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1. Impedance theory of SC

Fundamental definitions

Consider a charged particle moving in parallel to the axis of a rectangular waveguide with
its transverse dimensions given by —a/2 < z < a/2 and —b/2 < y < b/2. The waveguide
has infinite length in the 2z direction with its walls assumed to be perfectly conductive, and
the particle has constant velocity @ = i,v. With the charge density defined by Dirac delta

functions as
o(7,t) = qod(x — 20)d(y — yo)d(z — vi), (1)
the current density is given by J (7, t) = o(r,t)v. One can apply them to the Maxwell’s equa-

tions with boundary conditions and obtain the time-varying electromagnetic fields £ (7, t)

—

and B(T,t).
According to the standard impedance theory [A. Chao, 1993], a test charged particle ¢
with coordinates 7, = (z1,y1, s1) follows ¢o with the same velocity but at a time delay of

T =z/v, e.g. s1 =v(t — 7). The Lorentz force acted on ¢; is then given by
F(R,7oit) = a1 |E, 7ost) + 0 x B, 7o t)] (2)
The impulse kick applied to ¢; when it travels by a length of L is calculated by integrating
the Lorentz force as 5
- T+ .
.F(Fl_L, 7_"0_]_; 7') — / dt ’U]:(’Fl, Fo, t) (3)
The subscripts L in Eq. (3) represent the transverse coordinates, i.e. 7, = (z1,y;) and

ToL = (o, o). The quantity ? is called the wake potential, which is a function of 7 and the
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1. Impedance theory of SC

Fundamental definitions
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transverse coordinates of source and test particles. Then the longitudinal and transverse

wake functions W) (72, ,711;7) and W 1 (71,711 ;7) are defined as follows

— — 1 = — —
W||(7‘1¢,7‘0l;7) = _—]:H(TIJ_;TOL; T), (4a)
doq1
I — — 1 = — —
WJ_(TI_L,TO_L;T) = E]:J_(TU_:TOJ_;T)- (4b)
0q1

Using Fourier transform, one can calculate the spectrum of the wake functions, so called

impedance, as

o0

Z)(T11,ToL;w) Z/ dr W) (7L, 7oL 7)e™”, (5a)
— 00

— o© — .

Z1(T11,ToL;w) = ﬁ/ dr Wi (71,7015 7)e™”, (5b)
— 00

with k = ,UL/C [K.Y. Ng, 2006]. Then the wake functions expressed by inverting the above

Fourier transforms are

— — 1 > — — —WwT
W (711, ToL;T) = %/ dw Zj(T11,ToL;w)e 7, (6a)
— — 1 > — — —WwT
Wi (7, Tor;T) = ﬂ/ dw Z,(T11,T01;w)e . (6b)

The imaginary constant ¢ appears in Eqgs. (5b) and (6b) due to a historical convention. The
main task is then to find the explicit forms of Eqs. (5a) and (5b) in terms of eigenmodes of

the rectangular waveguide.



1. Impedance theory of SC

Mode expansion method

For a passive waveguide, the delta function of 2z in Eq. (1) can be replaced by its Fourier

transform as

6(z —vt) = 217r / e~ k=) dk. (7)

The delta function of transverse coordinates can be expanded into the summation of the
eigenmodes of the rectangular waveguide as follows

(S(TJ_ - TO_L Z Z d)mm/ Cbm'm/ ( ) ’ (8)

m=0 n=0

where v = x, vy, or z, and the subscript | denotes the transverse coordinates. And the

complete set of orthonormal eigenfunction for the x, y and z directions are

) = 2 T a

d)m‘nx (Tl) — \/(1 n 5m0) abCfl:( )Sy(y)’ (9 )
L )

by (F2) = 7= 8.2 ), (9b)

brans (F1) = —= ()5, (4), (9c)

ab

where 9,,0 and 6,0 are Kronecker deltas. Here we define C,(z) = cos (k.(z 4+ a/2)), S.(z) =
sin (kz(z + a/2)), Cy(y) = cos (k,(y +b/2)), and S,(y) = sin (k,(y + b/2)) with the trans-

verse wave numbers k, = mn/a and k, = nr/b.



