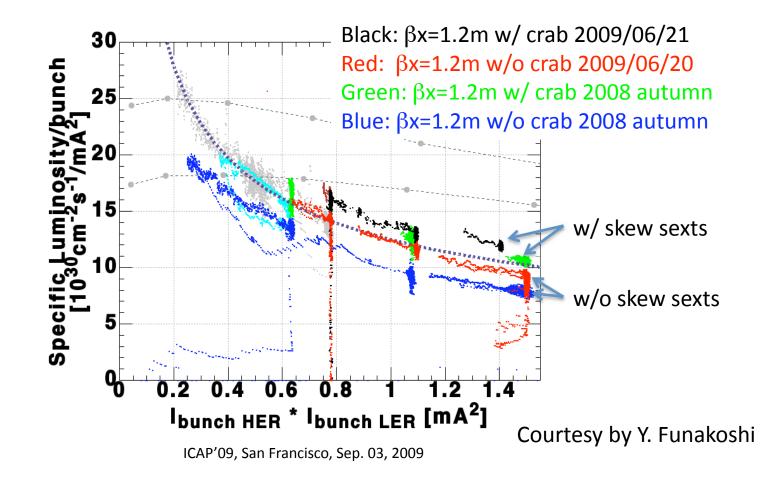
Simulation of Microwave Instability in LER of KEKB and SuperKEKB

Demin Zhou, Kazuhito Ohmi

KEK & SOKENDAI


Contributors: K. Oide, Y. Cai (SLAC), Y. Suetsugu, K. Shibata, M. Tobiyama, Y. Morita, T. Agoh, T. Ieiri ...

Outline

- Introduction
- Impedance calculation for KEKB LER
- Codes development
 - CSR calculation
 - VFP solver
- Simulation results
- Summary


Introduction (1)

 Commissioning with crab cavities at KEKB was successful. But at high bunch currents, specific luminosity is still much lower than prediction.

Introduction (2)

 The study based on a broadband resonator impedance model (Y. Cai) showed I_{th}=0.5mA at KEKB-LER.

Y. Cai, et al., "Potential-Well Distortation, Microwave Instability, and Their Effects with Colliding Beams at KEKB", Phys. Rev. ST Accel. Beams 12, 061002 (2009).

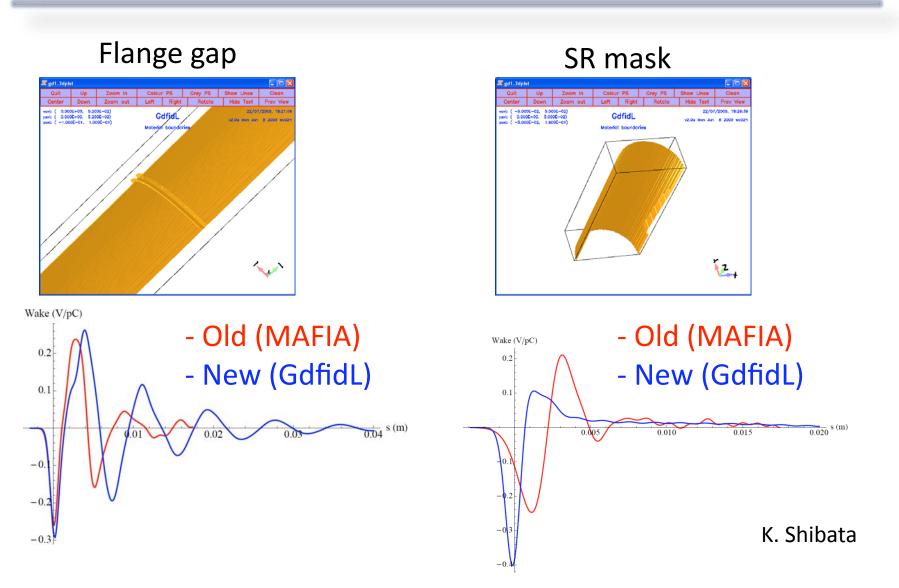
Parameter	Description	LER
L (nH)	Inductance	116.7
R (KΩ)	Resistance	22.9
C (fF)	Capacitor	0.22

Introduction (3)

- Enlarged energy spread due to MWI enhances Synchro-betatron resonances, even drive Sawtooth instability at high bunch currents
- To achieve higher luminosity at KEKB, MWI should be studied in detail.
 - Well-defined impedance model is needed
 - MWI simulations
- The design of SuperKEKB is ongoing. For nano-beam option, $N_p = 10^{11}$ and $\sigma_z = 5$ mm may be chosen with luminosity ~8x10³⁵ cm⁻²s⁻¹.

