

# Status of Optics Design

Y. Ohnishi /KEK 17th B2GM KEK, February 5, 2014



- Lattice parameters
- Dynamic aperture under influence of beam-beam effect
- Lattice preparation for each phase
- Phase 1 lattice
- Phase 2 and Phase 3 lattice
- Summary



Large crossing angle and small beam size at IP in the Nano-beam scheme

Very small vertical emittance is necessary.

|                                     | Symbol           | LER  | HER  | Unit |
|-------------------------------------|------------------|------|------|------|
| Horizontal Emittance <sup>(1)</sup> | εx               | 3.2  | 4.6  | nm   |
| Horizontal Beta at IP               | β <sub>x</sub> * | 32   | 25   | cm   |
| Horizontal Beam size at IP          | σ <sub>x</sub> * | 10.1 | 10.7 | μm   |
| Vertical Emittance <sup>(2)</sup>   | εγ               | 8.64 | 12.9 | pm   |
| Vertical Beta at IP                 | β <sub>y</sub> * | 270  | 300  | μm   |
| Vertical Beam size at IP            | σ <sub>y</sub> * | 48   | 62   | nm   |
| Bunch length <sup>(1)</sup>         | σ <sub>z</sub>   | 6    | 5    | mm   |
| Full crossing angle                 | 2фх              | 8    | 3    | mrad |

(1) Intra-beam scattering is included.

(2) Machine error, beam-beam effect, etc. are included.

# Nano-Beam Scheme



# Schematic View of colliding bunches



# **Beam-beam effect for large horizontal orbit**

The horizontal orbit(deviation from beam axis) is translated into the longitudinal displacement in the nano-beam scheme.

Super

KEKB



high vertical beta 
$$\rightarrow \beta_y(\Delta z) = 48 \ mm >> \beta_y^* = 0.27 \ mm$$
  
 $\Delta y \propto \theta_y^{bb} \sqrt{\beta_y(\Delta z)}$  ~factor of 180

Particles with a large horizontal orbit are kicked by the beam-beam force at high vertical beta region. Consequently, the vertical betatron oscillation increases due to the vertical beam-beam kick. The transverse aperture decreased, which implies small dynamic aperture.



# **Difficulty in the Nano-Beam scheme**

# w/o beam-beam



Transverse aperture is reduced significantly.





# **Tracking simulation for single particle**

Initial orbit is **10 sigmas** in the horizontal direction and **0** for the vertical direction



blue: no beam-beam red: with beam-beam

Horizontal betatron oscillation is stable for both case.

The vertical oscillation exists for the case w/o beam-beam, since there is a X-Y coupling.

Vertical betatron oscillation is stable for beam-beam effect. The amplitude is slightly large.



Initial orbit is **15 sigmas** in the horizontal direction and **0** for the vertical direction



blue: no beam-beam red: with beam-beam

Horizontal betatron oscillation is stable for both case.

The vertical oscillation exists for the case w/o beam-beam, since there is a X-Y coupling.

Vertical betatron oscillation is unstable for beam-beam effect.



# Working point is bad ?

Might be resonance line ? Check betatron tunes. 

## Tune survey: No beam-beam effect



Single-beam operation (no beam-beam effect) Lighter color indicates larger dynamic aperture (**only for on-momentum**). Nominal working point is .53 for the horizontal and .57 for the vertical direction.



#### LER tune survey: Beam-beam effect





## **Better working point for Touschek lifetime ?**





# **Optimization of dynamic aperture**



Optimization is done by sextupoles, skew sextupoles, and octupoles. Touschek lifetime is improved up to 230 sec. Still short lifetime.

- Ideal crab-waist has a potential to mitigate this effect. (only solution)
- But a real crab-waist consists of sextupoles has a serious issue.
- Nonlinear terms between crab-waist sextupoles and Final Focus reduce the dynamic aperture. No cure for this, so far. We have to develop a new technique.