1. Impedance theory of SC

Mode expansion method

Here we omit the detailed calculations and directly give the explicit formulations of the

vector potential:

=, . 2 97 ¢mnz (FJ_) qunz (FOJ_) ikz /3
A(Tak) — ,U'OQOﬁ 7212 L2 + 62,}/2(]63 + kz) € / ’ (13)

m,n>0

with the relative velocity 8 = v/c and Lorentz factor 7. The above vector potential can be
applied to calculate the electromagnetic fields and then the space-charge induced impedance.
Again with the detailed calculations omitted, we directly give the explicit form of impedance

per unit length:

Z”(k) _ 42#0]60 (r/);nnz (Fl-L) qb"mnz (FO-L)

Wb L, PR .

kmd);nn:c (FU-) qb;nnz (FOJ-)
m,n=0 kQ + ’BQ,YQ(IC-'% + kg) . (14b)

Zy(k) _ _4/-1'0:86& kyqb;nny (FIJ.) qb;nnz (FO-L)
L~ R2+ BEy2(R2 + K2) (14
iy (,Y) = S2(2)Cy(y), (15b)
mnz (T:Y) = Sa(2) Sy (y). (15¢)
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1. Impedance theory of SC

Free-space SC impedance with transverse bi-Gaussian distribution

Consider the case of free space and transverse bi-gaussian beam distribution, we can find

. o0 z—zc)? —ye)? o<t/
_ Z,LLOk‘C dt/ 1 e_ (t’+20?% _(ty’+!2lo?!2/ e_ég? (213)
wpre Jy W20 (0 + 202 - |
00 T—T¢ 2 —Yc 2 t!
3D LSC and TSC _ JocK e T — T, e—(u+20')g —(5+§a)g e-mfv (21b)
model 212 Jo (¥ +202)%2(t + 202)1/2 |

L—Tp 2 —Ye = . t,
S /Oo dt’ y Y e_(t'+2<’)% Jﬁé"ﬁ% e_%ﬂi‘?f. (21c)
21BY2 Jo - (t'+ 202)1/2(t + 202)3/2

Zy(k) _ ipoc
L - 471_5272 Fz ('Ta y: Ts k)a (223)
Zy(k)  pock(z — x.)
L - 471,5720_3 F:l‘ (1:3 y,r, k)* (22b)
Zy(k) _ pock(y — ye)
L - 471'[8’)’20':% F’y(a:aya T:k)a (220)
with e Longitudinal

> (z—z)? (y—yo) M k202t H
F.(z,y,rk) = ”/O dt o 1)1/2; - TQ)I/QE_%%(HU_2a%(t+r26_2,32~,2‘: damping term
F. k)= h d : l_2(;2_(1:1)12) _22%_(3322;,_5% E i 23h
=(2,9,7, ) /0 t(t+1)3/2(t+r2)1/26: : e (23b)
> 1 l_ (I__IC)Q _ (y—ve)? _ kQO’gt '
Fy(:[;, Y, T, k) - /0 dt T 1)1/2(t - r2)3/28: 202 (t+1) 2a§(t+r2=e 282,72 : (23c)

--- g -
Here we define r = 0, /0. . \ I
7 Transverse damping term



1. Impedance theory of SC

Free-space SC impedance with transverse bi-Gaussian distribution

The convergence property of F,(z,y,r, k) very depends on k, therefore in Eq. (22a) we
merge k into F,. The exponential term in Egs. (23) plays a role of damping and sets a

threshold of the frequency:
2
ko = VY (24)

min[o,, o,

With k& > k;;,, the space charge impedance is strongly suppressed, so that high frequency
impedance can be ne%lected For a Gaussian bunch with length o,, the typical frequency

i
is k ~1/o,. Ifyl/o, < kyyis satisfied, the damping term in Egs. (23b) and (23c) can be

. lm =
ignored and the fran§erse space charge impedance can be approximated with

o 1 (r ze)2 (y ye)?