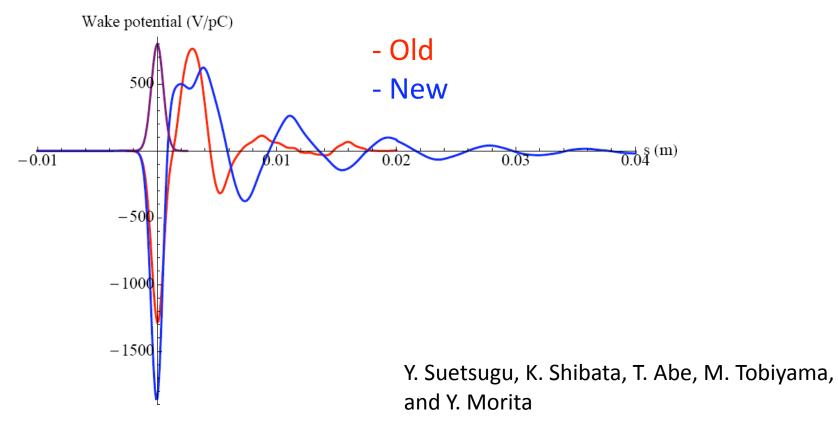
Introduction (4)

- GdfidL on a cluster with large memory (256 GB) was used to calculate ultra-short wake potentials.
- Several codes were developed at KEK to study MWI for KEKB and SuperKEKB.
 - CSR codes were developed by T. Agoh and K.
 Oide independently, their results agree well in some senses.
 - PIC tracking and VFP solver were developed.

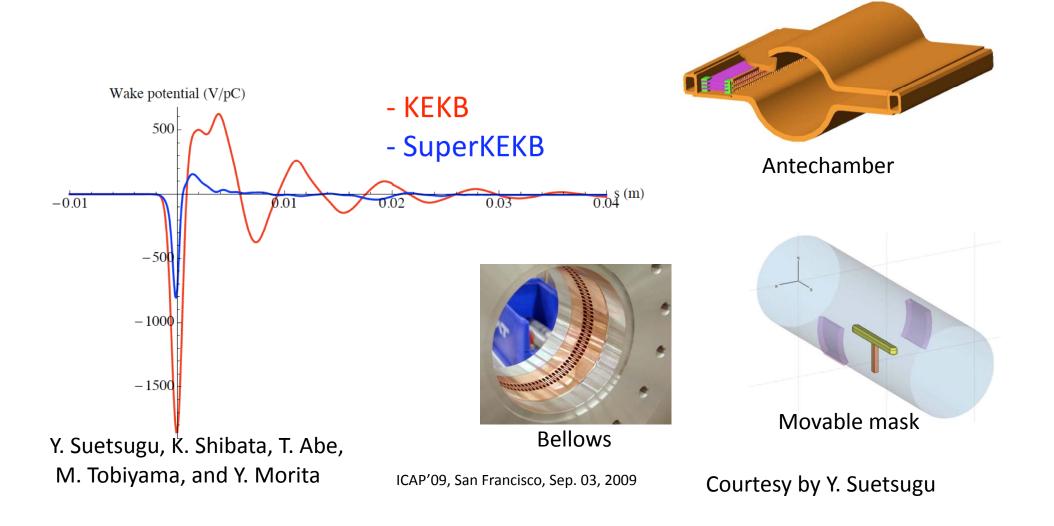

Impedance calculation for KEKB LER (1)

- Vacuum components: Taking into account as many as possible: Crab cavity, TFB, tapers, gate valves...
- Careful modeling: SR masks, flange gaps, pumping ports...

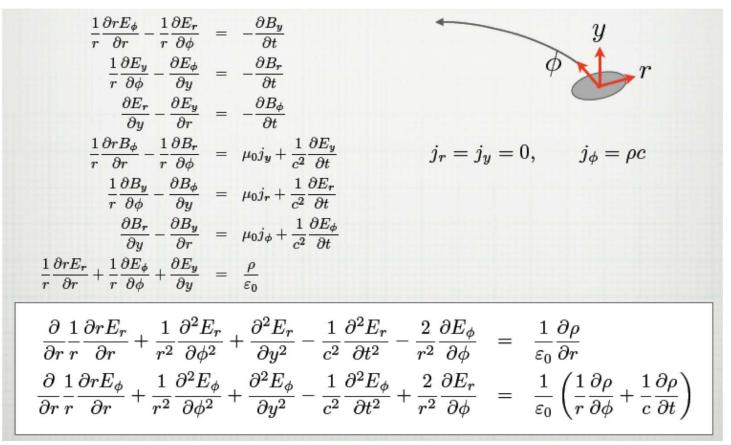
Component	Number	Software
ARES cavity	20	GdfidL
Movable mask	16	GdfidL
SR mask (arc/wiggler)	1000 (905/95)	GdfidL
Bellows	1000	GdfidL
Flange gap	2000	GdfidL
BPM	440	MAFIA
Pumping port	3000	GdfidL
Crab cavity	1	ABCI
FB kicker/BPM	1/40	GdfidL
Tapers ARES/Crab/Abort/Injection IR(IP/QCSL/QCSR)	4/2/2/2 6(2/2/2)	GdfidL
Gate valves f94/f150/94x150	26/13/2	GdfidL


Y. Suetsugu, K. Shibata, T. Abe, M. Tobiyama, Y. Morita

Impedance calculation for KEKB LER (2)