# Schematic View of colliding bunches



# **DA cured by Ideal Crab Waist**

Initial amplitude vs Number of turns With Beambeam With BB + Ideal CW LER Design Lattice 1000 100 800 y/σ<sub>y0</sub> y/σ<sub>y0</sub> turns Cured by **#** 400 200 10 <sup>20</sup> 30 x/σ<sub>x0</sub> <sup>20</sup> 30 x/σ<sub>x0</sub> 10 <sup>20</sup> x/σ<sub>x0</sub><sup>30</sup> 40

• Ideal CW replaces map  $f_{BB}$  with  $f_{CW}(+\lambda) \cdot f_{BB} \cdot f_{CW}(-\lambda)$ 

- f<sub>cw</sub> is constructed by thin sextupole between thin phase rotator pair.
- $f_{_{CW}}(\lambda)$ : (x,x',y,y',z, $\delta$ )  $\rightarrow$  (x,x'+ $\lambda/2$  y'<sup>2</sup>,y- $\lambda$  x y',y',z, $\delta$ )

# KEKB Crab waist Oho-Nikko Version



# KEKB Crab waist Oho-Nikko Version



Crab waist setupoles drastically decrease the dynamic aperture.





| phase   | sub-phase | IR status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lattice, commissioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I <sub>b</sub> (mA) |
|---------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|         | Phase 1.1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | wiggler off, device check, optics tuning, vacuum scrub.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 30-100            |
|         | Phase 1.2 | IR statuslattice, commissioningNo QCS<br>No Belle IIwiggler off, device check,<br>optics tuning, vacuum scrub.No QCS<br>No Belle IIhigh emittance for vacuum<br>scrubbing (LER)QCS<br>Belle II<br>w/o VXDvertical beta* = 80 mm,<br>optics and injection tuningQCS<br>Belle II<br>w/o VXDvertical beta* = 2.2 mm,<br>optics and luminosity tuningQCS<br>Belle II<br>with VXD<br>(Physics Run)vertical beta* = 2.2 mm,<br>optics and luminosity tuning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Phase I | Phase 1.3 | No Belle II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Is lattice, commissioning Ib (<br>wiggler off, device check,<br>optics tuning, vacuum scrub. < 30<br>wiggler on, circumference, optics<br>tuning (low emittance) <<br>optics tuning (low emittance) <<br>vertical beta* = 80 mm,<br>optics and injection tuning <<br>vertical beta* = 2.2 mm,<br>optics and luminosity tuning 1000<br>vertical beta* = 2.2 mm,<br>optics and luminosity tuning 1000<br>i i i i i i i i i i i i i i i i i i i                                                                                                    | 500-1000            |
|         | Phase 1.4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 30                |
|         | Phase 2.1 | 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vertical beta* = 80 mm,<br>optics and injection tuning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 30                |
| Phase 2 | :         | IR statuslattice, commissioningIR statuswiggler off, device check,<br>optics tuning, vacuum scrub.No QCS<br>No Belle IIwiggler on, circumference, optics<br>tuninghigh emittance for vacuum<br>scrubbing (LER)5optics tuning (low emittance)5QCS<br>Belle II<br>w/o VXDvertical beta* = 80 mm,<br>optics and injection tuningQCS<br>Belle II<br>w/o VXDvertical beta* = 2.2 mm,<br>optics and luminosity tuningQCS<br>Belle II<br>with VXDvertical beta* = 2.2 mm,<br>optics and luminosity tuningQCS<br>Belle II<br>with VXDvertical beta* = 2.2 mm,<br>optics and luminosity tuningQCS<br>Belle II<br>with VXDultimate beta*,<br>optics and luminosity tuningQCS<br>Belle II<br>with VXDultimate beta*,<br>optics and luminosity tuningOCS<br>Belle II<br>with VXDscrubation optics and luminosity tuningOCS<br>Belle II<br>with VXDscrubation optics and luminosity tuningOCS<br>Belle II<br>with VXDscrubation optics and luminosity tuningOptics Runscrubation optics and luminosity tuningStatematic Scrubationscrubation optics and luminosity tuning | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
|         | Phase 2.x | W/OVAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vertical beta* = 2.2 mm,<br>optics and luminosity tuning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000/800            |
|         | Phase 3.1 | QCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vertical beta* = 2.2 mm,<br>optics and luminosity tuning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000/800            |
| Phase 3 | :         | Belle II<br>with VXD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I    high emittance for vacuum scrubbing (LER)    500      optics tuning (low emittance)    4      vertical beta* = 80 mm, optics and injection tuning    4      vertical beta* = 2.2 mm, optics and luminosity tuning    100      vertical beta* = 2.2 mm, optics and luminosity tuning    100      vertical beta* = 2.2 mm, optics and luminosity tuning    100      vertical beta* = 2.2 mm, optics and luminosity tuning    100      vertical beta* = 3.2 mm, optics and luminosity tuning    100      jontics and luminosity tuning    100 | :                   |
|         | Phase 3.x | (Physics Run)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3600/2600           |



