Numerical Calculations of CSR Impedance

Demin Zhou

Thanks to G. Stupakov and Y. Cai for hosting my visits and cknowledgements: K. Ohmi, K. Oide, X.H. Chin, T. Ageh, J.

Acknowledgements: K. Ohmi, K. Oide, Y.H. Chin, T. Agoh, K. Yokoya, M. Kikuchi, K. Shibata, H. Ikeda

SLAC, Mar. 11, 2011

Outline

Introduction
 Algorithms
 Numerical calculations

 Single dipole
 Fringe field
 Wiggler/Undulator
 Interference
 Resistive wall

 Summary

	KEKB Design	KEKB Achieved : with crab	SuperKEKB Nano-Beam
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0
β _y * (mm)	10/10	5.9/5.9	0.27/0.30
β _x * (mm)	330/330	1200/1200	32/25
ε _x (nm)	18/18	18/24	3.2/5.3
ε _γ /ε _x (%)	1	0.85/0.64	0.27/0.24
σ _y (μm)	1.9	0.94	0.048/0.062
ξ _y	0.052	0.129/0.090	0.09/0.081
σ _z (mm)	4	6 - 7	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6
N _{bunches}	5000	1584	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80

Ref. H. Koiso, 16th KEKB Review, Feb. 07, 2011

1.1		
Circumference (m) 135		
2		
2		
70.8		
Horizontal damping time (ms)		
Injected-beam emittance (µm) 1.7		
42.5 / 2.07		
0.5	1.0	1.4
11.1	7.7	6.5
0.0141		
Energy spread (%) 0.055		
	0.5	1.1 135 2 2 70.8 11 1.7 42.5 / 2.07 0.5 1.0 11.1 7.7 0.055

The e+ DR is to mitigate the problems of lifetime and injection aperture in LER

Ref. H. Koiso and M. Kikuchi 16th KEKB Review, Feb. 07, 2011

Motivations for this work:

 To figure out the unknown source of longitudinal impedance which drive the microwave instability (MWI) in the KEKB LER
 To work out a reliable impedance model for SuperKEKB
 CSR in wigglers, in dipoles with interference, or with resistive wall

Existing publications on numerical calculations of CSR impedance:

1. T. Agoh and K. Yokoya, PRST-AB 7, 054403 (2004) and T. Agoh, PhD. Thesis (2004)

2. K. Oide, Presentations at KEKB ARC 2009 and CSR miniworkshop (Nov. 2010 at KEK); PAC09

3. G. Stupakov and I. Kotelnikov, PRST-AB 12, 104401 (2009)

6

Algorithms - Fundamental equations

Parabolic equation in curvilinear coordinate system:

$$\frac{\partial \vec{E}_{\perp}}{\partial s} = \frac{i}{2k} (\nabla_{\perp}^2 \vec{E}_{\perp} - \mu_0 c^2 \nabla_{\perp} \rho_0 + \frac{2k^2 x}{\rho(s)} \vec{E}_{\perp})$$

Field separation:

$$\vec{E}_{\perp} = \vec{E}_{\perp}^r + \vec{E}_{\perp}^b$$

$$\frac{\partial \vec{E}_{\perp}^r}{\partial s} = \frac{i}{2k} [\nabla_{\perp}^2 \vec{E}_{\perp}^r + \frac{2k^2 x}{\rho} (\vec{E}_{\perp}^r + \vec{E}_{\perp}^b)]$$

Beam field in free space (independent of s):

$$\frac{\partial^2 E_x^b}{\partial x^2} + \frac{\partial^2 E_x^b}{\partial y^2} = \mu_0 c^2 \frac{\partial \rho_0}{\partial x}$$
$$\frac{\partial^2 E_y^b}{\partial x^2} + \frac{\partial^2 E_y^b}{\partial y^2} = \mu_0 c^2 \frac{\partial \rho_0}{\partial y}$$

Ref. T. Agoh and K. Yokoya, PRST-AB 7, 054403 (2004)

β=1

Algorithms - Beam field

Beam field in free space with finite beam sizes (Bassetti-Erskine formula) Typical beam size: $\sigma_x=0.5$ mm, $\sigma_y=0.01$ mm (bi-gaussian)

$$\begin{split} E_x^b(x,y) &= \frac{\lambda(k)}{2\epsilon_0\sqrt{2\pi(\sigma_x^2 - \sigma_y^2)}} \mathrm{Im}[F(x,y)] \\ E_y^b(x,y) &= \frac{\lambda(k)}{2\epsilon_0\sqrt{2\pi(\sigma_x^2 - \sigma_y^2)}} \mathrm{Re}[F(x,y)] \\ F(x,y) &= w(\frac{x+iy}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}}) - e^{-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}} w(\frac{\frac{\sigma_y}{\sigma_x}x + i\frac{\sigma_x}{\sigma_y}y}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}}) \\ w(z) &= e^{-z^2}(1 + \frac{2i}{\sqrt{\pi}}\int_0^z e^{t^2}dt) \end{split}$$