Impedance calculation for KEKB LER (3)

- Geometrical wake (GW) potential of 0.5mm bunch
 - Main improvements are wakes of SR masks and flange gaps
 - Contributions from crab cavity, FB, tapers and gate valves are relatively small


Impedance calculation for SuperKEKB

 There will be significant improvements on vacuum components to reduce beam impedance

CSR impedance calculation (1)

- A CSR code was developed by K. Oide in 2008
- Solving Maxwell equations

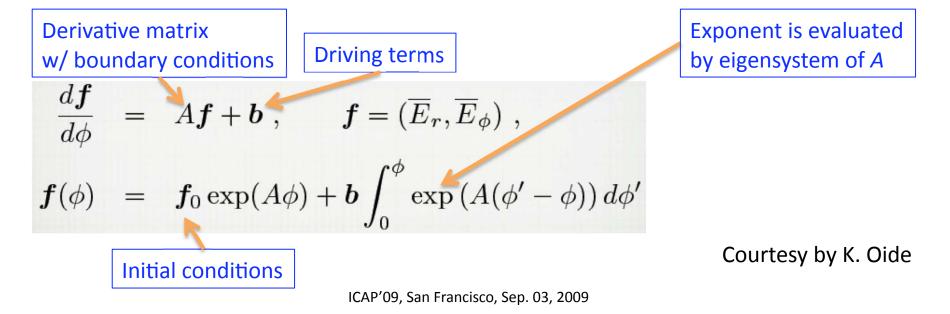
ICAP'09, San Francisco, Sep. 03, 2009

Courtesy by K. Oide

CSR impedance calculation (2)

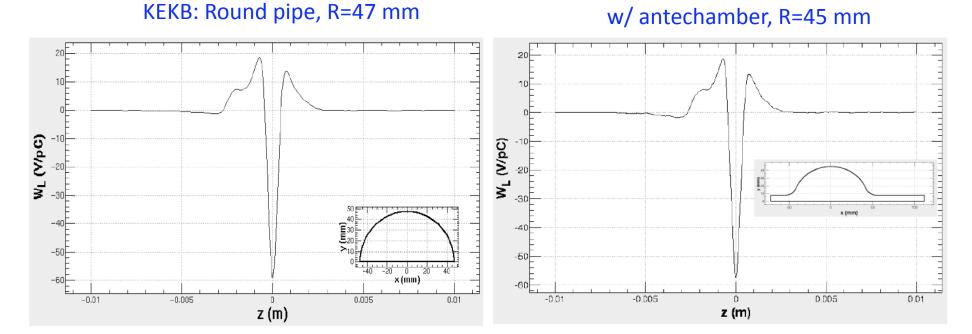
Paraxial approximation

T. Agoh and K. Yokoya, "Calculation of Coherent Synchrotron Radiation Using Mesh", Phys. Rev. ST Accel. Beams 7, 054403 (2004)


$$\begin{aligned} \frac{\partial}{\partial r} \frac{1}{r} \frac{\partial rE_r}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_r}{\partial \phi^2} + \frac{\partial^2 E_r}{\partial y^2} - \frac{1}{c^2} \frac{\partial^2 E_r}{\partial t^2} - \frac{2}{r^2} \frac{\partial E_\phi}{\partial \phi} &= \frac{1}{\varepsilon_0} \frac{\partial \rho}{\partial r} \\ \frac{\partial}{\partial r} \frac{1}{r} \frac{\partial rE_\phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_\phi}{\partial \phi^2} + \frac{\partial^2 E_\phi}{\partial y^2} - \frac{1}{c^2} \frac{\partial^2 E_\phi}{\partial t^2} + \frac{2}{r^2} \frac{\partial E_r}{\partial \phi} &= \frac{1}{\varepsilon_0} \left(\frac{1}{r} \frac{\partial \rho}{\partial \phi} + \frac{1}{c} \frac{\partial \rho}{\partial t} \right) \\ \rho \propto \delta(r - R) \delta(y) \exp\left(ik(R\phi - ct)\right) \\ E_{r,\phi} &= \overline{E}_{r,\phi}(\phi) \exp\left(ik(R\phi - ct)\right) \\ \overline{E}_r &= \overline{E}_r + \overline{E}_{r0} \ , \\ \frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r\overline{E}_{r0}}{\partial r} + \frac{\partial^2 \overline{E}_{r0}}{\partial r} = \frac{1}{\varepsilon_0} \frac{\partial \rho}{\partial r} \end{aligned}$$

Courtesy by K. Oide

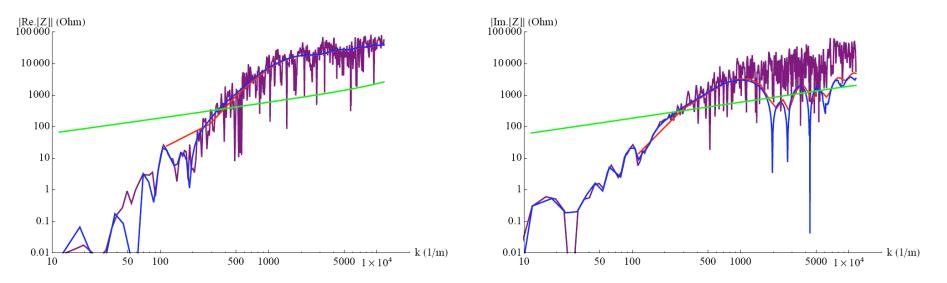
CSR impedance calculation (3)


