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Abstract
An analytic method originated by Y. H. Chin was ex-

tended to calculate the electromagnetic fields and the lon-
gitudinal impedance due to coherent wiggler radiation
(CWR) in a rectangular chamber. The method used dyadic
Green functions based on eigenfunction expansion method
in electromagnetic theory and was rigorous for the case of
straight chamber. We re-derived the theory and did find
the full expressions for the longitudinal impedance of a
wiggler with finite length. With shielding of chamber, the
CWR impedance indicated resonant properties which were
not seen in the theory for CWR in free space.

INTRODUCTION
In a damping ring where wigglers are used for main pur-

pose of radiation damping, coherent radiation in the wig-
glers can contribute to beam coupling impedance. The
impedance from undulator or wiggler was first studied in
Refs. [1, 2]. Simple formula was found for an infinite long
wiggler in free space [3] and applied to the instability anal-
ysis in a storage ring [4]. In this paper, the method de-
scribed in Ref. [1] is extended to calculate the electromag-
netic fields and the longitudinal impedance due to wiggler
radiation in a rectangular chamber. Due to limit of space,
we only outline the key schemes and present some main re-
sults. The interested readers are referred to Refs. [5, 6] for
detailed derivations.

PROBLEM STATEMENT
Consider a straight rectangular pipe with infinite length

and transverse dimensions of a and b, a wiggler is located
at 0 ≤ z ≤ L. The geometry of the problem is shown
in Fig. 1. The source charge density is defined by Delta

Figure 1: The geometry of the straight rectangular chamber
for a wiggler. The beam moves along the curved line with
arrows.

functions as

�(�r, t) = eδ (x− xt) δ (y − yt) δ (z − zt) . (1)

∗ dmzhou@post.kek.jp

The orbit of the source particle, as shown in Fig. 2, is de-
fined in the x−z plane by simple sine function: xt(t) =
(θ0/kw)sin(ω0t) + x0 for 0 ≤ t ≤ L/v, and xt(t) = x0

for t < 0 or t > L/v; yt(t) = y0 and zt(t) = vt for
−∞ < t < ∞. Here we assume that x0 = a/2, y0 = b/2,
θ0 = K/γ and kw = ω0/c. The quantity K is the wig-
gler strength parameter, γ is the relativistic factor, and kw
is the wavenumber of the wiggler. It is also assumed that
L = 2πNw/kw where Nw is integer, and the charge parti-
cle has constant velocity along z axis.

z

x

Figure 2: The beam orbit inside a wiggler. Note that the
chamber width and orbit amplitude adopt different scale.

The current density is given by �J = ��v. The problem is
to be solved by finding the solutions of two inhomogeneous
Helmholtz equations for vector and scalar potentials in the
frequency domain of

∇2 �A+ k2 �A = −μ0
�J (2)

and
∇2Φ + k2Φ = − ρ

ε0
, (3)

under the Lorentz gauge condition of Φ = c2

iω∇ · �A . Here

we define k ≡ ω/c, and the quantities �J and ρ are respec-
tively the Fourier transforms of �J and �. The electric field
is given by

�E = iω �A−∇Φ = iω �A− c2

iω
∇∇ · �A. (4)

With perfectly conducting walls, the boundary condition is
�n × �E = 0, and �n is the unit vector normal to the sur-
face. Assume that a test particle adopts the same orbit as
the source particle does, but with a time delay τ . The lon-
gitudinal wake can be calculated as the work of the electric
field done on the test particle. In general, τ can be positive
or negative values, indicating the test particle is behind or
ahead of the source particle. The wake function is

W (τ) = − 1

e2

∫
d�r

∫ τ+L
v

τ

dt �J (�r, t− τ) · �E (�r, t) . (5)

The longitudinal impedance is related to the wake function
via Fourier transform as follows

W (τ) =
1

2π

∫ ∞

−∞
Z (ω) e−iωτdω. (6)
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EIGENFUNCTION EXPANSION METHOD
The eigenfunction expansion method (also called Ohm-

Rayleigh method in the literature) can be used to solve ordi-
nary or partial differential equations (PDE) with the bound-
ary conditions are separable to each of the variables. Sup-
pose an inhomogeneous differential equation for the distri-
bution function y(�r) reads Ly(�r) = −f(�r), where L is a
linear differential operator and f(�r) represents the source
distribution. The Green’s function is taken to be the solu-
tion of LG(�r, �r′) = −δ(�r − �r′) , where δ(z) is the Dirac
delta function. If �r = (x, y, z), then δ(�r) = δ(x)δ(y)δ(z).
An important property of Green’s function is the symmetry
of its two variables; that is, G(�r, �r′) = G(�r′, �r).

