

1

EC R&Ds at KEKB and Plans for the future Super KEKB

Y. Suetsugu, KEK on behalf of KEKB Vacuum Group

Contents

1. R&Ds at KEKB

- 2. Recent results
 - 2.1 TiN coating
 - 2.2 Clearing electrode
 - 2.3 Grooved surface

3. EC mitigation plans for Super KEKB_{LER2010, CERN}

2010/1/13

1. EC R&Ds at KEK

- A pressing issue for the upgrade of KEKB (Super KEKB): To establish effective and applicable EC mitigation techniques for the e⁺ ring, especially in a magnetic field.
 - At drift space: "Solenoid field + Beam pipes with antechamber" is a basic and a very effective remedy. ← Experience at KEKB
 - In magnets, the antechamber-scheme together with some coatings will be also effective. But more definitive techniques are required.

1. EC R&Ds at KEK

- Focused R&D items in these years are;
 - Experiments of coatings
 - TiN, NEG materials, Graphite, DLC
 - Experiments of clearing electrodes and grooved surfaces
 - Measurements of electron densities around beam orbit by using electron monitors with RFA.
 - In wiggler magnets, in quadrupole magnets, in solenoids
 - Measurement of SEY
 - At laboratory, in situ., surface analysis
- Using the KEKB positron ring:
 - Energy = 3.5 GeV
 - Beam current ~1600 mA with 1585 bunches (~1 mA [10 nC] /bunch)
 - Typical bunch spacing ~ 6 ns (4 ~ 16 ns in study)
 - Bunch length ~ 6 mm
- Reported here are about the recent progress on coatings, clearing electrodes and grooved surfaces.

2010/1/13

LER2010, CERN

KFk

- Some coatings on inner surface are effective to reduce SEY.
 - TiN, NEG materials, Graphite, DLC
 - Mainly focused on TiN coating here [K. Shibata, AEC'09, CERN, 2009]
 - The technique was well established.
- Test chambers with/without coatings have been installed into the KEKB e⁺ ring, and the electron densities in the chambers were compared each other.
 - Chamber materials: copper (Cu, OFC), aluminum alloy (Al)
 - Measured at the same location, using the same monitor with RFA, and evacuated by the same pumps.

TiN coating system at KEK

KFk

2010/1/13

- Straight section [2006~]
 - Photons= 3x10¹² photons/s/m/mA
 - Drift space

Cu, Cu+TiN, Cu+NEG

• Circular pipe (ϕ 94)

Installed test chamber

KEK

Electron monitor with RFA

These coatings can decrease the electron density compared to the bare copper by a factor of 2~3.

Estimated δ_{max}

- Cu: 1.1 ~ 1.3
- TiN 0.8 ~ 1.0

Y. Suetsugu et al., NIM-PR-A, 556 (2006) 399

2010/1/13

- Bare aluminum is nightmare. These coatings is very effective compared to bare aluminum.
- The effect of TiN coating is independent on the substrate.

2010/1/13

LER2010, CERN

KEK

- Gas desorption (Photon Stimulated Desorption)
 Cu, Cu+TiN, Cu+DLC (KEK*), AI, AI+TiN (KEK**)
- Measured at straight section and arc section

- TiN coating has a large gas desorption rate at initial stage. But the gas desorption decreases by scrubbing, and becomes comparable to copper or aluminum. (~ by a factor of 2)
- Main gas desorbed from DLC was H₂ (by M. Nishiwaki)

2010/1/13

LER2010, CERN

2.1 Summary of coating

- If aluminum alloy is used as a beam pipe, the coating is indispensable.
 - The electron densities are much smaller than that for the case of bare aluminum, but comparable to the case of bare copper.
- If copper is used as a beam pipe, the merit of coating should be considered together with cost, labor, construction period, reliability (QC), and also the possibility of electrodes and grooves (see next section)
- TiN coating seems most suitable for Super KEKB at present, if used.
 - Technique is well established, applicable to both Cu and Al-alloy.
 - Long term experience at PEPII (high current e⁺ machine)
 - Pumping effect is not so important for us.
 - Baking up to 180°C in situ is actually hardly is difficult to activate NEG.
 - Relatively high gas desorption: High current → Quick vacuum scrubbing?