- Horizontal emittance in LER can be adjusted by using the wiggler section.
  - to increase Touschek lifetime in LER for vacuum scrubbing
  - Changing the wiggler optics is much easier than the arc optics. It is applicable even though with QCS
- Horizontal emittance in HER can be adjusted by changing arc optics, if necessary
- Optics tuning without QCS is a very important stage.
  - no vertical emittance due to solenoid fringe field (simple !)
  - Vertical emittance should be less than 1 pm at Phase 1 in principle.
  - Establish ring optics except for QCS



|                 |                         | Pilot     | run              | Ultim | nate  |                                  |
|-----------------|-------------------------|-----------|------------------|-------|-------|----------------------------------|
|                 | 1 1                     | Phase 2.x |                  | Phas  | •.    |                                  |
| Parameters      | symbol                  | LER       | HER              | LER   | HER   | unit                             |
| Energy          | E                       | 4         | 7.007            | 4     | 7.007 | GeV                              |
| #Bunches        | nb                      | 25        | 600              | 25    | 2500  |                                  |
| Emittance       | ε <sub>x</sub>          | 2.2       | 5.2              | 3.2   | 4.6   | nm                               |
| Coupling        | $\epsilon_y/\epsilon_x$ | 2         | 2                | 0.27  | 0.28  | %                                |
| Hor. beta at IP | β <sub>x</sub> *        | 128       | 100              | 32    | 25    | mm                               |
| Ver. beta at IP | β <sub>y</sub> *        | 2.16      | 2.4              | 0.27  | 0.30  | mm                               |
| Bunch current   | Ib                      | 1.0       | 0.8              | 3.6   | 2.6   | А                                |
| Beam-beam       | $\xi_y$                 | 0.0240    | 0.0257           | 0.088 | 0.081 |                                  |
| Hor. beam size  | $\sigma_x^*$            | 16.8      | 22.8             | 10    | 11    | μm                               |
| Ver. beam size  | <b>σ</b> y*             | 308       | 500              | 48    | 62    | nm                               |
| Luminosity      | L                       | lxl       | 10 <sup>34</sup> | 8x1   | 035   | cm <sup>-2</sup> s <sup>-1</sup> |

Y. Funakoshi



- We can change beta function at IP successively.
- We will start very large beta at IP at Phase 2.1(virgin QCS).
  - $\beta_y^* = 80$  mm. Larger than the vertical beta of KEKB
- Target luminosity of Phase 2 is 1x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>

• 
$$\beta_x^* = 128 \text{ mm}, \beta_y^* = 2.16 \text{ mm}, I_b = 1 \text{ A}$$

- Phase 3 will start from the parameters of Phase 2.x.
- The beta at IP will be squeezed successively during Phase 3.
  - It depends on background, lifetime, and luminosity.



# Phase 2.1 LER (1/2)



# Phase 2.1 LER (2/2)







- Dynamic aperture under influence of beam-beam effect
  - serious issue for Touschek lifetime for the ultimate parameters
- Several lattice designs have been prepared.
  - Phase 1: NoQCS(No FF)
  - Phase 2: with QCS, w/o VXD
  - Phase 3: with QCS/VXD
- We can provide a detuned lattice with adjusting beta functions at IP successively.



# Appendix

#### **Overview of SuperKEKB**









proposed by P. Raimondi

# Luminosity formula:





- We assume the requirement of the energy range is from Y(1S) to Y(6S), so far.
- The boost factor is the same among Y(1S) and Y(6S).
- We checked the magnetic field for the energy range. -> OK

|       | E (GeV) | ΔE/E (%) | E <sub>e+</sub> (GeV) | E <sub>e-</sub> (GeV) |
|-------|---------|----------|-----------------------|-----------------------|
| Y(1S) | 9.460   | -10.58   | 3.577                 | 6.266                 |
| Y(2S) | 10.023  | -5.26    | 3.790                 | 6.639                 |
| Y(3S) | 10.355  | -2.12    | 3.915                 | 6.859                 |
| Y(4S) | 10.579  | -        | 4.000                 | 7.007                 |
| Y(5S) | 10.876  | +2.81    | 4.112                 | 7.204                 |
| Y(6S) | 11.019  | +4.16    | 4.166                 | 7.299                 |

nominal



- Emittance can be adjusted by optics in Nikko section(No cavity).
- Emittance becomes 20<sup>\*</sup> nm in case of 1 m dispersion at midpoint the straight section.





|            | $\Delta x_{rms} (\mu m)$ $\Delta y_{rms} (\mu m)$ |     | $\Delta \theta_{\rm rms}$ (µrad) | $(\Delta K/K)_{rms}$     |
|------------|---------------------------------------------------|-----|----------------------------------|--------------------------|
| Dipole     | 0                                                 | 0   | 100                              | 3.5x10 <sup>-4</sup>     |
| Quadrupole | 100                                               | 100 | 100                              | 7x10 <sup>-4</sup>       |
| Sextupole  | 100                                               | 100 | 0                                | $1.3 \mathrm{x} 10^{-3}$ |
| QCS        | 100                                               | 100 | 0                                | 0                        |
| BPM*       | 75                                                | 75  | 1000                             | -                        |

# Assumption of machine error

\*BPM jitter error is 2 µm (rms).