In a bounded region, the Green’s function can be
uniquely determined by applying boundary conditions
or/and initial conditions. The region of the problem can be
infinite extent or a bounding surface. In terms of Green’s
function, the particular solution of y(�r) takes on the form
y(�r) =

∫
V
G(�r, �r′)f(�r′) dV . It indicates that the Green’s

function enters in an integral solution of the original PDE.
Therefore, the problem of solving the PDE changes to solv-
ing the equation of Green’s function.

To find the solution of Eq. (2), the Green’s functions rel-
evant to the three components of �A satisfy

∇2Gν (�r, �r
′) + k2Gν (�r, �r

′) = −δ (�r − �r′) , (7)

where ν = x, y, or z and δ(�r − �r′) = δ(x − x′)δ(y −
y′)δ(z−z′). For a passive waveguide, the delta function of
z in Eq. (7) can be replaced by its Fourier transform in the
form of

δ(z − z′) =
1

2π

∫ ∞

−∞
e−iβ(z−z′) dβ. (8)

The delta function of transverse coordinates can be ex-
panded into the summation of the eigenmodes of the rect-
angular waveguide as follows

δ(�r⊥ − �r′⊥) =
∞∑

m=0

∞∑
n=0

φν (�r⊥)φν (�r
′
⊥) , (9)

where ν = x, y, or z, and the subscript ⊥ denotes the
transverse coordinates. And the complete set of orthonor-
mal eigenfunction for the x, y and z directions are

φx (�r⊥) =
2√

(1 + δm0) ab
cos (kxx) sin (kyy) , (10)

φy (�r⊥) =
2√

(1 + δn0) ab
sin (kxx) cos (kyy) , (11)

φz (�r⊥) =
2√
ab

sin (kxx) sin (kyy) , (12)

where kx = mπ/a and ky = nπ/b are the transverse wave
numbers. Finally, the solution of Eq. (7) can be obtained
as [7, 1]

Gν =
1

2π

∑
m,n≥0

∫ ∞

−∞
dβ

φν (�r⊥)φν (�r
′
⊥)

β2 − k2z
eiβ(z−z′), (13)

where k2z ≡ k2 − (k2x + k2y). Note that when writing down
the solution of Green’s function, the boundary condition
has been applied. With in hand the explicit form of Gν ,
one is able to find the solution of the vector potential as
Aν (�r, ω) = μ0

∫
d�r′ Gν (�r, �r

′)Jν (�r
′, ω) .

The integral in terms of β in Eq. (13) should be evalu-
ated by means of complex integration in the β-plane. The
term of β2 − k2z in the denominator determine the poles of
the integral. There are ambiguities associated with the sin-
gularity of the Green’s function in the source region. They
are essential and need to be clarified in order to obtain the
full solution of the wiggler radiation problem. These issues
are put forward in detail in Refs. [5, 6].

SELECTED RESULTS

Beam spectrum

We first calculate the beam spectrum of the current den-
sity using the eigenfunction expansion method. With the
help of Jacobi-Anger [7] expansion, the results are

Jx(�r, ω) =
eckw
2v

∑
m,n≥0

∞∑
p=−∞

4pFmnpφ
′
x(x, y)

(1 + δm0)abkx
eiβpz,

(14)

Jz(�r, ω) =
e

2i

∑
m,n≥0

∞∑
p=−∞

4Fmnpφ
′
z(x, y)

ab
eiβpz, (15)

where we define φ′
x(x, y) = cos(kxx)sin(kyy), φ′

z(x, y) =
sin(kxx)sin(kyy), βp = (ω + pω0)/v, and

Fmnp(x0, y0) = sin(kyy0)CxJp(kx
θ0
kw

) (16)

with Cx = eikxx0 − (−1)pe−ikxx0 . The quantity Jp rep-
resents the p-th order Bessel’s function. It is obvious that
Jy = 0 for a planar wiggler.