• The problem is reduced to solving first order differential equations

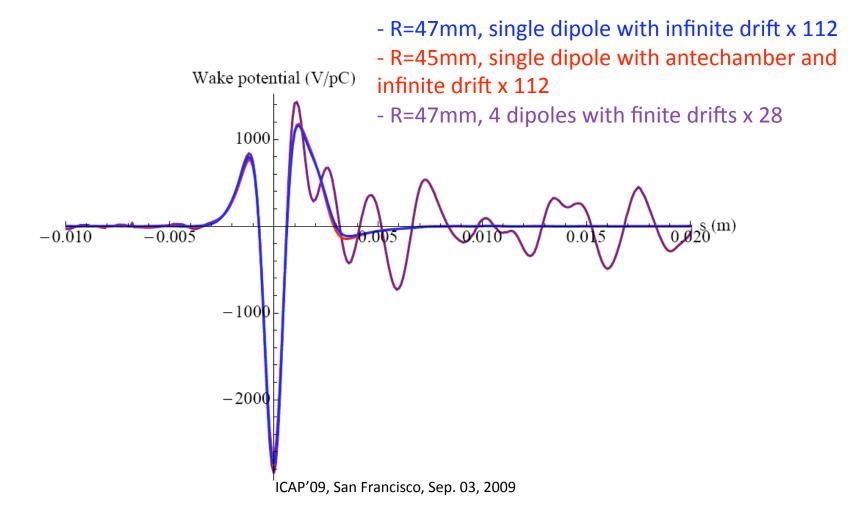
$$\begin{split} \frac{\partial \overline{E}_{r}}{\partial \phi} &= \frac{i}{2(k^{2}R^{2}-1)} \left[kR \left(\left(k^{2}(r^{2}-R^{2})+1 \right) (\overline{E}_{r}+\overline{E}_{r0}) + r \frac{\partial}{\partial r} (\overline{E}_{r}+\overline{E}_{r0}) + r^{2} \left(\frac{\partial^{2}\overline{E}_{r}}{\partial r^{2}} + \frac{\partial^{2}\overline{E}_{r}}{\partial y^{2}} \right) \right) \\ &+ \left(k^{2}(r^{2}+R^{2})-1 \right) \overline{E}_{\phi} + r \frac{\partial \overline{E}_{\phi}}{\partial r} + r^{2} \left(\frac{\partial^{2}\overline{E}_{\phi}}{\partial r^{2}} + \frac{\partial^{2}\overline{E}_{\phi}}{\partial y^{2}} \right) \right] \\ \frac{\partial \overline{E}_{\phi}}{\partial \phi} &= \frac{i}{2(k^{2}R^{2}-1)} \left[kR \left(\left(k^{2}(r^{2}-R^{2})+1 \right) \overline{E}_{\phi} + r \frac{\partial \overline{E}_{\phi}}{\partial r} + r^{2} \left(\frac{\partial^{2}\overline{E}_{\phi}}{\partial r^{2}} + \frac{\partial^{2}\overline{E}_{\phi}}{\partial y^{2}} \right) \right) \\ &+ \left(k^{2}(r^{2}+R^{2})-1 \right) (\overline{E}_{r}+\overline{E}_{r0}) + r \frac{\partial}{\partial r} (\overline{E}_{r}+\overline{E}_{r0}) + r^{2} \left(\frac{\partial^{2}\overline{E}_{r}}{\partial r^{2}} + \frac{\partial^{2}\overline{E}_{r}}{\partial y^{2}} \right) \right] \end{split}$$

CSR impedance calculation (4)

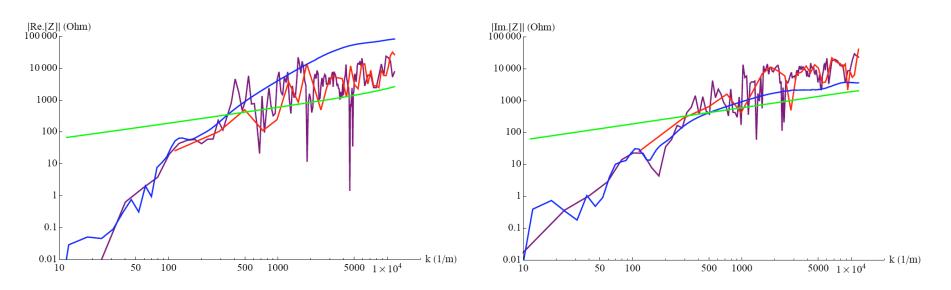
 Beam pipe is set to be uniform with arbitrary shape
 SuperKEKB: Round pipe