2010/1/13

LER2010, CERN

KFk

- Clearing electrode has been said to be very effective to reduce EC in magnetic field.
 - Impedance and heating of electrode have been serious problems for intense e⁺ beam.
- Very thin electrode structure was developed.
 - 0.2 mm Al₂O₃ insulator and 0.1 mm tungsten (W) electrode formed by a thermal spray method.
 - Good heat transfer and low beam impedance
 - Flat connection between feed-through and electrode

An insertion for test with a thin electrode

KFK

Simulation by L. Wang

Connection to feed through

B

2010/1/13

LER2010, CERN

- A test chamber was installed in a wiggler magnet. [2008]
 - Magnetic field: 0.78 T
 - Effective length: 346 mm
 - Aperture (height): 110 mm
 - Photons: 1x10¹⁴ photons/s/m/mA

Test chamber in a wiggler magnet

KFK

- An electron monitor and an insertion with an electrode are placed at the center of a pole, face to face.
- Electron monitor has an RFA and 7 strips to measure spatial electron distribution (~40 mm width in total).

2010/1/13

LER2010, CERN

- Results: Effect of electrode potential (V_{elec})
 - Drastic decrease in the electron density by applying V_{elec} was observed. (For negative large V_{elec} , electrons flows into the monitor)

KEK

• Similar effect was observed for 2 ~ 16 ns spacings.

- Results: Change with beam dose (integrated beam current)
 - The electron density decreased to less than ~1/100 at V_{elec} > ~+300 V compared to the values at V_{elec} = 0 V (W) and a TiN-coated flat

- surface.
- Two-time experiments. Electron currents for the thermal-sprayed tungsten $(V_{elec} = 0V)$ is similar to the case of flat TiNcoated surface.

KFK

←Rough surface?

- No extra heating of electrode and feedthrough was observed.
- Basic design was established.

- Application to a real beam pipe with antechambers. [2009]
 - Final check of feed through and heating of electrode \rightarrow No problem

KEK

2010/1/13

KFK

- The wake potential is inductive.
- The peak value of the wake potential is higher by a factor of 5, though the loss factor is small.
- Should be carful in using the electrode for long section, in relation to single bunch instability

LER2010, CERN

KEK

2.3 Grooved surface

- Grooves geometrically reduces the effective SEY.
 - The properties were studied in a wiggler magnet using the same experimental setup to that of the previous clearing electrode.
 - B = 0.78 T
- Parameters of grooves
 - Material: Cu, Al-alloy, SS
 - β : 20~30°, R_t:0.1~0.2 mm (rectangular)
 - d: 2.5~5 mm

AI

SS

Inside view

Y. Suetsugu, H. Fukuma, M. Pivi and L. Wang, NIM-PR-A, 604 (2009) 449

2010/1/13

2.3 Grooved surface

- Results: EC growth
 - A significant reduction in the electron density was observed by using grooved surfaces.

KEK

• Similar effect was observed for 2 ~ 16 ns spacings.

2.3 Grooved surface

2010/1/13

- Results: Change with beam dose (integrated beam current)
 - The electron density decreased to $1/6 \sim 1/10$ compared to the case of a flat TiN-coated surface (for $\beta = 20$). That is, less than $\sim 1/10$ compared to flat copper.

LER2010, CERN

 Electron densities for grooves surfaces in these parameters were lower than the case of a flat TiN-coated surface.

- Less density for smaller
 β and R_t.
- TiN coating improves the effect, but the groove structure seems much effective to reduce SEY.

• The loss factor is very small for tilt angle = $0 \sim 1 \text{ mrad.}$ (~10 % of resistive wall)

 It increases up to a comparable level with (still lower than) a clearing electrode for tilt > 2mrad.

2010/1/13

LER2010, CERN

- Wake potential is inductive, and smaller than that for resistive wall.
- The peak height of wake is 1/2~1/3 of that of the resistive wall. The shape does not so change against the tilt angle.

2010/1/13

LER2010, CERN

2.3 Electrode and grooved surface

- Comparison of effects on EC
 - All data so far are plotted in one figure

2010/1/13

LER2010, CERN

KEK

2.2 Electrode and clearing electrode

- Comparison of Impedance issues
 - For electrode;
 - Loss factor is smaller than that of resistive wall [Cu] (~1/2)
 - No change in loss factors against tilt (~5 mrad).
 - Suitable for wiggler section.
 - Wake potential is larger than that of resistive wall by a factor of 5.
 - Be careful in using for long section.
 - Also be careful for periodic impedance due to the strip-line structure.

