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Lattice parameters in SuperKEKB	



Symbol! LER! HER! Unit!

Horizontal Emittance(1)! εx! 3.2! 4.6! nm!

Horizontal Beta at IP! βx*! 32! 25! cm!

Horizontal Beam size at IP! σx*! 10.1! 10.7! μm!

Vertical Emittance(2)! εy! 8.64! 12.9! pm!

Vertical Beta at IP! βy*! 270! 300! μm!

Vertical Beam size at IP! σy*! 48! 62! nm!

Bunch length(1)! σz! 6! 5! mm!

Full crossing angle! 2φx! 83! mrad!

Very small vertical emittance is necessary.	



Large crossing angle and small beam size at IP in 
the Nano-beam scheme	



(1) Intra-beam scattering is included. !
(2) Machine error, beam-beam effect, etc. are included.!



Nano-Beam Scheme 
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Small φPiw 

KEKB : ~ 1 

θx=11 mrad

No crab crossing 	


Large φPiw 

SuperKEKB : ~ 20 

θx=41.5 mrad

	



Piwinski angle 



No Crab Waist

SuperKEKB


M. Zovob et al., http://arxiv.org/pdf/0802.2667.pdf 

Schematic View of colliding bunches  

IP!
s = 0 

Crab Waist

Waist points are aligned along the 
center line of the counter-rotating 
beam. 

At these points, βy is 
much larger than βy*. 



6!

!   The horizontal orbit(deviation from beam axis) is translated into the longitudinal 
displacement in the nano-beam scheme.	



!   Particles with a large horizontal orbit are kicked by the beam-beam force at high 
vertical beta region. Consequently, the vertical betatron oscillation increases due 
to the vertical beam-beam kick. The transverse aperture decreased, which implies 
small dynamic aperture.	



Beam-beam effect for large horizontal orbit	



high vertical beta →	


~factor of 180	



x	

x	



z	

 z	


Δx	



Δz	



test particle	

beam axis	
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Difficulty in the Nano-Beam scheme	



w/o beam-beam	

 with beam-beam	



LER! LER!

HER!HER!

aperture	


lost	



aperture	


lost	



Transverse aperture is reduced significantly.	





8!

Tracking simulation for single particle	
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Initial orbit is 10 sigmas in the horizontal direction and 0 
for the vertical direction	



blue: no beam-beam!
red: with beam-beam!

Horizontal betatron oscillation is stable 	


for both case.	



Vertical betatron oscillation is stable 	


for beam-beam effect.	



The amplitude is slightly large.	



The vertical oscillation exists for the case w/o beam-beam,	


since there is a X-Y coupling.	
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Tracking simulation:  beam-beam effect	
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#turn	
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Initial orbit is 15 sigmas in the horizontal direction and 0 
for the vertical direction	



blue: no beam-beam!
red: with beam-beam!

Horizontal betatron oscillation is stable 	


for both case.	



Vertical betatron oscillation is unstable 	


for beam-beam effect.	



The vertical oscillation exists for the case w/o beam-beam,	


since there is a X-Y coupling.	
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Difficulty in the Nano-Beam scheme	



Working point is bad ?	



Might be resonance line ?	


Check betatron tunes.	
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Tune survey: No beam-beam effect	



(νx, νy)=(44.53, 46.57)	

 (νx, νy)=(45.53, 43.57)	



Single-beam operation (no beam-beam effect)	


Lighter color indicates larger dynamic aperture (only for on-momentum).	



Nominal working point is .53 for the horizontal and .57 for the vertical direction.	



LER! HER!2νx+2νs=int.	
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LER tune survey: Beam-beam effect	



LER: w/o beam-beam	

 LER: with beam-beam	



There is a good region near 
half integer resonance for the 

vertical tune.	


	



Chromaticity correction 
becomes very difficult near 

half integer.	



νx+2νy=int.	
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Better working point for Touschek lifetime ?	



Luminosity (W-S model)	



D. Zhou!
H. Sugimoto!

Touschek lifetime (LER)	



Candidates are (44.53,46.54) and (44.65,46.535)	


L~8x1035	

 L~6x1035	



w/o lattice nonlinear	
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Optimization of dynamic aperture	


Δ

x/
σ x

	



Δε/σε	



(νx, νy)=(44.53, 46.54)	

 (νx, νy)=(44.65, 46.535)	



Δ
x/
σ x

	



Δε/σε	



H. Sugimoto!

Optimization is done by sextupoles, skew sextupoles, and octupoles.	


