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Abstract
Microwave instability in the LER of KEKB may be

one obstacle to achieving high luminosity as expected by
beam-beam simulations. To understand the single-bunch
beam dynamics of KEKB LER, we constructed a numerical
impedance models by calculating ultra-short wake poten-
tials of various vacuum components, resistive wall and co-
herent synchrotron radiation. The geometrical wakes were
calculated by 3D electromagnetic code GdfidL. And CSR
impedance were estimated by a dedicated code. Similar
work was also done for LER of SuperKEKB. Using these
impedance models we simulated the microwave instabil-
ity at LER of KEKB and SuperKEKB by solving Vlasov-
Fokker-Planck (VFP) equation in the longitudinal phase
space. The results of impedance calculation and simula-
tions were presented in this paper.

INTRODUCTION
KEKB [1] has been operated for more than 10 years

since its first commissioning from Dec. 1, 1998. In June
2009, the peak luminosity reached 2.11 × 1034cm−2s−1

with stored beam currents of 1.64/1.12A (LER/HER) due
to crab crossing and off-momentum optics corrections.
One of the merits of KEKB [2] which contributed to such
high luminosity is squeezing the vertical beta function at
interaction point (IP) to 0.59 cm. Correspondingly, the nat-
ural bunch length is around 4.6 mm. And at normal operat-
ing bunch current of 1.0 mA at LER, the measured bunch
length is around 7 mm.

Since the beam-beam simulations showed that the crab
crossing should boost the luminosity by a factor of 2 [3],
the present achieved luminosity is still far from expecta-
tions. Besides chromatic coupling induced by lattice non-
linearity [4], microwave instability in the LER may be an-
other potential obstacle for KEKB to achieving higher lu-
minosity by way of increasing beam currents.

Recently, Y. Cai et al. studied the microwave insta-
bility in the LER of KEKB using a broadband resonator
impedance model [5]. In that work, it was demonstrated
that the model described the longitudinal beam dynamics
very well when comparing with experimental observations.
As predicted by Cai’s model, the threshold of microwave
instability at LER of KEKB is 0.5 mA, which is well lower
than the present operating current of 1.0 mA. In this pa-
per, we introduce the studies on microwave instability in
the LER of KEKB and SuperKEKB using numerically cal-
culated impedance models.
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QUASI GREEN’S FUNCTION OF WAKE
POTENTIAL

To study the longitudinal single-bunch instabilities, we
first calculate the ultra-short wake potentials of various vac-
uum components. GdfidL installed on a cluster with 256
GB memory is available at KEK. As trade-off between the
capability of the cluster and the interested frequency range,
0.5 mm bunch length was chosen for most vacuum compo-
nents of KEKB LER.

Fig. 1 shows the total geometrical wake potentials of
LER of KEKB and SuperKEKB. The length of driving
gaussian bunch used in GdfidL is 0.5 mm. Due to sig-
nificant improvements in the vacuum components, the
impedance of SuperKEKB rings will be well suppressed.
Coherent synchrotron radiation (CSR) is another impor-
tant impedance source at LER of KEKB and SuperKEKB.
The bending radius of normal dipoles at KEKB LER and
wigglers are 15.87 m and 16.3 m, respectively. For Su-
perKEKB LER, only half of the wigglers will remain. Such
magnets will produce CSR as bunch length get short to a
few minimeter. Thus a dedicated code was developed by
K. Oide in 2008 to calculate the CSR impedance in LER
of SuperKEKB. In this code, the paraxial approximation
was adopted [6]. Electronic fields due to CSR were calcu-
lated in the frequency domain and then wake potential was
obtained by Fourier transformation. The calculated CSR
wake potentials of 0.5 mm bunch are shown in Fig. 2. In-
terference between adjacent magnets caused modulations
at the tail parts of the CSR wake potentials.
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Figure 1: Calculated geometrical wake potentials of 0.5
mm bunch for LER of KEKB and SuperKEKB.
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Figure 2: Calculated geometrical, resistive wall and CSR
wake potentials of 0.5 mm bunch for LER of KEKB.

SOLVING VFP EQUATION
Basically we follow R.L. Warnock and J.A. Elisson’s

work [7] to solve Vlasov-Fokker-Planck (VFP) equation
numerically. VFP equation including collective wake force
is written as

∂ψ

∂s
+
∂q

∂s
·
∂ψ

∂q
+
∂p

∂s
·
∂ψ

∂p
=

2β
c

∂

∂p
[pψ + σ2

p

∂ψ

∂p
] (1)

ψ = ψ(q, p, s) (2)

where ψ(q, p, s) is the probability density in the longitudi-
nal phase space and is normalized as

∫∫
ψ(q, p, s)dpdq =

1. q = z is the longitudinal coordinate and p = ∆p/p0 is
the relative momentum deviation. The corresponding lon-
gitudinal distribution is calculated from ψ(q, p, s) as

λ(q, s) =
∫
ψ(q, p, s)dp (3)

and will be used in calculating wake forces. The Hamilto-
nian’s equations are

∂q
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ωsσz

cσp
· p (4)
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= −
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cσz
· q − In · F (q, s) (5)

where In =
Ne2

E0C
and wake force is

F (q, s) =
∫ ∞

q′=−∞
W0(q′ − q)λ(q′)dq′ (6)

The unit of W0 is V/pC. N is bunch population. C is cir-
cumference of the ring. E0 is the design energy of the ring.