• For grooved surface;

- The loss factor is very small without tilt.
- For the tilt angle > 2 mrad, however, the loss factor increases up to comparable level to a clearing electrode.
 - Suitable for bending magnets, rather than wiggler magnets
 - The effect of tilt will be small if the groove is formed (dug) along the bent beam pipe.
- Wake potential is smaller than that of resistive wall.

2010/1/13

LER2010, CERN

KFk

- Recent design of Super KEKB
 - Low emittance option for $L = 8E35 \text{ cm}^{-2}\text{s}^{-1}$

4.0 GeV

• $\epsilon_x = 1.7(e^-) \sim 3.2(e^+) \text{ nm}$

Main parameters of e⁺ ring

- Circumference = 3016 m
- Energy =
- Beam current ~ 3.6 A
- Bunch numbers = 2500
- Bunch current = 1.4 mA
- Bunch charge= 14 nC
- Bunch spacing = 4 ns
- Bunch length = 6 mm
- Bending radius = 71 m

Super KEKB site (Tsukuba)

KFk

2010/1/13

LER2010, CERN

• Required electron density to avoid single bunch instability

2010/1/13

LER2010, CERN

KEK

Lengths of main sections of Super KEKB e⁺ ring

Sections	L [m]	L[%]	n _e [e ⁻ /m³]	n _e x L [%]	
Total	3016	100	Ave.5E12	100	
Drift space (arc)	1629 m	54	8E12	78	Main part
Steering mag.	316 m	10	8E12	15	iviain part
Bending mag.	519 m	17	1E12	3.1	
Wiggler mag.	154 m	5	4E12	3.6	
Quadrupole mag.	216 m	7	4E10	0.05	
Sextupole mag.	38 m	1	4E10	0.007	
RF section	124 m	4	1E11	0.07	
IR section	20 m	0.7	5E11	0.06	

- Electron densities were estimated for the present beam pipe.
- A circular Cu pipe (\$\phi\$ 94mm), 4 ns spacing, 1 mA(10nC)/bunch, No solenoid
- → Any cures are required to reduce n_e down to 2%! 2010/1/13 LER2010, CERN

- Comparison of mitigation techniques
 - Based on the experiments so far. Standard = Cu (circular pipe)

Materials, methods	Relative EC density	Relative (k _z) Impedance	Notes
AI	~20	1.4	Coatings are indispensable.
Cu (Circular pipe)	1	1 (Resistive wall)	Low gas desorption
Solenoid [Drift space]	~1/50	1	~50 G, considering gaps (<1/1000 if uniform)
Antechamber	~1/5	1	<1/100 for photoelectrons
Cu+TiN coating (AI+TiN coating)	~6/10	~1 (if thin)	Relatively high gas desorption (TiN)
Groove (β~20°) [in B]	~1/10	~1 (small tilt) ~1.5 (~5mrad)	Large tilt brings large impedance (~ electrode)
Electrode [in B]	~1/200	~1.5 (~5 for wake)	Most effective in EC, but large impedance. Expensive

KEK

Strategy for EC mitigation: Drift space

Sections	n _e [e ⁻ /m³]	n _e xL [%]	
Total	5E12	100	
Drift space	8E12	78	Antechamber (Cu or Al+coating)
Steering mag.	8E12	15	[Straight] + Solenoid
Bending mag.	7E11	3.1	×1/5 ×1/50
Wiggler mag.	2E12	3.6	
Quadrupole mag.	4E10	0.05	Antophamber (Culer Alicopting)
Sextupole mag.	4E10	0.007	[Straight]
			5 1×1/5

Basically

- Beam pipe with antechamber for arc section
- Coating is indispensable for AI chamber
- Solenoid field at drift space and steering mag. space
- Q and Sx: small fraction

2010/1/13

LER2010, CERN

• Strategy for EC mitigation: Wiggler section

Sections	n _e [e ⁻ /m ³]	n _e xL [%]	
Total	5E12	100	
Drift space	8E12	78	
Steering mag.	8E12	15	
Bending mag.	7E11	3.1	
Wiggler mag.	2E12	3.6	Antechamber (Cu) + Electr
Quadrupole mag.	4E10	0.05	[Straight]
Sextupole mag.	4E10	0.007	×1/5 ×1/2

Wiggler magnets

- Beam pipe with antechamber
- Copper is required due to high SR power.
- Electrode is possible (straight beam pipe).
- Length is small (1/20 of total length). →Small contribution to the total impedance

2010/1/13

LER2010, CERN

• Strategy for EC mitigation: Bending magnets

Sections	n _e [e ⁻ /m³]	n _e xL [%]		
Total	5E12	100		
Drift space	8E12	78		
Steering mag.	8E12	15		
Bending mag.	7E11	3.1	Antechamber (C	u or Al+coating)
Wiggler mag.	2E12	3.6	[Bent, $\rho = 70$ m]	+ Groove(?)
Quadrupole mag.	4E10	0.05	×1/5	(×1/10)
Sextupole mag.	4E10	0.007		

Bending magnets

- Beam pipe with antechamber
- Grooved surface should be effective.
 - Need further discussions;

how to make grooved bent chamber? Are any coatings are required?

