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Lattice parameters in SuperKEKB	


Symbol! LER! HER! Unit!

Horizontal Emittance(1)! εx! 3.2! 4.6! nm!

Horizontal Beta at IP! βx*! 32! 25! cm!

Horizontal Beam size at IP! σx*! 10.1! 10.7! μm!

Vertical Emittance(2)! εy! 8.64! 12.9! pm!

Vertical Beta at IP! βy*! 270! 300! μm!

Vertical Beam size at IP! σy*! 48! 62! nm!

Bunch length(1)! σz! 6! 5! mm!

Full crossing angle! 2φx! 83! mrad!

Very small vertical emittance is necessary.	


Large crossing angle and small beam size at IP in 
the Nano-beam scheme	


(1) Intra-beam scattering is included. !
(2) Machine error, beam-beam effect, etc. are included.!



Nano-Beam Scheme 
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Small φPiw 
KEKB : ~ 1 
θx=11 mrad
No crab crossing 	

Large φPiw 
SuperKEKB : ~ 20 
θx=41.5 mrad
	


Piwinski angle 



No Crab Waist
SuperKEKB

M. Zovob et al., http://arxiv.org/pdf/0802.2667.pdf 

Schematic View of colliding bunches  

IP!
s = 0 

Crab Waist
Waist points are aligned along the 
center line of the counter-rotating 
beam. 

At these points, βy is 
much larger than βy*. 
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!   The horizontal orbit(deviation from beam axis) is translated into the longitudinal 
displacement in the nano-beam scheme.	


!   Particles with a large horizontal orbit are kicked by the beam-beam force at high 
vertical beta region. Consequently, the vertical betatron oscillation increases due 
to the vertical beam-beam kick. The transverse aperture decreased, which implies 
small dynamic aperture.	


Beam-beam effect for large horizontal orbit	


high vertical beta →	

~factor of 180	


x	
x	


z	
 z	

Δx	


Δz	


test particle	
beam axis	
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Difficulty in the Nano-Beam scheme	


w/o beam-beam	
 with beam-beam	


LER! LER!

HER!HER!

aperture	

lost	


aperture	

lost	


Transverse aperture is reduced significantly.	
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Tracking simulation for single particle	
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Initial orbit is 10 sigmas in the horizontal direction and 0 
for the vertical direction	


blue: no beam-beam!
red: with beam-beam!

Horizontal betatron oscillation is stable 	

for both case.	


Vertical betatron oscillation is stable 	

for beam-beam effect.	


The amplitude is slightly large.	


The vertical oscillation exists for the case w/o beam-beam,	

since there is a X-Y coupling.	




9!

Tracking simulation:  beam-beam effect	


#turn	


#turn	


Δ
x 

(m
m

)	

Δ

y 
(m

m
)	


Initial orbit is 15 sigmas in the horizontal direction and 0 
for the vertical direction	


blue: no beam-beam!
red: with beam-beam!

Horizontal betatron oscillation is stable 	

for both case.	


Vertical betatron oscillation is unstable 	

for beam-beam effect.	


The vertical oscillation exists for the case w/o beam-beam,	

since there is a X-Y coupling.	
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Difficulty in the Nano-Beam scheme	


Working point is bad ?	


Might be resonance line ?	

Check betatron tunes.	
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Tune survey: No beam-beam effect	


(νx, νy)=(44.53, 46.57)	
 (νx, νy)=(45.53, 43.57)	


Single-beam operation (no beam-beam effect)	

Lighter color indicates larger dynamic aperture (only for on-momentum).	


Nominal working point is .53 for the horizontal and .57 for the vertical direction.	


LER! HER!2νx+2νs=int.	
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LER tune survey: Beam-beam effect	


LER: w/o beam-beam	
 LER: with beam-beam	


There is a good region near 
half integer resonance for the 

vertical tune.	

	


Chromaticity correction 
becomes very difficult near 

half integer.	


νx+2νy=int.	
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Better working point for Touschek lifetime ?	


Luminosity (W-S model)	


D. Zhou!
H. Sugimoto!

Touschek lifetime (LER)	


Candidates are (44.53,46.54) and (44.65,46.535)	

L~8x1035	
 L~6x1035	


w/o lattice nonlinear	
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Optimization of dynamic aperture	

Δ

x/
σ x

	


Δε/σε	


(νx, νy)=(44.53, 46.54)	
 (νx, νy)=(44.65, 46.535)	


Δ
x/
σ x

	


Δε/σε	


H. Sugimoto!

Optimization is done by sextupoles, skew sextupoles, and octupoles.	