Operator splitting
The technique of operator splitting [8, 9], or called time

splitting, is widely used in solving partial differential equa-
tions (PDEs). To solve the VFP equation, we rewrite the
VFP Eq. 1 and split the operators into three parts:

∂ψ
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Li)ψ (7)

The solution of Eq. 7 is given by

ψn+1 = e∆sLψn (8)

where
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The L1 and L2 represents Liouville operator, and the L3

is called Fokker-Planck operator. The Liouville operator is
reversible and the Fokker-Planck operator is irreversible. A
simple first-order splitting is formulated as

e∆sL ≈ e∆sL1e∆sL2e∆sL3 (12)

And high-order splitting instead of Eq. 12 cab be applied to
achieve better approximation. For example, second-order
symmetric splitting scheme can be adopted

e∆s(L1+L2) ≈ e∆s2/L1e∆sL2e∆s/2L1 (13)

To get good approximation, usually we split the one-turn
map in the ring to k integration steps. This scheme can be
written as

eCL ≈ [eC/kL1eC/kL2eC/kL3 ]k (14)

Discrete operator
The discrete version of Liouville operator is Frobenius-

Perron operator. Let F1 and F2 are the Frobenius-Perron
operators corresponding to L1 and L2, then the evolution
of probability density corresponding to reversible operators
can be evaluated as

ψ∗(q, p) = F1ψ(q, p, n∆s) = ψ(R−1(q, p), n∆s) (15)

ψ∗∗(q, p) = F2ψ
∗(q, p) = ψ∗(K−1(q, p)) (16)

where the rotation mapping R is[
q′

p′

]
=
[
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] [
q
p

]
(17)

and the kick mapping K is[
q′
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]
=
[

q
p− InF (q, s)∆s/C

]
(18)

For Fokker-Planck operator, we propose exponentially
fitting scheme (EFS) [10] for discretization
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Table 1: Main parameters of KEKB LER

Parameter Value Unit

Circumference 3016.25 m

Beam energy 3.5 GeV

Bunch population 6.6 1010

Natural bunch legnth 4.58 mm

Synchrotron tune 0.024

Longitudinal damping time 2000 turn

Energy spread 7.27 10−4

where

ρn+1
i =

pi∆p
2σ2

p

coth
pi∆p
2σ2

p

(20)

As proved in [10], the EFS has the properties of 1) be-
ing uniformly stable for all values of integration step ∆s,
damping coefficient β and mesh size ∆p; 2) being oscilla-
tion free.

SIMULATION RESULTS
Based on the algorithms described in the previous sec-

tion, a code of VFP solver was developed and used in sim-
ulations of microwave instability at LER of KEK and Su-
perKEKB. The main parameters of KEKB LER are listed
in Table 1. For SuperKEKB LER, we choose bunch length
as 5 mm and other parameters as the same as KEKB LER.

The numerical impedance model predicts much weaker
bunch lengthening against measurements [11, 12] as shown
in Fig. 3. An pure inductance of around 90 nH should be
added in this impedance model to get similar bunch length-
ening. But when the pure inductance was added, the thresh-
old of MWI get much higher as shown in Fig. 4. This
disagreement indicates that there are unknown impedance
sources in the KEKB LER. According to Fig. 4, threshold
of MWI with CSR impedance is around 0.7 mA. Without
CSR, the threshold is around 1.1 mA. It can be concluded
that CSR is important source to drive microwave instability.

For bunch length of 5 mm, no serious bunch lengthening
and energy spread growth are seen with bunch current up to
1.6 mA at SuperKEKB LER, as shown in Fig. 5 and Fig. 6.

SUMMARY AND DISCUSSIONS
Accurate impedance model is essential for studying mi-

crowave instability. When comparing with beam obser-
vations, the numerical impedance model for KEKB LER
gave insufficient bunch lengthening and higher threshold
for MWI. The discrepancy between numerical model and
measurements are around 90nH in case of bunch lengthen-
ing.

CSR in storage rings like KEKB LER was not well un-
derstood yet. Interference between adjacent bending mag-
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Figure 3: Bunch length as function of bunch current at
KEKB LER. The resonator model is given in [5]
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nets seems to be strong. Thus more benchmarking on the
CSR code is needed.
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