) = oZ(t+1) 20F(t+r2) a

B I /0 Her Ty T (252)
o° 1 _ zc)® _ (y— yc)22

By@y.rk _/0 dt( )172(t + r2)3/2° 2D 2R+, (25b)

In the presence of microstru\tures with dimension of Az, o, should be replaced by Az

correspondingly.

Condition of neglecting high-frequency SC impedance



1. Impedance theory of SC

Free-space SC impedance with transverse bi-Gaussian distribution

The longitudinal impedance expressed by Eq. (23a) is not integrable except the special

case of r =1 and 0, = 0, = 0

202 kPo?
F.(0,0,1,k) = ke>#>T ( 5 /3272> : (27)

where the incomplete Gamma function I'(x) is defined as
o0 e—t
I(z) = / - (28)

When k < v/237/0, the asymptotic expression is

2322

with v &~ 0.577216 the Euler’s constant. For the case of unequal horizontal and vertical

202
F.(0,0,1,k) ~ —k (ln - 7E> , (29)

beam sizes, a good approximation is

r----------2-2------|~Simp|em0d6|1
k (1+T) 1
:Fz(0,0,T’, k) ~ —k | In 452 2 +VE v (30)

In Ref. [M. Venturini, PRST-AB 11. 034401 (2008)] it was proposed to use

k2r2 w Simple model 2
| Fv(k) (ln + 2vE — 1> (31)

52 2
1
with r, ~ 1.747(0, 4+ 0,)/ 2 "In the ELEGANT code the 1D model is expressed by a scaling

factor of - --- -4; ----=a- -w Simple mOdEI 3
| Fr(k) = a 1 —&K1(6)] (32)
where &, = kry/(B7y) and K, (:L"} 15 The modiffed Bessel fﬁnﬂtlon of the second kind. Note

that originally the above equation was derived with the assumption of transversely uniform

beam density, and we also recovered the velocity [ since our theory is valid for arbitrary

beam energy. 9



1. Impedance theory of SC

1D LSC impedance model (ELEGANT):

= 1 — —K
L Wkrg 7y !

~

Zisc(k)  iZ [ kry <’““b>] ry = 1.747(05 + 0,) /2

Z. Huang et al., Phys. Rev. ST Accel. Beams 7 074401 (2004)
M. Venturini, Phys. Rev. ST Accel. Beams 11 034401 (2008)

3D TSC impedance model (Derived from Eqs.(25), SAD and ELEGANT):

Wi(z,y,2) —iWy(x,y,2) —iZpc VT , B b
- = 2 (2)2(05% —o2) w(a+1b) — e w(ar+z;)
- \
a = b= : = 2y
\/2(0:% _ 05> \/2(0% _ 033) o, Application conditions:
Assume ox and oy are z-
independent inside the bunch,
1 > y? and:
B=ad*(1-r)+b(=—-1) = 2
) T = 55m gy

Y(z): Longitudinal density is good enough, no need to use Gaussian distribution.
For Gaussian distribution (Used in ELEGANT and SAD):
1 _ 2%
V() = =—e
270,

A. Xiao et al., PAC’07, also FERMILAB-CONF-07-702-AD 10




1. Impedance theory of SC

Test impedance models using cERL-FEL beam parameters

Beam parameters at POINTD:
0x=0.445 mm, 0,=0.676 mm, 0,=0.6 mm, y=19.6075

Lo V2B
1/02 th min[az,ay] L L. I ¢
og-Linear plo
* 40000 ———— ,
40000

30000,

N
~

~
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RN T T R A | L L R B T S R L L .I.I...I

500 1000 5000 1x10* 5x10%1x10°
k(m™)

0 50000 100000 150000 200000 o-
k(m™)

Longitudinal impedance using Eq.(23a) on page.7



1. Impedance theory of SC

Test impedance models using cERL-FEL beam parameters

Beam parameters at POINTD:
0x=0.445 mm, 0,=0.676 mm, 0,=0.6 mm, y=19.6075

V2By

1 iaz kin = ill[ar,ay] Lol ot
og-Linear plo

Fx(0,0,r,k),Fy(0,0,r,k)

