
 



Outline

• Introduction 

• Impedance calculation for KEKB LER 

• Codes development 

– CSR calculation 

– VFP solver 

• Simulation results 

• Summary 



Introduction (1)

• Commissioning with crab cavities at KEKB was 
successful. But at high bunch currents, specific 
luminosity is still much lower than prediction.



Introduction (2)

• The study based on a broadband resonator 
impedance model (Y. Cai) showed Ith=0.5mA at 
KEKB-LER.

Y. Cai, et al., ”Potential-Well Distortation, Microwave Insta-

bility, and Their Effects with Colliding Beams at KEKB”,

Phys. Rev. ST Accel. Beams 12, 061002 (2009).



Introduction (3)

• Enlarged energy spread due to MWI 
enhances Synchro-betatron resonances, 
even drive Sawtooth instability at high 
bunch currents 

• To achieve higher luminosity at KEKB, 
MWI should be studied in detail. 
– Well-defined impedance model is needed 

– MWI simulations 

• The design of SuperKEKB is ongoing. For 
nano-beam option, Np=1011 and z=5mm 
may be chosen with luminosity ~8x1035 

cm-2s-1.



Introduction (4)

• GdfidL on a cluster with large memory 
(256 GB) was used to calculate ultra-short 
wake potentials. 

• Several codes were developed at KEK to 
study MWI for KEKB and SuperKEKB. 

– CSR codes were developed by T. Agoh and K. 
Oide independently, their results agree well in 
some senses. 

– PIC tracking and VFP solver were developed.



Impedance calculation for KEKB LER (1)

• Vacuum components: Taking into account as many as 
possible: Crab cavity, TFB, tapers, gate valves… 

• Careful modeling: SR masks, flange gaps, pumping ports…



Impedance calculation for KEKB LER (2)



Impedance calculation for KEKB LER (3)

• Geometrical wake (GW) potential of 0.5mm bunch 
– Main improvements are wakes of SR masks and flange gaps 

– Contributions from crab cavity, FB, tapers and gate valves are 
relatively small



Impedance calculation for SuperKEKB 

• There will be significant improvements on 
vacuum components to reduce beam impedance 



CSR impedance calculation (1)

• A CSR code was developed by K. Oide in 2008 

• Solving Maxwell equations 



CSR impedance calculation (2)

• Paraxial approximation
T. Agoh and K. Yokoya, ”Calculation of Coherent Syn-

chrotron Radiation Using Mesh”, Phys. Rev. ST Accel.

Beams 7, 054403 (2004)



CSR impedance calculation (3)

• The problem is reduced to solving first order 
differential equations



CSR impedance calculation (4)

• Beam pipe is set to be uniform with arbitrary 
shape 



CSR impedance calculation (5)

• CSR impedance of dipoles (KEKB-LER) 

– Interference between dipoles is strong 



CSR impedance calculation (6)

• CSR wake potential of dipoles (0.5 mm 
bunch length)



CSR impedance calculation (7)

• CSR impedance of wigglers (KEKB-LER)



CSR impedance calculation (8)

• CSR wake potential of wigglers (0.5 mm bunch 
length) 

– Drifts between wig. poles relax CSR wake



Total wake potential (1)

• GW, RW and CSR wake potential of 0.5mm bunch 



Total wake potential (2)

• GW, RW and CSR wake potential of 4.58mm 
bunch



Loss factor from calculated wake potential

• Calculated loss factor is much smaller than measurement 
when sigma<5mm, but higher when sigma>7mm 

• Loss factor due to CSR decays quickly when bunch length 
increases



Solving VFP equation (1)

• Main equations
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Solving VFP equation (2)

• Generally, it is inefficient to apply one integration 
to the different parts of the whole system. Thus 
operator splitting is needed.
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Solving VFP equation (3)

• Possible improvement on operator splitting

ψn+1 = eΔsLψn

eΔsL ≈ eΔsL1eΔsL2eΔsL3

eΔsL ≈ [eΔs/2L1eΔsL2eΔs/2L1 ]eΔsL3

eΔsL ≈ [eΔs/kL1eΔs/kL2eΔs/kL3 ]k



Solving VFP equation (4)

• The discrete version of Liouville operator is 
Frobenius-Perron operator 
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Solving VFP equation (5)

• There are many discretization schemes for 
Fokker-Planck operators, such as Euler forward/
backward, Crank-Nicolson, Exponentially fitted 
scheme…
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D.J. Duffy, ”A Critique of the Crank Nicolson Scheme

Strengths and Weaknesses for Financial Instrument Pricing”,

Wilmott magazine, p. 68-76, July 2004.



Solving VFP equation (6)

• Properties of Exponentially Fitted Scheme 

– It is uniformly stable for all values of  
• Integration step ( or time step) 

• Damping coefficient 

• Mesh size 

– No spurious oscillations 

– But computationally expensive

AU = F

U = A−1F



Simulation results (1)

• Main parameters for KEKB-LER 
p

Parameter Value Unit

Circumference 3016.25 m

Beam energy 3.5 GeV

Bunch population 6 1010

Natural bunch legnth 4.58 mm

Synchrotron tune 0.024

Longitudinal damping time 2000 turn

Energy spread 7.27 10−4



Simulation results (1)

• Tests with resonator impedance model shows that 
noises are well removed in VFP solver
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Simulation results (2)

• Pure inductive wake of around 90nH should be 
added to the numerical impedance model to get 
the similar bunch lengthening as measurements 
show!



Simulation results (3)

• But when pure inductive wake is added, the 
Microwave instability threshold gets higher! 

• CSR is important for MWI



Simulation results (4)

• For nano-beam option of SuperKEKB-LER 
with 5 mm bunch length, bunch 
lengthening is not serious. 
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Simulation results (5)

• But for high-current option of SuperKEKB-
LER, MWI is serious and CSR is dominant.



Summary

• KEKB-LER impedance model 

– The numerical impedance model (GW+RW+CSR) 
predicts much weaker bunch lengthening than 
measurements and Y. Cai’s resonator model. The 

discrepancy is around 90nH. 

– CSR may be the last factor to rely on. 

• CSR impedance and MWI 

– Lots of work has been done to calculate CSR 
impedance. 

– Simulations showed that CSR plays essential role in 
the high-current option of SuperKEKB-LER. 

– CSR impedance can be important source of MWI in 
KEKB-LER. 



Future plans

• Codes development on simulations of MWI 
– Benchmarking 

– Determination of Sawtooth instability threshold 

• CSR impedance calculation 
– Optimizing the code 

– Effect of edge field (Suggested by Y. Cai) 

– Shielding of the beam pipe 

– Interference between adjacent bends, especially 
between wigglers 

– Benchmarking 

• Experimental observations of MWI at KEKB-
LER 

• Integrate the numerical impedance model in 
beam-beam simulations 