8

Saturday, March 12, 2011

Algorithms - Initial conditions

Parabolic equation:

$$\frac{\partial \vec{E}_{\perp}^r}{\partial s} = \frac{i}{2k} [\nabla_{\perp}^2 \vec{E}_{\perp}^r + \frac{2k^2 x}{\rho} (\vec{E}_{\perp}^r + \vec{E}_{\perp}^b)]$$

Poisson's equation:

$$\nabla^2 \phi = -\frac{\rho_0}{\epsilon_0} \qquad \qquad \phi^r + \phi^b$$

Laplace's equation:

$$\nabla^2 \phi^r = 0 \qquad \qquad \phi^r |_S = -\phi^b |_S$$

9

$$\phi^b(x,y) = \frac{Q}{2\pi\epsilon_0} \int_r^1 \frac{e^{-(1-t^2)(A+\frac{B}{t^2})} - 1}{1-t^2} dt$$

$$A(x) = \frac{x^2}{2(\sigma_x^2 - \sigma_y^2)}$$
$$B(y) = \frac{y^2}{2(\sigma_x^2 - \sigma_y^2)}$$

$$r = \frac{\sigma_y}{\sigma_x}$$

Ref. R. Alves-Pires, CERN PS/87-66

Algorithms - Beam pipe

Model of the beam pipe:

 The bending radius can be arbitrarily s-dependent, which allows for treating fringe field, wigglers or a series of dipole magnets
 Uniform rectangular cross section along the beam orbit (simply the calculation)

Field integration along s:

- 1. Toroidal part: Numerical integration
- 2. Straight pipe: mode expansion

Ref. T. Agoh, Ph.D. Thesis (2004) G. Stupakov and I. Kotelnikov, PRST-AB 12, 104401 (2009)

Algorithms - Mesh

Finite-difference discretization:1. Staggered grid: Central difference2. Ghost point: Boundary conditions

II

Ref. T. Agoh, Ph.D. Thesis (2004)

Leontovich boundary condition (Resistive wall):

$$\vec{E}_{||} = -\sqrt{\frac{\mu_c \omega}{2\sigma_c}} (1-i)(\vec{n} \times \vec{H}_{||})$$
Gauss's law:

$$\vec{E}_x = \frac{\partial E_y}{\partial y} + \frac{1}{\rho g} E_x + \frac{1}{g} (ikE_s + \frac{\partial E_s}{\partial s}) = \frac{\rho_0}{\epsilon_0}$$
Faraday's law:

$$\vec{n} \times \vec{E} = 0$$

Saturday, March 12, 2011

Single dipole - ANKA

13

Collaborate with K. Marit

Re.Z_L(k)

Fluctuation in impedance is due to reflections of side walls (Oide)

ANKA w/h=70/32mm L_{bend}=2.183m p=5.559m L_{exit}=Infinity (pipe after exit) X_{offset}=0mm

Single dipole - Benchmark example

500

0

-500

0

Re.Z_L(k)

Im.Z_L(k)

Oide's code Stupakov's code Zhou's code(TA)

Zhou's code(KO)

Parallel plates

2000

w/h=60/40mm L_{bend}=4m p=16.3m L_{exit}=Infinity (pipe after exit) X_{offset}=0mm

k (*m*⁻¹)

4000

6000

8000

TA: Agoh's algorithm

KO: Oide's algorithm

10000

Single dipole - Benchmark example

16

Re.Z_L(k)

TA: Agoh's algorithm KO: Oide's algorithm

w/h=60/40mm L_{bend}=4m ρ=16.3m L_{exit}=Infinity (pipe after exit) X_{offset}=-20mm (To inner wall)

Fringe field - KEKB LER

Re.Z_L(k)

Im.Z_L(k)

Saturday, March 12, 2011

Wiggler - Benchmark example

18

Re.Z_L(k)

 $W_{L}(s) \text{ with } o_{z}=0.3 \text{ mm}$

 $Im.Z_{L}(k)$

WSR: Wu-Stupakov-Raubenheimer theory J. Wu et al., PRST-AB 6, 040701 (2003)

 $\begin{array}{l} N_{period}=10 \\ w/h=94/94mm \\ \lambda_w=1.088m \\ \rho=15.483m \\ L_{exit}=Infinity (pipe after exit) \\ Xoffset=0mm \end{array}$

Saturday, March 12, 2011

Wiggler - Benchmark example

Re.Z_L(k)

Zhou's code

VSR theory

GS theory

w/h=100/20mm

 $N_{period}=10$ $\lambda_{w}=1.088m$ $\rho=154.83m$ $L_{exit}=Infinity (pipe after exit)$ Xoffset=0mm