Touschek lifetime is improved up to 230 sec. Still short lifetime.	


LER! LER!

!   Ideal crab-waist has a potential to mitigate this effect. (only solution)	

!   But a real crab-waist consists of sextupoles has a serious issue.	


!   Nonlinear terms between crab-waist sextupoles and Final Focus reduce the dynamic aperture. No cure for this, so far. We have to develop a new technique. 	


L~8x1035	
 L~6x1035	




No Crab Waist
SuperKEKB

M. Zovob et al., http://arxiv.org/pdf/0802.2667.pdf 

Schematic View of colliding bunches  

IP!
s = 0 

Crab Waist
Waist points are aligned along the 
center line of the counter-rotating 
beam. 

At these points, βy is 
much larger than βy*. 



                 

Akio Morita, ICFA Mini-Workshop on Commissioning of SuperKEKB and e+e- Colliders, 2013.11.12 



 KEKB Crab waist Oho-Nikko Version

NX 12.5
NY 11.25

NX 12.5
NY 11.75

K2 9.3! K2 -9.3!



  KEKB Crab waist Oho-Nikko Version

Crab waist setupoles drastically decrease the dynamic aperture. 

Δx / σx 

Δε / σε 

Crab waist sextupoles:ON 

Crab waist sextupoles:OFF 
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Lattice preparation 	


phase	
 sub-phase	
 IR status	
 lattice, commissioning	
 Ib (mA)	


Phase 1	


Phase 1.1	


No QCS	

No Belle II	


wiggler off, device check,	

optics tuning, vacuum scrub.	
 < 30-100	


Phase 1.2	
 wiggler on, circumference, optics 
tuning	
 < 30	


Phase 1.3	
 high emittance for vacuum 
scrubbing (LER)	
 500-1000	


Phase 1.4	
 optics tuning (low emittance)	
 < 30	


Phase 2	


Phase 2.1	

QCS	


Belle II	

w/o VXD	


vertical beta* = 80 mm,	

optics and injection tuning	
 < 30	


:	
 :	
 :	


Phase 2.x	
 vertical beta* = 2.2 mm,	

optics and luminosity tuning	
 1000/800	


Phase 3	


Phase 3.1	

QCS	


Belle II	

with VXD	


(Physics Run)	


vertical beta* = 2.2 mm,	

optics and luminosity tuning	
 1000/800	


:	
 :	
 :	


Phase 3.x	
 ultimate beta*,	

optics and luminosity tuning	
 3600/2600	
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Phase 1	


!   Horizontal emittance in LER can be adjusted by using the wiggler 
section. 	


!   to increase Touschek lifetime in LER for vacuum scrubbing	


!   Changing the wiggler optics is much easier than the arc optics. It is 
applicable even though with QCS	


!   Horizontal emittance in HER can be adjusted by changing arc optics, if 
necessary	


!   Optics tuning without QCS is a very important stage.	


!   no vertical emittance due to solenoid fringe field (simple !)	


!   Vertical emittance should be less than 1 pm at Phase 1 in principle.	


!   Establish ring optics except for QCS	
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Machine parameters with QCS	


Parameters	
 symbol	

Phase 2.x	
 Phase 3.x	


unit	

LER	
 HER	
 LER	
 HER	


Energy	
 E	
 4	
 7.007	
 4	
 7.007	
 GeV	


#Bunches	
 nb	
 2500	
 2500	


Emittance	
 εx	
 2.2	
 5.2	
 3.2	
 4.6	
 nm	


Coupling	
 εy/εx	
 2	
 2	
 0.27	
 0.28	
 %	


Hor. beta at IP	
 βx*	
 128	
 100	
 32	
 25	
 mm	


Ver. beta at IP	
 βy*	
 2.16	
 2.4	
 0.27	
 0.30	
 mm	


Bunch current	
 Ib	
 1.0	
 0.8	
 3.6	
 2.6	
 A	


Beam-beam	
 ξy	
 0.0240	
 0.0257	
 0.088	
 0.081	


Hor. beam size	
 σx*	
 16.8	
 22.8	
 10	
 11	
 µm	


Ver. beam size	
 σy*	
 308	
 500	
 48	
 62	
 nm	


Luminosity	
 L	
 1x1034	
 8x1035	
 cm-2s-1	


Ultimate!Pilot run!