It is seen that the beam spectrum contains harmonics
at orders up to infinity. Consequently, the fields excited
by a point charge moving along a wiggler can be inter-
preted by the dispersion relation as shown in Fig. 3. In
the figure, the dispersion relation of a rectangular waveg-
uide is given by k2 = k2x + k2y + k2z , and the beam mode
by βp = kz . The beam modes with p �= 0 are shifted
due to the wiggling motion. As sketched in the figure, the
waveguide dispersion relation is extended to include slow
waves, which corresponds to imaginary values of k and kz .
The upshifted beam modes can couple with the propagat-
ing waveguide modes. This mode synchronism leads to
the well-known wiggler radiation. On the other hand, the
downshifted beam modes can couple with the slow waves.
It leads to a kind of radiative fields similar to space-charge
fields. The crossing points between the beam modes and
the fast/slow waves indicate real/imaginary poles in the
complex wavenumber plane. The values of these poles are
then used in evaluating the complex integration of Eq. (13).
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Figure 3: Dispersion relation for the waves excited by a
point charge moving along a perfectly conducting waveg-
uide sandwiched by a wiggler. The solid blue line denotes
the beam mode.

Impedance due to real poles
Since the general formulae for the impedance are very

complicated, we only present simplified results for the first-
order harmonic. The particle velocity is assumed to be
v = c, and this is certainly true at high energy electron
or positron rings. Another assumption is that the deflect-
ing angle is small, i.e. θ0 	 1. Then the longitudinal
impedance due to real poles is given by

Z1
‖(k) = Z0θ

2
0Θ1(k), (17)

where the dimensionless function Θ1(k) is

Θ1(k) =
L2

ab

∞∑
m=0

∞∑
n=0

k

(1 + δm0)kz
cos2(kxx0) sin

2(kyy0)

×
{(

k − kz
k − kz + kw

)2 [
S+(α−) +

i

(k − kz)L

]

+

(
k + kz

k + kz + kw

)2 [
S−(α+)− i

(k + kz)L

]}
(18)

with α− = (k−kz−kw)L/2 and α+ = (k+kz−kw)L/2.
Here two sink-like functions are defined

S+(z) =
sin2(z) + i [sin(z) cos(z)− z]

z2
, (19)

and

S−(z) =
sin2(z)− i [sin(z) cos(z)− z]

z2
. (20)

The profile of the impedance is mainly determined by the
sink-like functions S+(z) and S−(z). That is, the wiggler
radiation impedance is high peaked around resonances at
k− kw − kz = 0 when Nw is large. On the other hand, the
real and imaginary parts of Eq. (17) satisfy the Kramers-
Kronig relation. Therefore, the wake function correspond-
ing to Z1

‖(k) is a causal function.

Impedance due to imaginary poles
The impedance due to the imaginary poles is of impor-

tance in the wiggler radiation theory. The idea of con-
sidering imaginary poles was originated in Ref. [8]. The

impedance due to imaginary poles is related to space-
charge (or beam self-fields) effect. As did in Ref. [8], the
trick is to do replacement k → ik, and then re-derive the
whole theory. It was found that the CWR impedance due
to imaginary poles can be described by

Z̄1
‖(k) = iZ1

‖(ik). (21)

The simplified form of Z̄1
‖(k) turns out to be

Z̄1
‖(k) = Z0θ

2
0Θ̄1(k), (22)

where

Θ̄1(k) =
i

ab

∞∑
m=0

∞∑
n=0

k

(1 + δm0)k̄z
cos2(kxx0) sin

2(kyy0)

×
{
k−

[
L
(
k2− + k2w

)
+ 2k−(e

−k−L − 1)
]

(
k2− + k2w

)2

+
k+

[
L
(
k2+ + k2w

)
+ 2k+(e

−k+L − 1)
]

(
k2+ + k2w

)2
}

(23)

with k̄z =
√
k2 + k2x + k2y , k+ = k̄z+k and k− = k̄z−k.

In the above equation, the second term in the curly braces
is small comparing with the first term. It is obvious that
Z̄1
‖(k) is purely imaginary and has not resonant peaks as

shown in Z1
‖(k). It is more similar to the impedance due to

the imaginary poles in the coherent synchrotron radiation
theory [8]. This kind of impedance share the properties
of space-charge and is intimately related to the overtaking
fields which always cling to the beam itself.

SUMMARY
The theory of eigenfunction expansion method is re-

derived and made suitable for calculating the full expres-
sions for wiggler radiation fields and impedance. As an
improvement of the original theory in Ref. [1], the imag-
inary part of the longitudinal wiggler radiation impedance
has been successfully obtained. When Fourier transform is
used to solve the system in frequency domain, the imagi-
nary frequency has to be introduced as a mathematical tool
to include the anomalous part of the charge self-fields.

The author D.Z. would like to thank A. Chao, K. Oide,
and K. Yokoya for helpful discussions.
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