for the beam-

beam kick in Eqs. (20) and (21). Here we use the map
convention. Namely, the operator on the left acts on a
function of the canonical coordinates first and the dot
represents the concatenation of the two maps.
The illustration of two colliding slices is a little over-

simplified because a particle is likely not to be on any of
the slices. For any given particle, we use a linear interpo-
lation of the forces between two adjacent slices. Please also
note that � ¼ �11 mrad to match the KEKB configura-
tion and coordinate conventions if the superscript� is used
to denote positron and electron beams, respectively.

IV. CRAB CAVITY

The main effect of a horizontal crab cavity is to tilt the
beam in the x-z plane. It can be described by a Hamiltonian

Hcrab ¼ qcx sinðkrflÞ; (24)

where qc ¼ Vc=E0, krf ¼ 2�frf=c, and Vc is the voltage of
crab cavity. The kick to a particle is given by

�px ¼ �qc sinðkrflÞ; �� ¼ qckrfx cosðkrflÞ: (25)

Since a single crab cavity is installed in each ring in
KEKB, it mainly generates a wave of ‘‘crab dispersion’’

�x ¼ � qckrf
ffiffiffiffiffiffiffiffiffiffiffiffi
	c	x

p
cosð�c ��x=2Þ

2 sinð�x=2Þ ; (26)

where �c is the difference of betatron phase between the
observation point and the crab cavity and �x=2� is the
horizontal tune. This formula is used to set the crab voltage
in the simulation to compensate the crossing angle at the
interaction point. Both crab cavities, though in different
rings, are located in the Nikko site in our simulations. The
actual circulating direction of beams is also implemented
in the simulation.

TABLE II. Parameters associated with crab cavities in simu-
lation. The rf frequency frf ¼ 509 MHz.

Parameter Description eþ e�

Vc (MV) Crab voltage �0:8755 �1:618
	c (m) Beta x at crab cavity 85 130

�c phase to IP �=2 �=2

IP φ

-2 s+ sinφ

Z+

Z-

X+

X-

FIG. 8. (Color) Two colliding slices at their actual collision
point with an angle 2��. The colors also indicate the coor-
dinates at which the transverse beam-beam forces are calculated.
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The main parameters for crab cavities are tabulated in
Table II. We have used other parameters such as vertical
beta functions at the cavity in our simulation. Their values
are set according to the design. Since they do not affect the
results of the simulation, we do not list them.

V. BEAM-BEAM SIMULATION

To implement the longitudinal wakefield into the beam-
beam simulation, one needs to change the tracking process
in the arc. To keep things simple, we retain everything
about the transverse dimensions and only modify the lon-
gitudinal dynamics according to the algorithms outlined in
the subsection of ‘‘simulation with macroparticles.’’ One
has to keep in mind that 	� ¼ ��=�z, �s is negative, and
l ¼ �z in our canonical coordinates and transform the
coordinates between �, l and q ¼ �l=�z, p ¼ ��=��.
For every turn, we use 22 steps of � to keep a thousand
steps in one period. Finally, since the longitudinal distri-
bution is not a Gaussian anymore, we adjust the rf phase to
align longitudinally the beams according to their centers
calculated with the Haissinski distributions. Also, the lon-
gitudinal positions of the colliding slices are adjusted
according to the average value of the rms for the two
Haissinski distributions at the beginning of the simulation.
Usually, we initialize a Haissinski distribution of the mac-
roparticles to start.

In addition to the impedance models and crab parame-
ters, we have a list of main parameters of KEKB in
Table III used in our simulation. One major difference
from our previous simulation without longitudinal wake
is that the bunch length is dynamically determined in the
equilibrium. That is why we list only the zero-current
bunch length in the table as an input. Since we always
vary the currents with a fixed ratio, the bunch populations
in the table merely define a reference case. For the results
shown later, they are the second highest points in beam

currents. The present operating currents are near to the
third highest points, which are 20% lower.

A. Specific luminosity

For every simulation, we track 14 000 particles for each
beam in 10 000 turns to obtain equilibrium distributions of
two colliding beams in the six-dimensional phase space.
The luminosity is numerically calculated with the over-
lapping integral. Both crab cavities on and off are simu-
lated with various beam currents using the same
parameters and code. The results are shown in Fig. 9 in
specific luminosity compared with the measurements.
Clearly, the results reconfirm the previous prediction that
the luminosity should be doubled with the crab crossing.
But our simulations do not explain why there is a signifi-
cant drop of luminosity at higher beam currents. Our
results imply that there is still room for improvement of
KEKB. Most likely, the extra degradation in the measure-
ments is due to the machine errors such as coupling,
dispersions, and chromaticity which are not included our
simulations. Since there are too many possibilities for the
imperfections, it is beyond our investigation.
By including the longitudinal wake, our simulations

become truly three dimensional. As shown in Fig. 10, the
bunch indeed lengthens as the beam intensity increases. As
a result, the horizontal beam sizes increase accordingly
because of the crabbing at the interaction point. At the
operating current, the horizontal beam sizes of the two
beams are well matched at 130 microns. In the vertical
plane, both beams are equally around 1 micron in size but
increase significantly above the operating currents, gener-
ating long tails as shown in Fig. 11. The long tails could
cause poor beam-beam lifetimes.
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FIG. 9. (Color) Comparison of measured and simulated specific
luminosity as a function of the product of bunch currents with/
without crab cavities.