Touschek lifetime is improved up to 230 sec. Still short lifetime.	



LER! LER!

!   Ideal crab-waist has a potential to mitigate this effect. (only solution)	


!   But a real crab-waist consists of sextupoles has a serious issue.	



!   Nonlinear terms between crab-waist sextupoles and Final Focus reduce the dynamic aperture. No cure for this, so far. We have to develop a new technique. 	



L~8x1035	

 L~6x1035	





No Crab Waist

SuperKEKB


M. Zovob et al., http://arxiv.org/pdf/0802.2667.pdf 

Schematic View of colliding bunches  

IP!
s = 0 

Crab Waist

Waist points are aligned along the 
center line of the counter-rotating 
beam. 

At these points, βy is 
much larger than βy*. 



                 

Akio Morita, ICFA Mini-Workshop on Commissioning of SuperKEKB and e+e- Colliders, 2013.11.12 



 KEKB Crab waist Oho-Nikko Version


NX 12.5

NY 11.25


NX 12.5

NY 11.75


K2 9.3! K2 -9.3!



  KEKB Crab waist Oho-Nikko Version


Crab waist setupoles drastically decrease the dynamic aperture. 

Δx / σx 

Δε / σε 

Crab waist sextupoles:ON 

Crab waist sextupoles:OFF 
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Lattice preparation 	



phase	

 sub-phase	

 IR status	

 lattice, commissioning	

 Ib (mA)	



Phase 1	



Phase 1.1	



No QCS	


No Belle II	



wiggler off, device check,	


optics tuning, vacuum scrub.	

 < 30-100	



Phase 1.2	

 wiggler on, circumference, optics 
tuning	

 < 30	



Phase 1.3	

 high emittance for vacuum 
scrubbing (LER)	

 500-1000	



Phase 1.4	

 optics tuning (low emittance)	

 < 30	



Phase 2	



Phase 2.1	


QCS	



Belle II	


w/o VXD	



vertical beta* = 80 mm,	


optics and injection tuning	

 < 30	



:	

 :	

 :	



Phase 2.x	

 vertical beta* = 2.2 mm,	


optics and luminosity tuning	

 1000/800	



Phase 3	



Phase 3.1	


QCS	



Belle II	


with VXD	



(Physics Run)	



vertical beta* = 2.2 mm,	


optics and luminosity tuning	

 1000/800	



:	

 :	

 :	



Phase 3.x	

 ultimate beta*,	


optics and luminosity tuning	

 3600/2600	
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Phase 1	



!   Horizontal emittance in LER can be adjusted by using the wiggler 
section. 	



!   to increase Touschek lifetime in LER for vacuum scrubbing	



!   Changing the wiggler optics is much easier than the arc optics. It is 
applicable even though with QCS	



!   Horizontal emittance in HER can be adjusted by changing arc optics, if 
necessary	



!   Optics tuning without QCS is a very important stage.	



!   no vertical emittance due to solenoid fringe field (simple !)	



!   Vertical emittance should be less than 1 pm at Phase 1 in principle.	



!   Establish ring optics except for QCS	
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Machine parameters with QCS	



Parameters	

 symbol	


Phase 2.x	

 Phase 3.x	



unit	


LER	

 HER	

 LER	

 HER	



Energy	

 E	

 4	

 7.007	

 4	

 7.007	

 GeV	



#Bunches	

 nb	

 2500	

 2500	



Emittance	

 εx	

 2.2	

 5.2	

 3.2	

 4.6	

 nm	



Coupling	

 εy/εx	

 2	

 2	

 0.27	

 0.28	

 %	



Hor. beta at IP	

 βx*	

 128	

 100	

 32	

 25	

 mm	



Ver. beta at IP	

 βy*	

 2.16	

 2.4	

 0.27	

 0.30	

 mm	



Bunch current	

 Ib	

 1.0	

 0.8	

 3.6	

 2.6	

 A	



Beam-beam	

 ξy	

 0.0240	

 0.0257	

 0.088	

 0.081	



Hor. beam size	

 σx*	

 16.8	

 22.8	

 10	

 11	

 µm	



Ver. beam size	

 σy*	

 308	

 500	

 48	

 62	

 nm	



Luminosity	

 L	

 1x1034	

 8x1035	

 cm-2s-1	



Ultimate!Pilot run!