Y. Funakoshi!
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Phase 2 and Phase 3	


!   We can change beta function at IP successively.	


!   We will start very large beta at IP at Phase 2.1(virgin QCS).	


!   βy* = 80 mm. Larger than the vertical beta of KEKB	


!   Target luminosity of Phase 2 is 1x1034 cm-2s-1	


!   βx*=128 mm, βy*=2.16 mm, Ib = 1 A	


!   Phase 3 will start from the parameters of Phase 2.x.	


!   The beta at IP will be squeezed successively during Phase 3.	


!   It depends on background, lifetime, and luminosity. 	
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Phase 2.1 LER (1/2)	


σx = 350 μm at QC2!
rb = 35 mm at QC2!

rb/σx = 100 (linear calc.)!

σx = 1100 μm at QC2!
rb = 35 mm at QC2!

rb/σx = 31 (linear calc.)!

LER! LER!

KEKB!

beam size	
 beam size	


Phase 3.x! Phase 2.1!
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LER!

Δ
y 

(m
m

)!

Phase 2.1 LER (2/2)	


QC1P: misalignment	

ΔyQC1P = 100 µm (opposite)	


The vertical orbit distortion is less than 10 mm 
without any corrections. We can find the orbit.!

Arc: < 5 mm!

Δ
y 

(m
m

)! +-5 mm!
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Summary	


!   Dynamic aperture under influence of beam-beam effect	


!   serious issue for Touschek lifetime for the ultimate parameters	


!   Several lattice designs have been prepared. 	


!   Phase 1: NoQCS(No FF)	


!   Phase 2: with QCS, w/o VXD	


!   Phase 3: with QCS/VXD	


!   We can provide a detuned lattice with adjusting beta functions at IP 
successively.  	
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Appendix	
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LER new
wigglers HER

wigglers

SuperConductive
Cavities (HER)

ARES
Cavities 
(HER)

ARES
Cavities 

(LER)
ARES

Cavities 
(LER)

Belle II
detector

QCS(Final Focus)

LER new
wigglers

electron! positron!

IP!
positron (LER)!

4 GeV!
2.6 A!

electron (HER)!
7 GeV!
3.6 A!

Overview of SuperKEKB	


Circumference!
3 km!

from linac!

Luminosity	

8x1035 cm-2s-1	


x40 of KEKB	

to study new physics 

via B-meson	


“Nano-beam”!
scheme!

Nikko!

Oho!

Fuji!
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Nano-Beam scheme	


Small βy*, small εy	
 High luminosity	


To avoid too large ξy (dangerous), 	

the ratio of βy* to εy should be small.	


Long "bunch length" is OK.	


~ 0.09

~ 0.003

(effective) (6 mm x 41.5 mrad)~ 8 x 1035 cm-2s-1

(effective)

The hourglass condition is modified: 	


Dynamic effects
can be ignored.

Luminosity formula:	


Beam-Beam:	


proposed by P. Raimondi!
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Energy range	


!   We assume the requirement of the energy range is from Y(1S) to Y(6S), 
so far.	


!   The boost factor is the same among Y(1S) and Y(6S). 	


!   We checked the magnetic field for the energy range. -> OK	


E (GeV)	
 ΔE/E (%)	
 Ee+ (GeV)	
 Ee- (GeV)	


Y(1S)	
 9.460	
 -10.58	
 3.577	
 6.266	


Y(2S)	
 10.023	
 -5.26	
 3.790	
 6.639	


Y(3S)	
 10.355	
 -2.12	
 3.915	
 6.859	


Y(4S)	
 10.579	
 -	
 4.000	
 7.007	


Y(5S)	
 10.876	
 +2.81	
 4.112	
 7.204	


Y(6S)	
 11.019	
 +4.16	
 4.166	
 7.299	


nominal	
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LER: wiggler section	


!   Emittance can be adjusted by optics in Nikko section(No cavity).	


!   Emittance becomes 20* nm in case of 1 m dispersion at midpoint the 
straight section.	