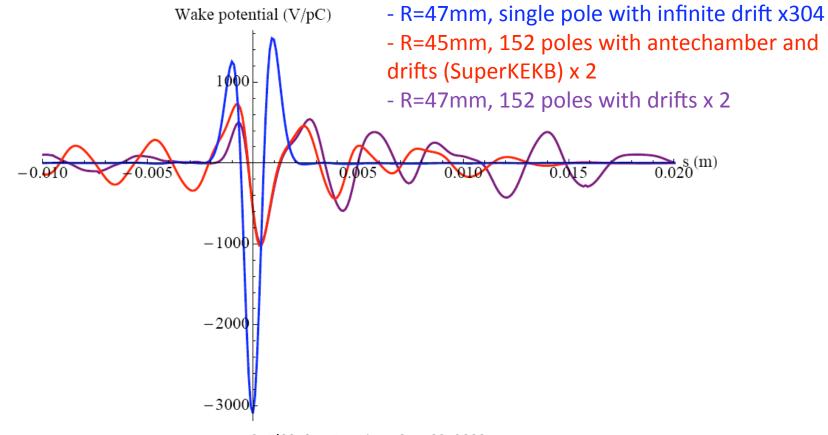
Length=0.89041 m Bending angle=0.0561 rad


CSR impedance calculation (5)

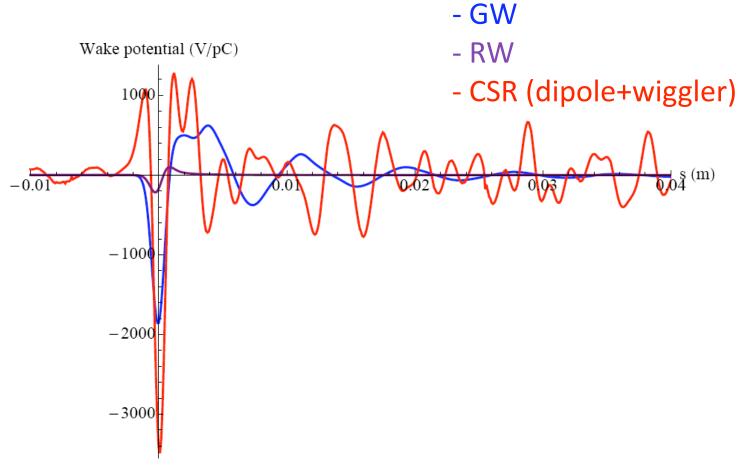
- CSR impedance of dipoles (KEKB-LER)
 - Interference between dipoles is strong
 - R=47mm, single dipole with infinite drift x 112
 - R=45mm, single dipole with antechamber and infinite drift x 112
 - R=47mm, 4 dipoles with finite drifts x 28
 - Total RW


CSR impedance calculation (6)

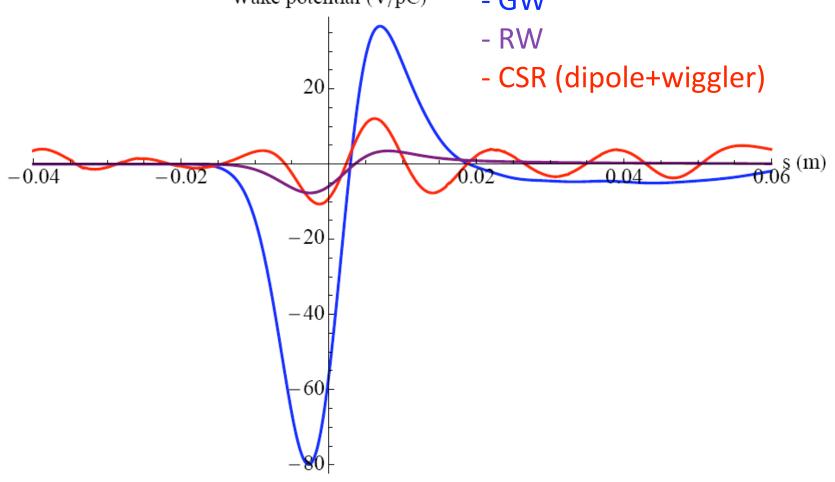
 CSR wake potential of dipoles (0.5 mm bunch length)


CSR impedance calculation (7)