Y. Funakoshi!
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Phase 2 and Phase 3	



!   We can change beta function at IP successively.	



!   We will start very large beta at IP at Phase 2.1(virgin QCS).	



!   βy* = 80 mm. Larger than the vertical beta of KEKB	



!   Target luminosity of Phase 2 is 1x1034 cm-2s-1	



!   βx*=128 mm, βy*=2.16 mm, Ib = 1 A	



!   Phase 3 will start from the parameters of Phase 2.x.	



!   The beta at IP will be squeezed successively during Phase 3.	



!   It depends on background, lifetime, and luminosity. 	
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Phase 2.1 LER (1/2)	



σx = 350 μm at QC2!
rb = 35 mm at QC2!

rb/σx = 100 (linear calc.)!

σx = 1100 μm at QC2!
rb = 35 mm at QC2!

rb/σx = 31 (linear calc.)!

LER! LER!

KEKB!

beam size	

 beam size	



Phase 3.x! Phase 2.1!
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LER!

Δ
y 

(m
m

)!

Phase 2.1 LER (2/2)	



QC1P: misalignment	


ΔyQC1P = 100 µm (opposite)	



The vertical orbit distortion is less than 10 mm 
without any corrections. We can find the orbit.!

Arc: < 5 mm!

Δ
y 

(m
m

)! +-5 mm!
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Summary	



!   Dynamic aperture under influence of beam-beam effect	



!   serious issue for Touschek lifetime for the ultimate parameters	



!   Several lattice designs have been prepared. 	



!   Phase 1: NoQCS(No FF)	



!   Phase 2: with QCS, w/o VXD	



!   Phase 3: with QCS/VXD	



!   We can provide a detuned lattice with adjusting beta functions at IP 
successively.  	
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Appendix	
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LER new

wigglers
 HER


wigglers


SuperConductive

Cavities (HER)


ARES

Cavities 
(HER)


ARES

Cavities 

(LER)

ARES


Cavities 
(LER)


Belle II

detector


QCS(Final Focus)


LER new

wigglers


electron! positron!

IP!
positron (LER)!

4 GeV!
2.6 A!

electron (HER)!
7 GeV!
3.6 A!

Overview of SuperKEKB	



Circumference!
3 km!

from linac!

Luminosity	


8x1035 cm-2s-1	



x40 of KEKB	


to study new physics 

via B-meson	



“Nano-beam”!
scheme!

Nikko!

Oho!

Fuji!



28!

Nano-Beam scheme	



Small βy*, small εy	

 High luminosity	



To avoid too large ξy (dangerous), 	


the ratio of βy* to εy should be small.	



Long "bunch length" is OK.	



~ 0.09


~ 0.003


(effective)
 (6 mm x 41.5 mrad)
~ 8 x 1035 cm-2s-1


(effective)


The hourglass condition is modified: 	



Dynamic effects

can be ignored.


Luminosity formula:	



Beam-Beam:	



proposed by P. Raimondi!
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Energy range	



!   We assume the requirement of the energy range is from Y(1S) to Y(6S), 
so far.	



!   The boost factor is the same among Y(1S) and Y(6S). 	



!   We checked the magnetic field for the energy range. -> OK	



E (GeV)	

 ΔE/E (%)	

 Ee+ (GeV)	

 Ee- (GeV)	



Y(1S)	

 9.460	

 -10.58	

 3.577	

 6.266	



Y(2S)	

 10.023	

 -5.26	

 3.790	

 6.639	



Y(3S)	

 10.355	

 -2.12	

 3.915	

 6.859	



Y(4S)	

 10.579	

 -	

 4.000	

 7.007	



Y(5S)	

 10.876	

 +2.81	

 4.112	

 7.204	



Y(6S)	

 11.019	

 +4.16	

 4.166	

 7.299	



nominal	
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LER: wiggler section	



!   Emittance can be adjusted by optics in Nikko section(No cavity).	



!   Emittance becomes 20* nm in case of 1 m dispersion at midpoint the 
straight section.	