LER: Nikko!
* without intra-beam scattering	
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Phase 3.x: Optics correction (1/2)	


Assumption of machine error	

Δxrms (µm)	
 Δyrms (µm)	
 Δθrms (µrad)	
 (ΔΚ/Κ)rms	


Dipole	
 0	
 0	
 100	
 3.5x10-4	


Quadrupole	
 100	
 100	
 100	
 7x10-4	


Sextupole	
 100	
 100	
 0	
 1.3x10-3	


QCS	
 100	
 100	
 0	
 0	


BPM*	
 75	
 75	
 1000	
 -	


*BPM jitter error is 2 µm (rms).	


Misalignment error is based on the measurement at KEKB.	

We evaluate the beam quality after with corrections of these machine error 
on the computer simulation.	
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Phase 3.x: Optics correction (2/2)	


!   Machine error is corrected by using dipole, quadrupole, and skew quadrupole 
correctors.	


!   Optics correction is based on the measurement of beam optics, especially orbit 
response.	


!   Correction of closed orbit distortion, X-Y coupling, dispersions, and beta 
functions.	


ideal	

lattice	


ideal	

lattice	


The vertical emittance can be corrected down to a few pm. 	


#samples: 100 (different seed number)	


H. Sugimoto!
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Final focus quadrupoles	


IP!
HER cancel coil consists of B3, B4, B5, B6.

Sextupole coil!

Permendur yoke! Iron yoke!

35 mm! 40 mm!

17 mm!

10.5 mm!
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Final focus quadrupoles	


Design param.! Dipole! Skew dipole! Quad! Skew quad! Sextupole! Skew sext! Octupole!
B1L (Tm)! A1L (Tm)! B2L/r0 (T)! A2L/r0 (T)! B3L/r02 (T/m)! A3L/r02 (T/m)! B4L/r03 (T/m2)!

QC1LP(no shield)! 0.004! -0.002! -22.96! -9.50E-05! -27.0!
QC2LP! -0.0217! 0.022! 11.48! 0.0095! 48.2!

QC1RP(no shield)! 0.0050! -0.0086! -22.96! 1.92E-05! 0.0! -26.7!

QC2RP! -0.0023! 0.0214! 11.54! -6.30E-06! 0.0!

QC1RP-QC2RP! 0.0!

QC1LE! 0.030! 0.0092! -26.94! -0.0729! 8.9!
QC2LE! 0.000! -0.0016! 15.27! 0.0271! 23.6!

QC1RE! -0.0305! 0.0053! -25.39! 0.0653! 0.0!

QC2RE! 0.000! -0.0022! 13.04! 0.0559! 0.0!

QC1RE-QC2RE! 0.0!

IP!
HER cancel coil consists of B3, B4, B5, B6.

Sextupole coil!

QC2LP, QC2RP, QC1LE, QC1RE: permendur yoke!
QC2LE, QC2RE:                            iron yoke!
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Orbit in the vicinity of IP	


QC1/QC2 offset is adopted to control the orbit appropriately.	


LER! positron!HER! electron!
leakage field!

from QC1P(LER)!

QC1LE!
QC1RE!

QC2RE!QC2LE! QC1LP! QC1RP!

QC2RP!QC2LP!

offset/rot.! QC2LE! QC1LE! QC1RE! QC2RE!

Δx (mm)! +0.7! +0.7! -0.7! -0.7!

Δθ (mrad)! 0! 0! 0! 0!

offset/rot.! QC2LP! QC1LP! QC1RP! QC2RP!

Δy (mm)! +1.5! +1.5! +1.0! +1.0!

Δθ (mrad)! -3.725! -13.65! +7.204! -2.114!

solenoid	
solenoid	


Slide model of 1 cm thickness is used for the optics calculation for IR.	

Each slice has Maxwellian fringe and up to B22 and A22. 	
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IR optics in LER	


QC2!QC1!

X-LCC! Y-LCC!

X-LCC corrects QC2 chromaticity and Y-LCC corrects QC1 chromaticity locally.!

coupling parameters!

vertical dispersion!

horizontal dispersion!

beta functions!

strong	

sextupoles	
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IR optics in HER	


QC2!QC1!

Y-LCC!X-LCC!

X-LCC corrects QC2 chromaticity and Y-LCC corrects QC1 chromaticity locally.!

coupling parameters!

vertical dispersion!

horizontal dispersion!

beta functions!

strong	

sextupoles	