7

6

5

4

2

0

0

Re[Z] (Ohm)

Wiggler - phase matching condition

$$k - pk_w - k_z = 0$$

$$k_z = \sqrt{k^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

- p: harmornic number
- k_w : wiggler wavenumber
- k_z : longitudinal wavenumber of the eigenmodes in a rectangular waveguide

Wiggler - Hard-edge approximation

Re.Z_L(k)

Field distribution

H.E. model looks to be good? $N_{period}=1/10$ w/h=94/94mm $\lambda_w=1.088m$ $\rho=15.483m$ $L_{exit}=Infinity$ (pipe after exit) Xoffset=0mm (To inner wall) Field distribution: Cosine/H.E.

Im.Z_L(k)

Wigglers - SuperKEKB LER

Z_L(k) ,1 Super-period

Field distribution

N_{super-period}=1/15w/h=90/90mm L_w=140m $\rho \approx 15m$ L_{exit}=Infinity (pipe after exit) Xoffset=0mm Field distribution: Hard-edge

Interference - KEKB LER

Re.Z_L(k)

Single dipole 150 Two dipoles 100 Im[Z] (Ohm) 50 0 -50 -1002000 4000 6000 8000 10000 0 k (*m*⁻¹)

 $Im.Z_{L}(k)$

Two dipoles w/h=94/94mm $L_{bend}=0.89m$ $L_{drift}=5.65m$ $\rho=15.872m$ $L_{exit}=Infinity (pipe after exit)$ Xoffset=0mm

Interference - KEKB LER

24

Re.Z_L(k)

Two dipoles w/h=94/94mm $L_{bend}=0.89m$ $L_{drift}=20m$ $\rho=15.872m$ $L_{exit}=Infinity$ (pipe after exit) Xoffset=0mm

SuperKEKB DR parameters

parameter	Value		
Beam energy (GeV)	1.1		
Circumference (m)	135.502		
Bunch Length (mm)	11.1		
Rel. Energy spread (10-4)	5.53		
Beam pipe height in bends (mm)	34		
Beam pipe width in bends w/o antechamber (mm)	34		
Effective Length of bends (B1/B2/B3/B4)	0.74248/0.28654/0.39208/.47935		
Number of bends (B1/B2/B3/B4)	32/38/4/4		
Bending radius (m) (B1/B2/B3/B4)	2.68/2.96/3.15/3.15		

Vacuum chamber (candidates)

K. Shibata

Re.Z_L(k)

 $Im.Z_{L}(k)$

 $W_L(s)$ with $\sigma_z=0.3$ mm

1 cell w/h=34/34mm B1+B2 L_{drift}=0.93m L_{exit}=Infinity (pipe after exit) Xoffset=0mm

28

Re.Z_L(k)

 $Im.Z_{L}(k)$

 $W_L(s)$ with $\sigma_z=0.3$ mm

2 cells w/h=34/34mm 2×(B1+B2) L_{drift}=0.93m L_{exit}=Infinity (pipe after exit) Xoffset=0mm

Re.Z_L(k)

Im.Z_L(k)

 $W_L(s)$ with $\sigma_z=0.3$ mm

16 cells w/h=34/34mm 16×(B1+B2) L_{drift}=0.93m L_{exit}=Infinity (pipe after exit) Xoffset=0mm

Resistive wall - SuperKEKB LER wiggler section

31

Re.Z_L(k)

 $Im.Z_{L}(k)$

$\begin{bmatrix} 10\ 000 \\ 5000 \\ 5000 \\ 0 \\ -5000 \\ 400 \\ 600 \\ 800 \\ 1000 \\ 1000 \\ 1200 \\ k\ (m^{-1}) \end{bmatrix}$

Field distribution 0.06 0.04 0.02

 $N_{super-period}=15$ w/h=90/90mm Lw=140m $\rho \approx 15m$ Lexit=Infinity (pipe after exit) Xoffset=0mm Field distribution: Hard-edge

Saturday, March 12, 2011

Summary

1. Features of the new CSR code (CSRZ):

1.1 Low noise level

1.2 Allow for s-dependent bending radius (fringe field, wigglers, interference between consecutive dipoles)

1.3 Allow for resistive wall (to be benchmarked)

2. Findings

2.1 Narrow-band impedances (spikes) due to CSR in wigglers were observed

2.2 Interference between consecutive dipoles can be significant and lead to narrow-band CSR impedances (to be benchmarked)

2.3 In the SuperKEKB project, CSR is still an important issue (beam instabilities not discussed in this talk)

3. Problems to be solved

3.1 Computing time is not quite acceptable at high freq. or very long components which require refinements in meshes or huge integration steps

3.2 "Wiggling pipe" is not a good approximation

3.3 A new code to treat the pipe with arbitrary cross section is needed.