CSR calculations using mesh method

Demin Zhou

Thanks to: H. Hama, K. Ohmi, T. Agoh, G. Stupakov, K. Yokoya, K. Oide, M. Kikuchi, H. Ikeda, N. Iida, S. Kramer, ...

ビーム物理研究会2011,東北大学電子光理学研究センター

Dec. 09, 2011

Outline

1. Introduction

2. CSR field dynamics

3. CSR in SuperKEKB DR

4. CSR in NSLS VUV ring

5. Summary

1. Introduction - Incoherent and coherent SR

Retarded solution for the fields of moving point charge in free space:

$$\vec{E} = \frac{e}{4\pi\epsilon_0} \left\{ \frac{\vec{n} - \vec{\beta}}{\gamma^2 K^3 \left| \vec{r} - \vec{r'} \right|^2} + \frac{\vec{n} \times \left[\left(\vec{n} - \vec{\beta} \right) \times \dot{\vec{\beta}} \right]}{cK^3 \left| \vec{r} - \vec{r'} \right|} \right\}_{ret} \qquad K = 1 - \vec{n} \cdot \vec{\beta}$$

Angular and spectral distribution of the radiation energy by a point charge:

$$\frac{d^2 W}{d\Omega dk} = \frac{e^2}{4\pi\epsilon_0} \frac{k^2 c^2}{4\pi^2} \left| \int_{-\infty}^{\infty} \vec{n} \times \left(\vec{n} \times \vec{\beta} \right) e^{ik(ct - \vec{n} \cdot \vec{r}(t))} dt \right|^2$$

Energy spectrum:
$$k \equiv \frac{\omega}{c} = \frac{2\pi}{\lambda}$$

$$\frac{dW}{dk} = \frac{e^2}{4\pi\epsilon_0}\sqrt{3}\gamma \frac{k}{k_c} \int_{k/k_c}^{\infty} K_{5/3}(x)dx$$

1. Introduction - Incoherent and coherent SR (cont'd)

In the limit of
$$\ k \ll k_c = 3\gamma^3/(2R)$$

$$\frac{dW}{dk} = \frac{e^2}{2\pi\epsilon_0} 3^{1/6} \Gamma(2/3) (kR)^{1/3}$$

SR impedance per unit length:

$$\frac{\text{Re}Z_{\parallel SR}(k)}{L} = \frac{1}{2\pi R} \frac{\pi}{e^2 c} \frac{dW(k)}{dk} = \frac{Z_0}{4\pi} 3^{1/6} \Gamma(2/3) \left(\frac{k}{R^2}\right)^{1/3}$$

Coherent SR (assuming full transverse coherence):

$$\frac{dW}{dk}\Big|_{bunch} = \left[N + N(N-1)\left|\tilde{\lambda}(k)\right|^2\right]\frac{dW}{dk}$$
Wanted and Unwanted ... 4 Ref. 田中さんの講演, this meeting

1. Introduction - Field equations

Parabolic equation in Frenet-Serret coordinate system:

$$\frac{\partial \vec{E}_{\perp}}{\partial s} = \frac{i}{2k} \left[\nabla_{\perp}^2 \vec{E}_{\perp} - \frac{1}{\epsilon_0} \nabla_{\perp} \rho_0 + 2k^2 \left(\frac{x}{R(s)} - \frac{1}{2\gamma^2} \right) \vec{E}_{\perp} \right]$$

Longitudinal field:

$$E_s = \frac{i}{k} \left(\nabla_\perp \cdot \vec{E}_\perp - \mu_0 c J_s \right) \qquad \qquad J_s = \rho_0 c$$

Longitudinal impedance:

$$Z(k) = -\frac{1}{q} \int_0^\infty E_s(x_c, y_c) ds$$

Field separation:

$$\vec{E}_{\perp} = \vec{E}_{\perp}^{r} + \vec{E}_{\perp}^{b} \longrightarrow \frac{\partial \vec{E}_{\perp}^{r}}{\partial s} = \frac{i}{2k} \left[\nabla_{\perp}^{2} \vec{E}_{\perp}^{r} + 2k^{2} \left(\frac{x}{R(s)} - \frac{1}{2\gamma^{2}} \right) \left(\vec{E}_{\perp}^{r} + \vec{E}_{\perp}^{b} \right) \right]$$

6T. Agoh and K. Yokoya, PRST-AB 7, 054403 (2004).

 $k \equiv \frac{\omega}{c} = \frac{2\pi}{\lambda}$

 $a/R \ll 1$

1. Introduction - Numerical scheme

Finite-difference discretization:

- 1. Staggered grid: Central difference \rightarrow Avoid numerical oscillations
- 2. Ghost points: Boundary conditions → Avoid numerical damping

2. CSR field dynamics - Mode excitation

Single dipole:

a/b=60/30 mm, R=5 m, L_{bend}=0.5/2/8 m Bending angle=0.1/0.4/1.6 rad

Black solid lines: Parallel plates model

2. CSR field dynamics - Eigenmodes

Single dipole:

a/b=60/30 mm, R=5 m, L_{bend}=0.5/2/8 m

Phase matching condition: $\Lambda = \frac{\pi^2 p^2}{2k^2 b^2} + \frac{1}{2} \left[\frac{3\pi}{kR} (m \pm 0.25) \right]^{\frac{2}{3}} - \frac{a}{2R} = 0$ $k_{mp} = \frac{p\pi}{b} \sqrt{\frac{R}{x_b}} \Upsilon \left(\frac{b(m \pm 0.25)}{px_b} \right)$ $\Upsilon(r) = \left[\left(\sqrt{1 + r^2/3} + 1 \right)^{1/3} - \left(\sqrt{1 + r^2/3} - 1 \right)^{1/3} \right]^{-3/2}$

Vertical black and purple dashed lines: resonant poles of E_y mode and E_x mode (p=1)

m: horizontal mode index;*p*: vertical mode index

R. L. Warnock and P. Morton, Part. Accel. 25, 113 (1990).

- G. Stupakov and I. Kotelnikov, PRST-AB 6, 034401 (2003).
- T. Agoh, PRST-AB 12, 094402 (2009).