N . . N R . . R =~
500 1000 5000 1x10* 5x10% 1x10°
k(m™)

0 50 000 100000 150000 200000 0.0
k(m™)

On-axis transverse impedance using Eqgs.(23b) and (23c) on page.7



1. Impedance theory of SC

Test impedance models using cERL-FEL beam parameters

Beam parameters at POINTD:

0x=0.445 mm, 6,=0.676 mm, 0,=0.6 mm, y=19.6075 rp & 1.747(0, +0y) /2.
kry/(57)
1.2 T [ | T T = T _
I | |
1.0 iim_ple model 3 (ELEGANT)]| |
I ~ I\ :
[ | N -
% 0.6 | Simple model 2 (D. Zhou) I |
o I Simple mpdel 2 (Venturini 2008)
I I |
0.4} I |
I I
0.2 | I
' I I
I I
1 L 1I| | 1 1 1 | PR T N | 1 1I 1 | TR R R _
0 0.05 0.10 0.50 1 5 10

$a

Compare simple 1D (on-axis) LSC models normalized by Eq. (23a)
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2. Models for TSC and LSC
Compare ELEGANT, GPT and SAD

TSC LSC Comment

TSC(3D) turned on through SCMULT, assuming Gaussian

fitted beam sizes in x, y and z directions. Linear TSC is
available (optics matching?

ELEGANT YES YES LSC(1D) uses impedance model, assuming Gaussian

distributions in x and y directions, arbitrary density in z

direction.

YES YES 3D self consistent(?)

SAD's flag WSPAC turns on TSC. Linear model for optics

matching. Nonlinear model (Eqs.(25) and p.10) for TSC
YES NO(?) kick with transverse beam sizes calculated from optics
(given initial emittances and beta functions)

TSC(3D) similar to ELEGANT’s SCMULT, assuming

Gaussian distributions in x and y directions, arbitrary
SAD [DZ] YES YES density in z direction. LSC(1D) same as ELEGANT’s
LSCDRIFT.




2. Models for TSC and LSC
Compare ELEGANT, GPT and SAD

From GPT User Manual Version 3.39:

Table 1-B: Summary of all GPT space charge elements. Complexity is in terms of the number of particles N.

Name Complexity  Granularity @ Dim  Description

effects
spacecharge3Dmesh O(N' ) No 3D PIC in rest frame
spacecharge3Dftree O(N log N) Yes 3D Barnes-Hut 1n rest frame
spacecharge3D O(N?) Yes 3D All pair-wise relativistic interactions
spacecharge3Dclassic ~ O(MNV?) Yes 3D All pair-wise interactions
spacecharge2Dcircle O(N?) No 2D Cylindrically symmetric
Spacecharge2Dline O(N?) No 2D Continuous beam




2. Models for TSC and LSC

Compare ELEGANT, GPT and SAD: simulation results

The SC theories discussed in this talk may help understand the discrepancies?
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3. Summary and outlook

* The SC theories are revisited
** 3D impedance formulae are found with Gaussian bunches
** Conditions of simplifying the 3D formulae are found
** Consistent with the existing theories/models of SC
** Applicable conditions fo existing simple SC models are understood

* Comments on SC models of ELEGANT, SAD and GPT

** ELEGANT and SAD have similar models. These models can be improved from the viewpoint of the SC theories discussed in
this talk

** Simulation results using GPT are still remarkably different from SAD. This should be well understood through careful
benchmarks. For example:

*** Use well controlled examples such as very simple lattices

*** Use simple initial beam distributions

*** Use different options of SC models in GPT

* Optics matching with SC
** The linear TSC model is available in ELEGANT and SAD. It should be useful for the first and quick try of optics matching with

SC.
** More accurate optics matching may need macro-particle tracking. The tracking results can be used to extract dynamic optics

functions and then to optics matching.