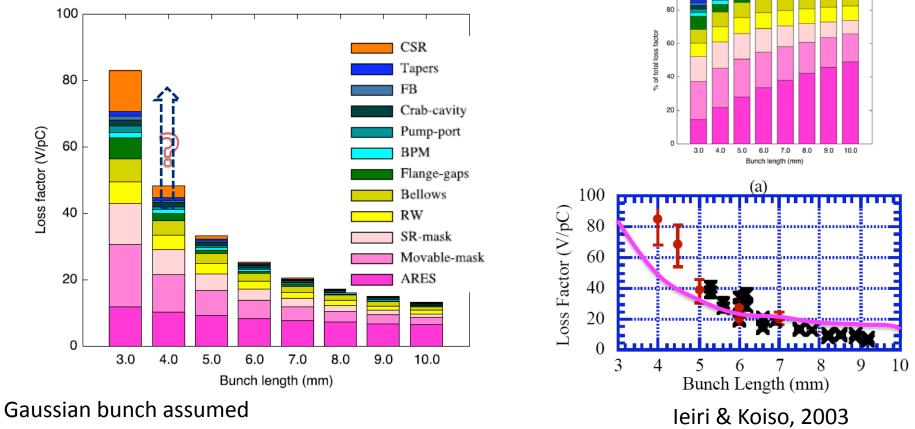
- CSR impedance of wigglers (KEKB-LER)
 - R=47mm, single pole with infinite drift x 304
 - R=45mm, 152 poles with antechamber and drifts (SuperKEKB) x 2
 - R=47mm, 152 poles with drifts x 2
 - Total RW


CSR impedance calculation (8)

- CSR wake potential of wigglers (0.5 mm bunch length)
 - Drifts between wig. poles relax CSR wake


Total wake potential (1)

• GW, RW and CSR wake potential of 0.5mm bunch


Total wake potential (2)

GW, RW and CSR wake potential of 4.58mm
 bunch
 Wake potential (V/pC) - GW

Loss factor from calculated wake potential

- Calculated loss factor is much smaller than measurement when sigma<5mm, but higher when sigma>7mm
- Loss factor due to CSR decays quickly when bunch length increases

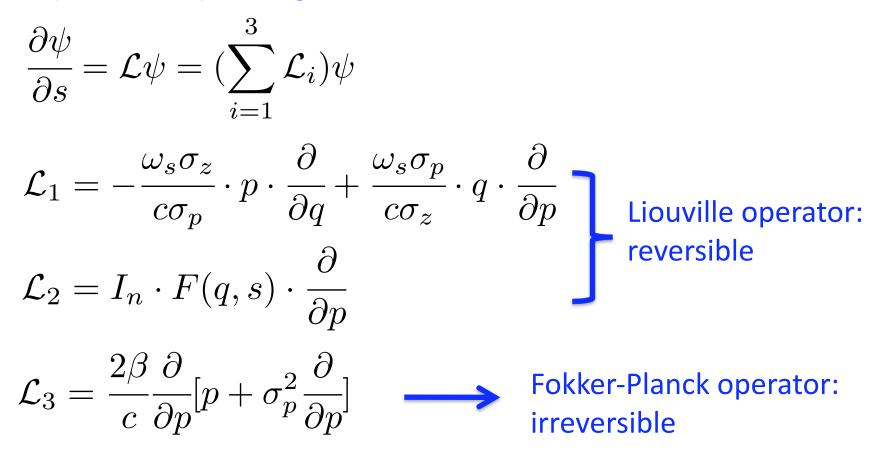
Solving VFP equation (1)

Main equations

$$\frac{\partial \psi}{\partial s} + \frac{\partial q}{\partial s} \cdot \frac{\partial \psi}{\partial q} + \frac{\partial p}{\partial s} \cdot \frac{\partial \psi}{\partial p} = \frac{2\beta}{c} \frac{\partial}{\partial p} [p\psi + \sigma_p^2 \frac{\partial \psi}{\partial p}] \quad q = z$$

$$p = \Delta p/p_0$$

$$\psi = \psi(q, p, s) \quad \iint \psi(q, p, s) dp dq = 1$$


$$I_n = \frac{Ne^2}{E_0 C}$$

$$\frac{\partial q}{\partial s} = \frac{\omega_s \sigma_z}{c\sigma_p} \cdot p \quad \frac{\partial p}{\partial s} = -\frac{\omega_s \sigma_p}{c\sigma_z} \cdot q - I_n \cdot F(q, s)$$

$$F(q,s) = \int_{q'=-\infty}^{\infty} W_0(q'-q)\lambda(q')dq'$$
$$\lambda(q,s) = \int \psi(q,p,s)dp$$

Solving VFP equation (2)

 Generally, it is inefficient to apply one integration to the different parts of the whole system. Thus operator splitting is needed.

Solving VFP equation (3)

Possible improvement on operator splitting

$$\psi^{n+1} = e^{\Delta s \mathcal{L}} \psi^n$$

First-order splitting:

$$e^{\Delta s\mathcal{L}} \approx e^{\Delta s\mathcal{L}_1} e^{\Delta s\mathcal{L}_2} e^{\Delta s\mathcal{L}_3}$$

Second-order symmetric splitting:

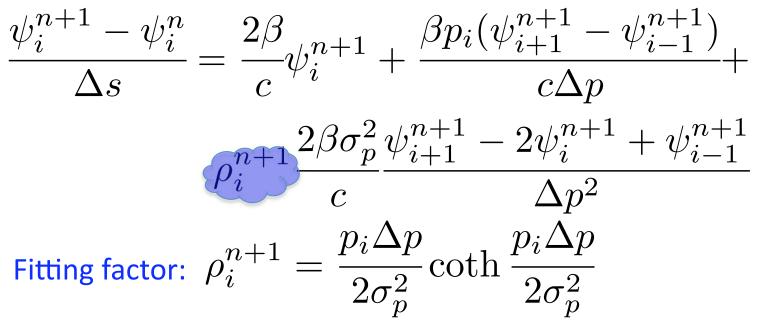
$$e^{\Delta s\mathcal{L}} \approx [e^{\Delta s/2\mathcal{L}_1}e^{\Delta s\mathcal{L}_2}e^{\Delta s/2\mathcal{L}_1}]e^{\Delta s\mathcal{L}_3}$$

Refining integration step:

$$e^{\Delta s\mathcal{L}} \approx [e^{\Delta s/k\mathcal{L}_1}e^{\Delta s/k\mathcal{L}_2}e^{\Delta s/k\mathcal{L}_3}]^k$$

Solving VFP equation (4)

• The discrete version of Liouville operator is Frobenius-Perron operator


$$\psi^*(q,p) = \mathcal{F}_1\psi(q,p,n\Delta s) = \psi(R^{-1}(q,p),n\Delta s)$$

$$\psi^{**}(q,p) = \mathcal{F}_2\psi^*(q,p) = \psi^*(K^{-1}(q,p))$$

$$\begin{bmatrix} q'\\p' \end{bmatrix} = \begin{bmatrix} \cos(\mu_s \Delta s/C) & \beta_z \sin(\mu_s \Delta s/C) \\ -\sin(\mu_s \Delta s/C)/\beta_z & \cos(\mu_s \Delta s/C) \end{bmatrix} \begin{bmatrix} q\\p \end{bmatrix}$$
$$\begin{bmatrix} q'\\p' \end{bmatrix} = \begin{bmatrix} q\\p-I_n F(q,s)\Delta s/C \end{bmatrix}$$

Solving VFP equation (5)

 There are many discretization schemes for Fokker-Planck operators, such as Euler forward/ backward, Crank-Nicolson, Exponentially fitted scheme...

D.J. Duffy, "A Critique of the Crank Nicolson Scheme Strengths and Weaknesses for Financial Instrument Pricing", Wilmott magazine, p. 68-76, July 2004.

Solving VFP equation (6)

- Properties of Exponentially Fitted Scheme
 - It is uniformly stable for all values of
 - Integration step (or time step)
 - Damping coefficient
 - Mesh size
 - No spurious oscillations
 - But computationally expensive

$$AU = F$$

$$U = A^{-1}F$$

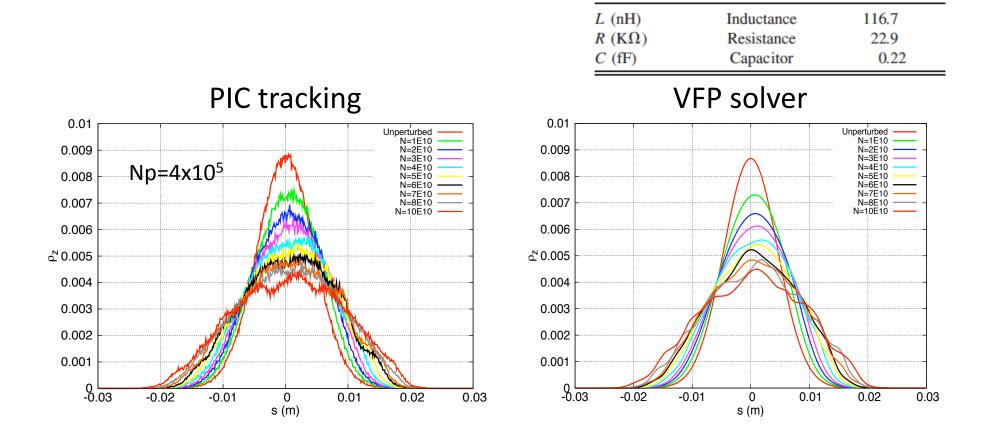
$$A = \begin{pmatrix} \ddots & \ddots & 0 \\ & \ddots & a_{j,j+1} \\ & & a_{j,j-1} & \ddots \\ & & a_{j,j-1} & \ddots \\ & & & \ddots & \ddots \end{pmatrix}$$

Simulation results (1)

• Main parameters for KEKB-LER

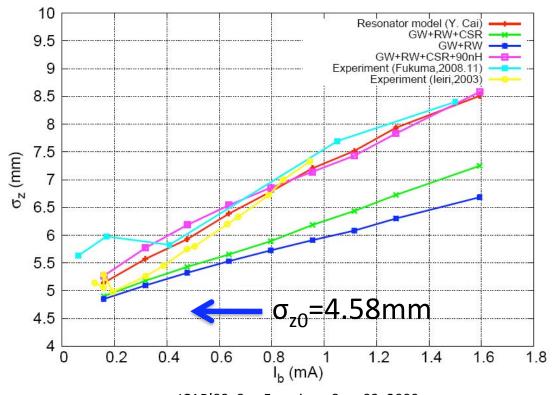
Parameter	Value	Unit
Circumference	3016.25	m
Beam energy	3.5	GeV
Bunch population	6	10^{10}
Natural bunch legnth	4.58	mm
Synchrotron tune	0.024	
Longitudinal damping time	2000	turn
Energy spread	7.27	10^{-4}