Misalignment error is based on the measurement at KEKB.

We evaluate the beam quality after with corrections of these machine error on the computer simulation.



- Machine error is corrected by using dipole, quadrupole, and skew quadrupole correctors.
- Optics correction is based on the measurement of beam optics, especially orbit response.
- Correction of closed orbit distortion, X-Y coupling, dispersions, and beta functions.
  #samples: 100 (different seed number)



The vertical emittance can be corrected down to a few pm.

H. Sugimoto

#### **Final focus quadrupoles**





# Final focus quadrupoles





HER cancel coil consists of B<sub>3</sub>, B<sub>4</sub>, B<sub>5</sub>, B<sub>6</sub>.

Sextupole coil

| Design param.    | Dipole                     | Skew dipole | Quad                                | Skew quad         | Sextupole                                          | Skew sext          | Octupole                         |
|------------------|----------------------------|-------------|-------------------------------------|-------------------|----------------------------------------------------|--------------------|----------------------------------|
|                  | B₁L (Tm)                   | A₁L (Tm)    | B <sub>2</sub> L/r <sub>0</sub> (T) | $A_{2}L/r_{0}(T)$ | B <sub>3</sub> L/r <sub>0</sub> <sup>2</sup> (T/m) | $A_3L/r_0^2$ (T/m) | $B_4L/r_0^3$ (T/m <sup>2</sup> ) |
| QC1LP(no shield) | 0.004                      | -0.002      | -22.96                              | -9.50E-05         |                                                    |                    | -27.0                            |
| QC2LP            | -0.0217                    | 0.022       | 11.48                               | 0.0095            |                                                    |                    | 48.2                             |
| QC1RP(no shield) | 0.0050                     | -0.0086     | -22.96                              | 1.92E-05          |                                                    | 0.0                | -26.7                            |
| QC2RP            | -0.0023                    | 0.0214      | 11.54                               | -6.30E-06         |                                                    | 0.0                |                                  |
| QC1RP-QC2RP      |                            |             |                                     |                   | 0.0                                                |                    |                                  |
| QC1LE            | 0.030                      | 0.0092      | -26.94                              | -0.0729           |                                                    |                    | 8.9                              |
| QC2LE            | 0.000                      | -0.0016     | 15.27                               | 0.0271            |                                                    |                    | 23.6                             |
| QC1RE            | -0.0305                    | 0.0053      | -25.39                              | 0.0653            |                                                    | 0.0                |                                  |
| QC2RE            | 0.000                      | -0.0022     | 13.04                               | 0.0559            |                                                    | 0.0                |                                  |
| QC1RE-QC2RE      |                            |             |                                     |                   | 0.0                                                |                    |                                  |
|                  | QC2LP, QC                  | 2RP, QC1L   | E, QC1RE:                           | permendur         | yoke                                               |                    |                                  |
|                  | QC2LE, QC2RE: iron yoke 34 |             |                                     |                   |                                                    |                    |                                  |

# **Orbit in the vicinity of IP**





| offset/rot.            | QC2LE | QCILE | QCIRE | QC2RE | offset/rot.            | QC2LP  | QCILP  | QCTRP  | QC2RP  |
|------------------------|-------|-------|-------|-------|------------------------|--------|--------|--------|--------|
| ∆x (mm)                | +0.7  | +0.7  | -0.7  | -0.7  | Δy (mm)                | +1.5   | +1.5   | +1.0   | +1.0   |
| $\Delta \theta$ (mrad) | 0     | 0     | 0     | 0     | $\Delta \theta$ (mrad) | -3.725 | -13.65 | +7.204 | -2.114 |

QC1/QC2 offset is adopted to control the orbit appropriately. Slide model of 1 cm thickness is used for the optics calculation for IR. Each slice has Maxwellian fringe and up to  $B_{22}$  and  $A_{22}$ .

# **IR optics in LER**



X-LCC corrects QC2 chromaticity and Y-LCC corrects QC1 chromaticity locally.



# **IR optics in HER**



X-LCC corrects QC2 chromaticity and Y-LCC corrects QC1 chromaticity locally.