¹⁰ D. Zhou, et al., to be published in Jpn. J. Appl. Phys..

2. CSR field dynamics - Eigenmodes (cont'd)

2. CSR field dynamics - Eigenmodes (cont'd)

2. CSR field dynamics - Eigenmodes (cont'd)

2. CSR field dynamics - Velocity and radiation fields

2. CSR field dynamics - Steady-state CSR

CSR fields can be decomposed to a sum of propagating (oscillatory and trailing) and decaying (damped and overtaking) waves in a toroid waveguide [Agoh (2009)].

2. CSR field dynamics - Geometric model

Side-wall reflection can be approximated by a geometric model [Derbenev (1995), Carr (2001), Sagan (2009), Oide (2010)]

Critical length (Catch-up distance):

$$L_c = 2R\theta_c \approx 2\sqrt{2Rx_b} \qquad \qquad x_b \ll R$$

$$\theta_c = \operatorname{ArcCos}\left(R/(R+x_b)\right) \approx \sqrt{2x_b/R}$$

Path difference:

$$\Delta s = 2R(\operatorname{Tan}(\theta_c) - \theta_c) \approx \frac{4}{3}\sqrt{\frac{2x_b^3}{R}}$$

Shielding threshold:

$$k_{th} = \pi \sqrt{R/b^3}$$

Y. S. Derbenev, et al., TESLA FEL-Report 1995-05 (1995).

- G. L. Carr, et al., PAC'01, p. 377 (2001).
- D. Sagan, et al., PRST-AB 12, 040703 (2009).
- K. Oide, Talk at CSR mini-workshop, Nov. 08, 2010.
- 16 D. Zhou, et al., to be published in Jpn. J. Appl. Phys..

3. CSR in SuperKEKB DR - Parameters

Magnet and chamber parameters:

a/b=34/34 mm, L_{bend}=0.74/0.29 m, R=2.7/-3 m (reverse bends) L_{drift}=0.9 m, N_{cell}=32

The vacuum chamber is curved along the beam orbit

3. CSR in SuperKEKB DR - Multi-bend inerference

SuperKEKB damping ring (one arc section) (Perfect conducting wall) a/b=34/34 mm, L_{bend} =0.74/0.29 m, R=2.7/-3 m (reverse bends) L_{drift} =0.9 m, N_{cell} =1/6/16

Blue solid lines: 16 cells Red dashed lines: 6 cells Green dotted lines: 1 cell Black solid lines: single-bend

3. CSR in SuperKEKB DR - Microwave instability

SuperKEKB DR (latest version): CSR instability threshold [Cai (2011)]:

$$\chi = \sigma_z \sqrt{\frac{\rho}{h^3}} \approx 2.9 \qquad \qquad \rho = 2.7 \text{ m} \qquad h = 24 \text{ mm}$$
$$I_b = 0.5 * \frac{3\sqrt{2}\alpha\gamma\sigma_\delta^2 I_A \sigma_z}{\pi^{3/2} h} = 0.016 \text{ A} \qquad \qquad N_{th} = \frac{I_b C}{ec} \approx 4.6 \times 10^{10}$$

SuperKEKB DR: simulations using Vlasov solver [lkeda (2011)]:

Table 1: Damping ring parameters

Parameter		unit
Energy	1.1	GeV
Maximum bunch charge	8	nC
No. of bunch trains/ bunches per train	2/2	
Circumference	135.5	m
Maximum stored current	70.8	mA
Horizontal damping time	10.9	ms
Injected-beam emittance	1700	nm
Equilibrium emittance(h/v)	41.4/2.07	nm
Maximum x-y coupling	5	%
Emittance at extraction(h/v)	42.5/3.15	nm
Energy band-width of injected beam	±1.5	%
Energy spread	0.055	%
Bunch length	6.53	mm
Momentum compaction factor	0.0141	
Cavity voltage for 1.5 % bucket-height	1.4	MV
RF frequency	509	MHz

Y. Cai, FRXAA01, IPAC'11 (2011) H. Ikeda, et al., THPZ021, IPAC'11 (2011) H. Ikeda, this meeting

4. CSR in NSLS VUV ring

Multi-bend interference considered

a/b=80/42 mm, L_{bend}=1.5 m, R=1.91 m (reverse bends) L_{drift}=3.3/6.456 m, N_{cell}=4 (fold) Beam line:=4×(BD, Drift1, BD, Drift2) Beam sizes: $(\sigma x, \sigma y)=(0.54 \text{ mm}, 0.06 \text{ mm})$, RMS $\sigma_z = 4.5$ to 60 cm

4. CSR in NSLS VUV ring - Measurements

4. CSR in NSLS VUV ring - Impedance calculation

Real part of CSR impedance (\propto **power spectrum):**

4. CSR in NSLS VUV ring - Comparison

5. Summary

1). CSR impedance (radiation power spectrum) may exhibit narrow peaks in the presence of chamber, rather than smooth curve. Relevant beam dynamics and radiation performance may differ from steady-state models.

2). CSR fields contains velocity and radiation fields. The velocity fields are overtaking and related to decaying waves. The radiation fields are trailing and related to propagating waves [A proof to T. Agoh's theory (PRST-AB 12, 094402 (2009))].

3). Multi-bend CSR interference appears in small storage rings (small bending radius and short drifts) and may play a role in microwave instability (micro-bunching).

Thank you!