For SuperKEKB LER, only bunch length is changed (3 or 5 mm)

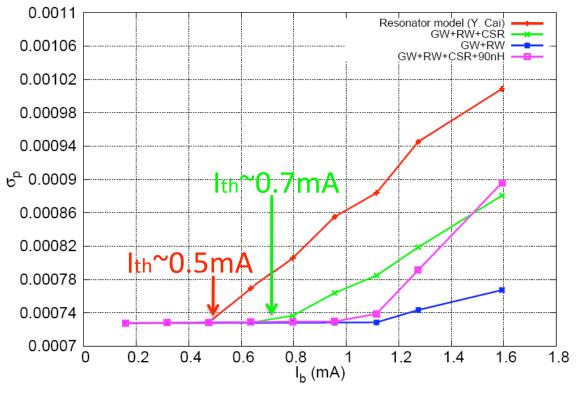

Simulation results (1)

Tests with resonator impedance model shows that
 noises are well removed in VFP solver

Parameter

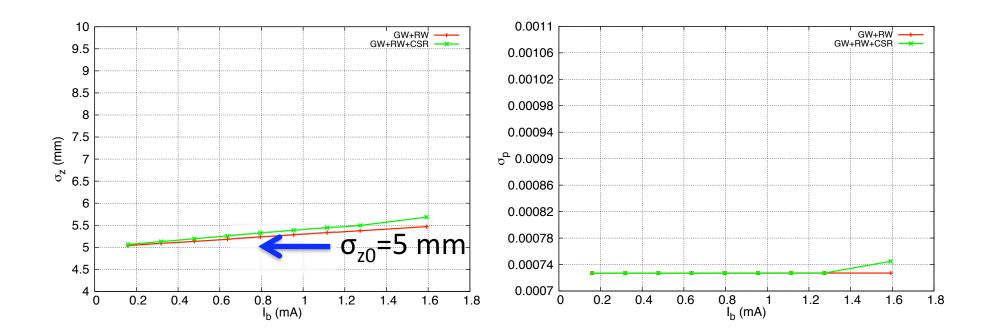

Description

LER

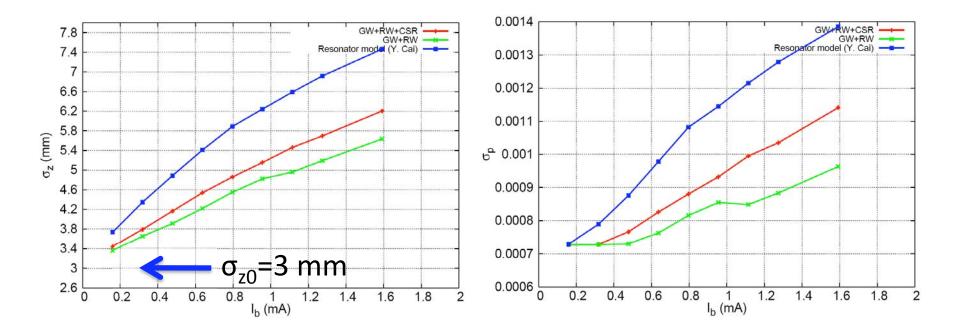

Simulation results (2)

 Pure inductive wake of around 90nH should be added to the numerical impedance model to get the similar bunch lengthening as measurements show!

Simulation results (3)


- But when pure inductive wake is added, the Microwave instability threshold gets higher!
- CSR is important for MWI

ICAP'09, San Francisco, Sep. 03, 2009


Simulation results (4)

 For nano-beam option of SuperKEKB-LER with 5 mm bunch length, bunch lengthening is not serious.

Simulation results (5)

 But for high-current option of SuperKEKB-LER, MWI is serious and CSR is dominant.

K. Oide reported similar results at KEKB ARC 2009

Summary

- KEKB-LER impedance model
 - The numerical impedance model (GW+RW+CSR) predicts much weaker bunch lengthening than measurements and Y. Cai's resonator model. The discrepancy is around 90nH.
 - CSR may be the last factor to rely on.
- CSR impedance and MWI
 - Lots of work has been done to calculate CSR impedance.
 - Simulations showed that CSR plays essential role in the high-current option of SuperKEKB-LER.
 - CSR impedance can be important source of MWI in KEKB-LER.

Future plans

- Codes development on simulations of MWI
 - Benchmarking
 - Determination of Sawtooth instability threshold
- CSR impedance calculation
 - Optimizing the code
 - Effect of edge field (Suggested by Y. Cai)
 - Shielding of the beam pipe
 - Interference between adjacent bends, especially between wigglers
 - Benchmarking
- Experimental observations of MWI at KEKB-LER
- Integrate the numerical impedance model in beam-beam simulations