LER: Nikko!
* without intra-beam scattering	
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Phase 3.x: Optics correction (1/2)	



Assumption of machine error	


Δxrms (µm)	

 Δyrms (µm)	

 Δθrms (µrad)	

 (ΔΚ/Κ)rms	



Dipole	

 0	

 0	

 100	

 3.5x10-4	



Quadrupole	

 100	

 100	

 100	

 7x10-4	



Sextupole	

 100	

 100	

 0	

 1.3x10-3	



QCS	

 100	

 100	

 0	

 0	



BPM*	

 75	

 75	

 1000	

 -	



*BPM jitter error is 2 µm (rms).	



Misalignment error is based on the measurement at KEKB.	


We evaluate the beam quality after with corrections of these machine error 
on the computer simulation.	
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Phase 3.x: Optics correction (2/2)	



!   Machine error is corrected by using dipole, quadrupole, and skew quadrupole 
correctors.	



!   Optics correction is based on the measurement of beam optics, especially orbit 
response.	



!   Correction of closed orbit distortion, X-Y coupling, dispersions, and beta 
functions.	



ideal	


lattice	



ideal	


lattice	



The vertical emittance can be corrected down to a few pm. 	



#samples: 100 (different seed number)	



H. Sugimoto!
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Final focus quadrupoles	



IP!
HER cancel coil consists of B3, B4, B5, B6.


Sextupole coil!

Permendur yoke! Iron yoke!

35 mm! 40 mm!

17 mm!

10.5 mm!
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Final focus quadrupoles	



Design param.! Dipole! Skew dipole! Quad! Skew quad! Sextupole! Skew sext! Octupole!
B1L (Tm)! A1L (Tm)! B2L/r0 (T)! A2L/r0 (T)! B3L/r02 (T/m)! A3L/r02 (T/m)! B4L/r03 (T/m2)!

QC1LP(no shield)! 0.004! -0.002! -22.96! -9.50E-05! -27.0!
QC2LP! -0.0217! 0.022! 11.48! 0.0095! 48.2!

QC1RP(no shield)! 0.0050! -0.0086! -22.96! 1.92E-05! 0.0! -26.7!

QC2RP! -0.0023! 0.0214! 11.54! -6.30E-06! 0.0!

QC1RP-QC2RP! 0.0!

QC1LE! 0.030! 0.0092! -26.94! -0.0729! 8.9!
QC2LE! 0.000! -0.0016! 15.27! 0.0271! 23.6!

QC1RE! -0.0305! 0.0053! -25.39! 0.0653! 0.0!

QC2RE! 0.000! -0.0022! 13.04! 0.0559! 0.0!

QC1RE-QC2RE! 0.0!

IP!
HER cancel coil consists of B3, B4, B5, B6.


Sextupole coil!

QC2LP, QC2RP, QC1LE, QC1RE: permendur yoke!
QC2LE, QC2RE:                            iron yoke!
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Orbit in the vicinity of IP	



QC1/QC2 offset is adopted to control the orbit appropriately.	



LER! positron!HER! electron!
leakage field!

from QC1P(LER)!

QC1LE!
QC1RE!

QC2RE!QC2LE! QC1LP! QC1RP!

QC2RP!QC2LP!

offset/rot.! QC2LE! QC1LE! QC1RE! QC2RE!

Δx (mm)! +0.7! +0.7! -0.7! -0.7!

Δθ (mrad)! 0! 0! 0! 0!

offset/rot.! QC2LP! QC1LP! QC1RP! QC2RP!

Δy (mm)! +1.5! +1.5! +1.0! +1.0!

Δθ (mrad)! -3.725! -13.65! +7.204! -2.114!

solenoid	

solenoid	



Slide model of 1 cm thickness is used for the optics calculation for IR.	


Each slice has Maxwellian fringe and up to B22 and A22. 	
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IR optics in LER	



QC2!QC1!

X-LCC! Y-LCC!

X-LCC corrects QC2 chromaticity and Y-LCC corrects QC1 chromaticity locally.!

coupling parameters!

vertical dispersion!

horizontal dispersion!

beta functions!

strong	


sextupoles	
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IR optics in HER	



QC2!QC1!

Y-LCC!X-LCC!

X-LCC corrects QC2 chromaticity and Y-LCC corrects QC1 chromaticity locally.!

coupling parameters!

vertical dispersion!

horizontal dispersion!

beta functions!

strong	


sextupoles	