2010/1/13

LER2010, CERN

Summary

- Major electron cloud will be reduced by antechamber scheme and solenoid field at arc section. But it seems still insufficient.
- Electrodes in wiggler and grooves in bending magnets will decrease EC further and increase the safety margin.

KFK

• The groove in B is still under consideration \rightarrow further R&D.

Backup slides

LER2010, CERN

KEK

Machine Parameters

		LER	HER	
Emittance	ε _x	3.2	1.7	nm
Coupling	$\epsilon_{y}/\epsilon_{x}$	0.40	0.48	%
Beta Function at IP	β_x^* / β_y^*	32 / 0.27	25 / 0.42	mm
Beam Size	σ_x^*/σ_y^*	10.1 / 0.059	6.5 / 0.059	μm
Bunch Length	σ	6	5	mm
Half Crossing Angle	φ	41	mrad	
Beam Energy	E	4	7	GeV
Beam Current	I	3.6	2.6	А
Number of Bunches	n _b	2500		
Energy Loss / turn	U ₀	2.28 2.15		MeV
Total Cavity Voltage	V _c	6.3	6.3	MV
Energy Spread	σ_δ	7.92x10 ⁻⁴ 5.91x10 ⁻⁴		
Synchrotron Tune	ν _s	-0.0185	-0.0114	
Momentum Compaction	α	2.85x10 ⁻⁴	1.90x10 ⁻⁴	
Beam-Beam Parameter	ξγ	0.09 0.09		
Luminosity	L	8x1	cm ⁻² s ⁻¹	

- Arc section [2004~]
 - Photon density= 6x10¹⁴ photons/s/mA/m
 - Drift space

Cu, Cu+TiN(~1μm), Cu+NEG(0.3~1μm)

• Circular pipe (ϕ 94)

Installed test chamber

KEK

- Photoelectron is dominant at arc sections. → Photoelectrons should be suppressed first of all.
- TiN coating has a relatively low photoelectron emission yield.

Y. Suetsugu et al., NIM-PR-A, 554 (2005) 92

2010/1/13

LER2010, CERN

[Ti, Zr, V]

• With a decrease in the thickness of insulator, the loss factor decrease.

• The wake potential also decreases, and is inductive for thin insulator.

2010/1/13

LER2010, CERN

KEK

KFK

2.1 Coating

- Straight section (wiggler)
 - Photons = 8x10¹⁴ photons/s/m/mA
 Drift space (~ arc)
 - Drift space
- Cu, Cu +TiN (0.2 μ m) (beam channel)
 - Antechamber

- TiN was coated only in the beam channel. Photoelectrons are almost the same.
- The electron currents are the same order to those in straight section, although the photon density is large (~x100)
- TiN coating reduces the electron density by a factor of 2 at high current region.

- Electric potential in the test chamber
 - ~6 kV/m at the beam orbit, when 500 V is applied to the electrode.

KFK

2010/1/13

LER2010, CERN

- Calculated for 20 m (for σ_z = 20 mm).
- A periodic impedance is found as in the case of a usual strip line.
- The peak values beccme small with decreasing the thickness of insulator.
- The values are less than 1 Ω . Q ~ 20.
- Experiments here were performed for 0.2 mm insulator and 0.1 mm electrode

KEK

2.2 Clearing electrode

- Results: Heating
 - Temperature behind the electrode was measured.
 - No cooling channels in the back

- Estimated input power was ~40 W/m: reasonable value.
- No heating at feed through.

38

2.3 Grooved surface

- SEY Measurement at Laboratory (B = 0): Effect of structure
 - The TiN coating decrease Max. SEY to 0.9~0.8.(AI, Cu)
 - Groove structures decrease it to ~0.7 even without TiN (AI); the effect of groove structure seems larger even for aluminum (if $\beta = 20^{\circ}$).
 - Grooved surface seems effective even without B field.