TABLE III. The main parameters of KEKB. The ring circum-
ferences C ¼ 3016 meter and the crossing angle is 2� 11 mrad.

Parameter Description eþ e�

E (GeV) Beam energy 3.5 8.0

N (1010) Bunch population 8.66 5.05

	�
x (cm) Beta x at the IP 80.0 80.0

	�
y (mm) Beta y at the IP 5.9 5.9

�x (nm-rad) Emittance x 18.0 24.0

�y (nm-rad) Emittance y 0.18 0.24

�x x tune 45.508 45.515

�y y tune 43.5801 41.5801

�s z tune 0.024 0.022

�z (mm) Bunch length (Ib ¼ 0) 4.58 5.22

�� (10�4) Energy spread (Ib ¼ 0) 7.27 6.68


t (turn) x, y damping time 4000 4000


s (turn) z damping time 2000 2000
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Another feature of the longitudinal dynamics is the
potential-well distortion described by the Haissinski dis-
tribution. Indeed, the longitudinal distribution of the elec-

tron beam in its equilibrium as shown in Fig. 11 is
asymmetric and matches its Haissinski distribution. This
is a confirmation that the longitudinal wake has been
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FIG. 10. (Color) Beam sizes in all three dimensions of colliding beams as a function of its current increased with a fixed ratio to the
other.
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FIG. 11. (Color) Equilibrium distributions of colliding bunches at 1:38 mA=0:80 mA. Left columns are positron bunch and right for
electron bunch.
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implemented in the beam-beam program correctly since
we know the threshold of microwave instability in HER is
well above 1.0 mA. On the other hand, the distribution of
the positron beam at 1.38 mA deviates from its initial
Haissinski solution, which is also expected because the
current is well above the threshold as we discussed in the
previous section.

B. Horizontal scan

It was a well-known mystery [20] that there was an
asymmetry when the horizontal beam-beam scan was per-
formed. The asymmetry became somewhat smaller after
the crab cavities were installed in the rings. To understand
this, we made simulations with horizontal offsets of the
electron beam. When the crab cavities were turned off, we
saw an asymmetry in luminosity and the vertical beam size
of the positron beam as shown in Fig. 12, while the vertical
size of the electron barely changed. The measurement was
carried out in the year 2004 when the KEKB was operated
without the crab cavities. Aside from a few differences
of the lattices, the bunch currents in the measurement
were 0:93 mA=0:73 mA, compared to the values
1:38 mA=0:80 mA in the simulation. As a result, some
deviations are expected. Because of the differences in the
bunch currents, we adjusted the scales in the figure for a
better comparison.

When the crab cavities are on, the asymmetry is signifi-
cantly reduced to a negligible level. Clearly, the asymmetry
originated from the difference of longitudinal distributions
between positron and electron beams. As shown in Fig. 11,
the crossing angle collision merely projected it into the
horizontal plane. Since the crab crossing makes an effec-
tive head-on collision, the asymmetry disappears. We be-
lieve that on and off observations of the asymmetry are a
reflection of machine imperfections.

VI. CONCLUSION

Our study of the microwave instability was remarkably
successful. We have shown that the simple broadband
impedance models enabled us to explain many measure-
ments and observations including the bunch shortening and
lengthening, the shapes of beam profiles at various beam
currents, and the thresholds of microwave instability and
the bursting modes. Most important, its prediction of the
growth of the energy spread was confirmed by the mea-
surement using the particle detector Belle. The success can
be attributed to several progresses we have made. First, we
developed a PIC code and demonstrated that it can achieve
the same accuracy provided by the VFP solver. Second, we
found that it is critical to use the results of the simulation to
fit the measured bunch length because the microwave
instability contributes additional lengthening to the
Haissinski solutions. Finally, we learned that shapes of
the distributions were essential to narrow down the type
of impedances.
Using a completely different method of simulation in-

cluding the longitudinal wakefield, we reconfirm the main
results by Ohmi who predicted that crab cavities would
lead to an increase of luminosity by a factor of 2. However,
the luminosity of our simulation should be considered as an
upper bound of the achievable value since the machine
errors are not included in the simulation. The fact that the
actual luminosity is significantly less than the predicted
value shows a lack of understanding of the beam-beam
limit. Our study indicates that the beam-beam limit may
well be determined by the machine imperfections, most
likely from the linear optics and stability of the storage
rings.
Longitudinal impedances are successfully implemented

and integrated into the beam-beam simulation. The simu-
lation becomes truly three dimensional. The potential-well
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distortion and bunch lengthening are included. When the
crossing angle is not compensated, we have shown that the
asymmetry in the horizontal beam-beam scan is a result of
the asymmetry in the longitudinal distributions.

In general, one should not simply fit the measured bunch
profiles to Haissinski distributions because the microwave
instability could enlarge the bunch further at higher cur-
rents as we have seen in the LER. We believe that at the
operating current of 1.0 mA, the positron beam at KEKB is
above the threshold of microwave instability. As a result,
its energy spread increases about 20%, which may enhance
the efforts of synch-betatron resonances.

Although the microwave instability does not cause any
intrinsic emittance growth in the transverse dimensions, it
does lead to larger effective beam sizes when dispersion
and crab dispersion are present. This effect could lead to
larger vertical beam sizes at the interaction point and
therefore degrade the luminosity.
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